用户名: 密码: 验证码:
高钙镁电炉钛渣制备优质人造金红石的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究为国家自然科学基金委国家杰出青年科学基金“矿物工程与物质分离科学”项目(批准号:50725416)资助课题。
     我国攀西地区钛资源丰富,已探明储量8.7亿t(以TiO2计),属岩矿型钛铁矿资源,选矿所得钛铁精矿结构致密,钙、镁等杂质含量高。为了大规模高效利用该地区的钛资源,我国对攀西地区钛铁精矿制取高品位富钛料的方法进行了大量研究,选择了生产规模大、效率高的电炉熔炼法作为主要技术途径,并投入了工业化生产。但是电炉熔炼法获得的钛渣TiO2品位低,钙、镁等杂质含量高,不能直接用作氯化法钛白生产及海绵钛制取的原料。因此,研究开发从电炉钛渣中进一步除去钙镁等杂质的理论及新技术,对攀西地区钛资源的大规模高效利用具有十分重要的现实意义。
     本文以攀钢高钙、镁电炉钛渣为研究对象,综合运用热力学原理及X-射线衍射、光学显微镜和扫描电镜等现代微观测试手段,对电炉钛渣的性质、酸浸过程杂质的溶出行为、活化焙烧-酸浸除杂技术和基础理论进行系统研究,开发出高钙、镁电炉钛渣制备优质人造金红石的新技术。取得以下结论:
     (1)攀钢电炉钛渣TiO2含量为72.42%,主要杂质元素为Fe、Mg、Ca、Al、Si,其中CaO+MgO的含量达到9.57%;主要矿物相为黑钛石固溶体和硅酸盐矿物,其相对含量分别为87.6%和8.2%,二者呈镶嵌状态分布,杂质元素Mg、Fe、Al集中分布在黑钛石固溶体中,Si、Ca集中分布在硅酸盐矿物中。
     (2)钛渣加压酸浸杂质溶出行为研究表明,加压酸浸不能有效去除杂质,钛渣TiO2品位仅能提高到75%左右;酸浸过程添加NH4HF2能强化钛渣中硅酸盐矿物的溶解,但固溶于黑钛石中的Fe、Mg、Al等杂质溶出效果差,钛渣TiO2品位也仅能提高到80%左右。固溶于黑钛石固溶体中的Fe、Mg、Al等杂质溶出效果差是导致酸浸不能有效去除杂质、显著提升钛渣TiO2品位的主要原因。
     (3)钛渣钠化焙烧-酸浸研究表明,将Na2CO3与钛渣按质量比3:7混合,在900℃下焙烧2h,焙烧产物采用两段硫酸沸腾浸出,能够有效去除杂质,获得TiO2品位为92.23%,回收率92%左右,CaO+MgO含量为0.78%的人造金红石。
     (4)对钛渣与Na2CO3混合物料进行机械活化处理,能强化钛渣钠化焙烧-酸浸除杂的效果,在焙烧、酸浸条件与未机械活化时相同的条件下,获得TiO2品位为94.61%, CaO+MgO含量为0.68%的人造金红石。
     (5)钠化焙烧-酸浸机制研究表明,钛渣添加Na2CO3焙烧后,钛渣中的黑钛石与发生Na2CO3反应,生成了钛酸钠、铁酸钠、以及Na-Fe-Ti-O系和Na-Mg-Ti-O系固溶体;钛酸钠、铁酸钠、以及非化学计量Na-Mg-Ti-O系固溶体中的杂质具有良好的酸溶性能,在酸浸过程中被溶出,Na-Fe-Ti-O系固溶体较为稳定,其中的杂质仅能部分被溶出,上述化合物中的钛组分转变为金红石型和锐钛型TiO2,从而有效去除了杂质,显著提升了人造金红石的TiO2品位。
     (6)机械活化强化钛渣钠化焙烧-酸浸除杂效果的机理在于,机械活化处理改善了钛渣与Na2CO3反应的动力学条件,并使矿物晶格缺陷增加,晶胞体积增大,提高矿物晶格内能和反应活性,从而强化钛渣与Na2CO3的化学反应,促进黑钛石固溶体向钛酸钠、铁酸钠、以及Na-Fe-Ti-O系和Na-Mg-Ti-O系固溶体的转变,提高了杂质的溶出效果。
     (7)还原-锈蚀法富钛料活化焙烧-酸浸除杂研究表明,活化焙烧-酸浸法具有良好的原料适应性,在与处理钛渣条件相同的情况下,获得了TiO2品位在95%以上,CaO+MgO含量为0.69%的人造金红石。
     本文基于固相反应原理及机械活化理论,开发出了高钙镁电炉钛渣活化焙烧-酸浸除杂制备优质人造金红石新工艺,并对新工艺的机理进行了深入研究,形成了高钙镁电炉钛渣活化焙烧-酸浸除杂的理论基础。将活化焙烧-酸浸除杂新工艺用于处理还原-锈蚀法富钛料,取得了良好的效果,表明新工艺具有良好的适应性,适于处理高钙镁钛资源。本研究为大规模高效利用我国攀西地区的钛资源开辟了一条新的途径。
Titanium resource reserves are rich in Panxi area of China, and the proved titanium resource reserves are up to 870 million tons, belonging to rock-type ilmenite ore resources. The obtained ilmenite concentrate by beneficiation is with compact structure and high content of Ca, Mg and other impurities. To use the titanium resources in Panxi area of China on a large scale and effectively, many works for the production of Ti-rich material using Panxi ilmenite concentrate have been carried out. The high efficient and large-scale electric furnace smelting method has been chosen as main technical way and put into industrial production. However, the obtained titanium slag by electric furnace smelting from Panxi ilmenite with high content of Mg and Ca contained low TiO2 grade and high Mg and Ca content, which can not be used directly for production of titanium white by chlorination process and sponge titanium. Therefore, developing new technologies to get rid of impurities in the titanium slag is of great significance for the large-scale and efficient utilization of Panxi titanium resources.
     In this work, the titanium slag with high content of Mg and Ca from Pangang Company was taken as raw material, and the characteristics of titanium slag, impurities removal behavior in acid leaching process, the fundamental of activation roasting-acid leaching was systematically investigated. Based on the investigations, a new technology of producing high-quality synthetic rutile from titanium slag with high Ca and Mg content has been developed. The obtained conclusions were as follows.
     (1) In the titanium slag, TiO2 content was 72.24%, main impurities were Fe, Mg, Ca, Si and Al, especially, CaO+MgO content was up to 9.57%. The main mineral phases were anosovite solid solution and silicate minerals with mosaic structure, and the contents were 87.6%and 8.2%, respectively. Mg, Fe, Al impurities occurred mainly in anosovite solid solution, and Si, Ca occurred mainly in the silicate minerals.
     (2) The study of impurities dissolution behavior in the pressure acid leaching of titanium slag showed that pressure acid leaching could not remove impurities effectively, TiO2 grade of titanium slag only increased to about 75%. In the acid leaching process, adding NH4HF2 could strengthen dissolution of silicate minerals, however, the leaching effect of Mg, Fe, Al and other impurities dissolving in the anosovite solid solution was poor, and TiO2 grade of titanium slag was only about 80%. The poor dissolution effect of Mg, Fe, Al and other impurities dissolving in the anosovite solid solution was the main reason removing impurities and upgrading TiO2 significantly in the acid leaching.
     (3) The sodium salt-added roasting-acid leaching results showed that, Na2CO3 and titanium slag were mixed as mass ratio of 3:7, and roasted at 900℃for 2h, and the roasted product was leached by two periods sulphuric acid, and the leached residue was calcined, a synthetic rutile with 92.23% TiO2 grade and about 92% recovery and 0.78% CaO+MgO content was obtained.
     (4) The mechanical activation-sodium salt-added roasting-acid leaching showed that, after the titanium slag and Na2CO3 mixture being mechanically activated, under the same conditions as dealing with non-mechanically activated titanium slag, a synthetic rutile with 94.61% TiO2 grade and 0.68% CaO+MgO content was obtained.
     (5)The mechanism of sodium salt-added roasting-acid leaching showed that, the titanium slag adding Na2CO3 was roasted, sodium titanate, sodium ferrite, and the Na-Fe-Ti-O and Na-Mg-Ti-O system solid solution were produced. The impurities of sodium titanate, sodium ferrite and non-stoichiometric Na-Mg-Ti-O system solid solution substances had a good acid-solubility. During the leaching process, Na-Fe-Ti-O system solid solution was stable and the impurities were partially dissolved, and the titanium of the above compounds transformed rutile and anatase TiO2, which removed the impurities effectively and upgraded TiO2 of synthetic rutile significantly.
     (6) The mechanism of mechanical activation strengthening the impurities removal effect of sodium salt-added roasting-acid leaching was that mechanical activation improved the titanium slag and Na2CO3 kinetic conditions, and increased the mineral lattice defects, increased the cell volume, improved mineral lattice energy and reaction activity, which can strengthen the chemical reaction between Na2CO3 and titanium slag and promote the transformation of the anovosite into sodium titanate, sodium ferrite, Na-Fe-Ti-O and Na-Mg-Ti-O system solid solution and increase the impurities dissolution effect.
     (7) The activation roasting-acid leaching results of the Ti-rich material obtained by reduction-rust method showed that, under the same conditions as dealing with titanium slag, a synthetic rutile with 95%TiO2 grade and 0.69% CaO+MgO content.
     In this paper, based on the theories of the solid state reaction and mechanical activation, a new technology of producing high-quality synthetic rutile from titanium slag with high Ca and Mg content has been put forward its mechanism was systematically studied, and forming the fundamental of removing impurities from titanium slag with high Ca and Mg content by activation roasting-acid leaching technology. The new technology was used to deal with the Ti-rich material obtained by reduction-rust method, and good result was achieved. It is shown that the new technology has a good adaptability, and is suitable for titanium resources of high calcium and magnesium content. The study has opened up new way for large-scale and efficient use of titanium resources in Panxi area of China.
引文
[1]莫畏,邓国珠,罗方承.钛冶金(第2版).北京:冶金工业出版社,1998,118-198.
    [2]杨绍利,盛继孚.钛铁矿熔炼钛渣与生铁技术.北京:冶金工业出版社,2006.5-45.
    [3]吴贤,张健.中国的钛资源分布及特点.钛工业进展,2006,23(6):8-12.
    [4]孙康.钛提取冶金.北京:冶金工业出版社,2001,7-64.
    [5]U.S. Geological Survey. Mineral Commodity Summaries 2009, Washington:USGS,2009,178-179.
    [6]中国钛白网:http://www.tio2.net.cn.
    [7]中国铁合金在线:http://www.cnfeol.com.
    [8]赖主恩.浅析钛白粉工业新世纪的发展.广州化工,2003,31(1):57-59.
    [9]刘华,胡文启.钛白粉材料的生产和应用.北京:科学技术文献出版社,1992.
    [10]李文兵,杨成砚,黄文来,王中礼,袁章福.钛白粉材料历史、现状与发展.现代化工,2002,22(12):7-11.
    [11]唐文骞,李海泉.硫酸法钛白工业生产技术进展.化工设计,2003,13(4):3-6.
    [12]王兰武,朱胜友.我国硫酸法金红石钛白现状及对策.钛工业进展,2001,18(6):13-16.
    [13]唐文骞.硫酸法钛白工业生产技术进展.无机盐技术,2003,(2):13-18.
    [14]胡克俊.国外钛白工业发展现状.钢铁钒钛,1996,17(2):58-65.
    [15]黄云翔.国内外钛白粉生产概况和发展建议.广东化工,1996,(6):5-7.
    [16]毕胜.钛白工业近况及对我国钛白工业的发展建议.江苏化工,2002,30(4):16-19.
    [17]邓国珠,王向东.钛工业的现状和未来.钢铁钒钛,2003,24(1):1-7.
    [18]胡可信.钛白粉的工业应用与发展前提分析.湖南造纸,2001, (4):27-28.
    [19]Yang F, Hlavacek V. Effective Extraction of Titanium from Rutile by a Low-Temperature Chloride Process. AIChEJ,2000,46 (2):355-360
    [20]Luckos A, Mitchell D. The Design of a Circulating Fluidized-Bed Chlorinatior at Mintek. Industrial Fluidization South Africa,2002,147-160.
    [21]刘长河.谈中国氯化法钛白粉工业发展的思路.现代涂料与涂装,2002,(1):40-43.
    [22]刘长河.氯化法钛白技术进步和产业化.国家化工行业生产力促进中心钛白 分中心2006年会员大会,2006:14-20.
    [23]邓国珠.钛铁矿的质量和生产钛白的原料选择.钒钛,1994, (1):44-48。
    [24]邹建新,王刚,王荣凯,高邦禄.全球钛原料现状与市场展望.钛工业进展,2003,20(1):5-11.
    [25]吴晓晖,吴锁林.氯化法钛白粉工艺的进展.氯碱工业,1994,(5):1-6.
    [26]王贻谦,刘长河,张清.氯化法钛白引进设备运行及国产化.钛工业进展,2002,19(2):1-6.
    [27]刘文向.氯化法钛白国内技术经济浅析.氯碱工业,2000,(10):29-31.
    [28]曲颖.我国钛白工业存在的问题与发展对策.化工技术经济,1998,16(2):13-16.
    [29]李东英.我国的钛工业.有色冶炼,2000,29(3):1-6.
    [30]周廉.我国钛工业的形势与任务.钛工业进展,2002,17(4):7-12.
    [31]吴恩.2002年我国钛白粉行业发展综述.中国涂料,2003,(2):9-11.
    [32]韩明堂.如何发展我国的富钛料生产.钛工业进展,2001,15(1):4-7.
    [33]邓国珠,刘水根,郭伟.钛和钛白生产大型化面临的问题.钛工业进展,2001,18(6):1-6.
    [34]邓国珠.富钛料生产现状和今后的发展.钛工业进展,2000,17(4):1-5.
    [35]王志,袁章福.中国钛资源综合利用技术现状与新进展.化工进展,2004,23(4):349-352.
    [36]邓君,薛逊,刘功国.攀钢钒钛磁铁矿资源综合利用现状与发展.材料与冶金学报,2007,6(2):83-86,93.
    [37]苟淑云.对提高攀枝花钛资源利用率的思考.钢铁钒钛,2009,30,(3):89-92.
    [38]袁章福,郑少华,周家琮.解决攀枝花钛资源综合利用的新思路.2003年中国钢铁年会,2003:287-291.
    [39]李文兵.富钛料制备及氯化工艺的基础研究:[博士学位论文].北京:中国科学院过程工程研究所,2004.
    [40]邓国珠.钛冶金的进展和发展方向探讨,稀有金属,2002,26(5):391-396.
    [41]范晓慧,郭宇峰,邱冠周,姜涛,朱德庆,黄柱成,杨永斌,徐经沧.钛精矿制取富钛料新工艺.矿产综合利用,2002,(4):3-7.
    [42]孙康.铁精矿的富集方法.钒钛,1995,(5):13-20.
    [43]余文华,邓君,龚红军.钛精矿火法富集及直接还原方法的评价.攀钢技术,2001,(2):25-29.
    [44]邱冠周,郭宇峰.钛铁矿富集方法评述.矿产综合利用,1998,(5):29-34.
    [45]郭宇峰.钒钛磁铁矿固态还原强化及综合利用研究:[博士学位论文].长沙:中
    南大学,2007.
    [46]E. Jaya Kumari, S. Berckman, V. Yegnaraman. An electrochemical investigation of the rusting reaction of ilmenite using cyclic voltammetry. Hydrometallurgy, 2002,65:217-225.
    [47]K.S. Geetha, G.D. Surender. Experimental and modeling studies on the aeration leaching process for metallic iron removal in the manufacture of synthetic rutile. Hydrometallurgy,2000,56:41-62.
    [48]J. Ward, S. Bailey, J. Avraamides.The use of ethylenediammonium chloride as an aeration catalyst in the removal of metallic iron from reduced ilmenite. Hydrometallurgy,1999,53:215-232.
    [49]李唐礼,李维成,杨逸化,谢深文.还原-锈蚀法生产人造金红石十年实践.稀有金属与硬制合金.1992,111:46-51.
    [50]蒋云龙,李锦照.还原-锈蚀法制取人造金红石.云南冶金,1989,4:32-36.
    [51]胡克俊,锡淦,姚娟,席歆.还原-锈蚀法生产人造金红石技术现状及攀钢采用该工艺可行性分析.钛工业进展,2006,23(4):17-22.
    [52]谭立成,韦尚春.还原-锈蚀法从海滨砂矿中制取人造金红石的生产实践.广西冶金,1992,(6):26-30.
    [53]隋建新.稀盐酸加压浸出攀枝花钛精矿生产人造金红石的探讨,轻金属,1997,(9):43-45.
    [54]滕大为,赵文.盐酸直接浸取钛铁矿制取人造金红石.青岛化工学院学报(自然科学版),1994,15(4):301-305.
    [55]隋建新.盐酸法生产高品位富钛料在我国工业化的探讨.轻金属,2002,(7):45-47.
    [56]Sahoo, P.K., Galgali, R.K., Singh, S.K., Bhattacharyee, S., Mishra, P.K., Mahanty, B.C. Preparation of titania-Rich Slag by plasma smelting of ilmenite. Scand. J. Metal.1999,28:243-248.
    [57]Swinden, D.J., Jones, D.G. Arc furnace smelting of Western Australian beach sand ilmenite. Trans. Inst. Min. Metall.,1978,83-87.
    [58]M. Pourabdoli, Sh. Raygan, H. Abdizadeh, K. Hanaei. Production of high titania slag by Electro-Slag Crucible Melting (ESCM) process, International Journal of Mineral Processing.2006,78:175-181.
    [59]Nell J. Overview of the Phase-chemistry Involved in the Production of High-titanium slag from Ilmenite Feedstock. Journal of South African Institute of Mining and Metallurgy,2000,100(1):35-44.
    [60]邹建新,王荣凯,彭富昌.电炉冶炼高钛渣试验研究.轻金属,2004,(12):37-39.
    [61]谭若斌.高钛渣的制取方法和利用途径.钒钛,1995,(3):27-31.
    [62]杨保祥,黄守华,胡旭东.钛渣冶炼技术及攀枝花钛渣产品开发策略探讨.攀枝花科技与信息,2002,27(2):36-38.
    [63]雷圣辉,雷霆.直流电炉冶炼钛渣时钛元素分配研究.云南冶金,2007,36(4):42-45.
    [64]梁经冬.浮选理论与选冶实践.北京:冶金工业出版社,1993,(10):330-394.
    [65]蒙钧,韩明堂.高钛渣生产现状和今后发展的看法.钛工业进展,1998,15(1):12-13.
    [66]周林,雷霆.世界钛渣研发现状及发展趋势,钛工业进展.2009,26(1):26-30.
    [67]汪镜亮.钛渣生产的发展.钛工业进展,2002,(1):6-9.
    [68]胡克俊.钛资源开发及产品利用状况阴.中国金属通报,2007, (16):2-6.
    [69]唐振宁.钛渣生产概况及钛白粉中的使用情况.中国涂料,2006,21(10):53-56.
    [70]朱胜友,陈亚飞,胡鸿飞.攀钢钛工业现状及其发展.钛工业进展,2001,18(5):6-10.
    [71]胡克俊,姚娟,锡淦,席歆.攀钢钛渣生产技术及生产发展思路.研发与应用,2008,27(2):40-45.
    [72]李东,马勇.25.5MVA钛渣电炉使用碳素电极可行性的探讨.钛工业进展,2009,26(1):42-44.
    [73]王铁明,邓国珠.中国钛工业现状及原料问题.稀有金属快报,2008,27(6):1-5.
    [74]刘长河.我国四氯化钛生产工艺的技术进步.稀有金属快报,2007,26(4):1-6.
    [75]孙朝辉,杨保祥,张帆,杨小琴.一种提高钛渣TiO2品位的方法.中国专利,200310110821.2,2004-10-27.
    [76]JP Van Dyk. Beneficiation of titania slag by oxidation and reduction treatment. United States Patent,6803024,2004-10-31.
    [77]Borowiec, K., Grau, A.E., Gueguin, M., Turgeon, J.F. Method to upgrade titania slag and resulting product. US Patent,5830420.1997-05-29.
    [78]Gueguin, Michel. Method of preparing a synthetic rutile from a titaniferous slag containing magnesium values. United States Patent,5063032,1991-11-05.
    [79]雷霆,米家蓉,张玉林,马翔,杨艳华,周林.一种用电炉钛渣制取富钛料的方法.中国专利,200510048754,2006-06-28.
    [80]杨艳华.电炉钛渣制备富钛料实验研究:[硕士学位论文].昆明:昆明理工大学,2006.
    [81]Elger, et al. Purifying titanium-bearing slag by promoted sulfation. United States Patent,4362557,1982-10-07.
    [82]Borowiec, K. Sulphidization of solid titania slag. Scandinavian Journal of Metallurgy,1991,20:198-204.
    [83]Elger; Gerald W. et al. Process for purifying a titanium-bearing material and upgrading ilmenite to synthetic rutile with sulfur trioxide. United States Patent, 4120694,1978-10-17.
    [84]张力,李光强,隋智通.由改性高钛渣浸出制备富钛料的研究.矿产资源综合利用,2002,(6):6-9.
    [85]蒋祉刚,徐亚飞,王昭云,等.人造金红石的制造方法.中国专利,01128859,2004-09-01.
    [86]王强,张庆武.熔盐法处理富钛渣制备人造金红石.应用化工,2008,37(2):140-141,145.
    [87]刘玉民.钾系亚熔盐法处理钛资源的应用基础研究:[博士学位论文],北京:中国科学院过程工程研究所,2007.
    [88]Jarish, Basil. Upgrading sorelslag for production of synthetic rutile. United States Patent,4038363,1977-07-26.
    [89]T.A. Lasheen. Soda ash roasting of titania slag product from Rosetta ilmenite. Hydrometallurgy,2008,93:124-128.
    [90]Gomes, et al. Preparation of TiO2 and artificial rutile from sodium titanate. United States Patent,3976761,1976-08-24.
    [91]Becker, Jan Hendrik, Dutton, Daniel Frederick. Recovery of titanium from titanium bearing materials. United States Patent,10/484240,2002-07-16.
    [92]ABHISHEK LAHIRI, ANIMESH JHA. Kinetics and Reaction Mechanism of Soda Ash Roasting of Ilmenite Ore for the Extraction of Titanium Dioxide. The Minerals, Metals & Materials Society and ASM International, METALLURGICAL AND MATERIALS TRANSACTIONS B,2007:939-948.
    [93]Kamala Kanta Sahu, Thomas C. Alex, Devabrata Mishra, Archana Agrawal. An overview on the production of pigment grade. Waste Management & Research, 2006,24:74-79
    [94]Elger, G.W., Kirby, D.E. Synthesis of rutile from titaniferous slag. US Patent, 3996332,1976-10-31
    [95]Gueguin, M. Method of preparing a synthetic rutile from a titaniferous slag containing alkaline earth metals. US Patent,5389355.1995-11-01.
    [96]Lasheen, T.A.I. Chemical beneficiation of Rosetta ilmenite by direct reduction leaching. Hydrometallurgy,2005.76:123-129.
    [97]Sahu, K.K., Alex, T.C., Mishra, D., Agrawal, A. An overview on the production of pigment grade titania from titania-rich slag. Waste Management Research, 2006,24:74-79.
    [98]Schoukens, A.F.S., Morris, D.J., Stephen, M.C. Production of high titania slag from ilmenite. US Patent,6733561 B2.2004-05-11.
    [99]姜银举,张小琴,石静红,等.氟化氢铵与稀土氧化物氟化反应机理研究.稀土,2005,26(4):39-41.
    [100]http://www.vintagearabians.com.
    [101]赵中伟,赵天从,李洪桂.固体机械力化学.湖南有色金属,1995,47(2):44-48.
    [102]卢寿慈.粉体加工技术.北京:中国轻工业出版社,1999.
    [103]熊仁根,游效曾,董竣修.机械化学及其应用.化学通报,1995,(4):7-11.
    [104]黄云峰,王文潜,钱鑫.机械化学及其在矿物加工中的应用明.金属矿山,1999,(5): 17-20.
    [105]杨家红,李洪桂,赵中伟,孙培梅,李运娇.矿物机械活化基础理论的研究进展.稀有金属与硬质合金,1996,(4):38-42.
    [106]Balaz P, Balassaova M. Thermal decomposition of mechanically activated arsenopyriteJounal of Thermal Analysis,1994,41(5):1101-1107.
    [107]李冷.粉碎机械力化学理论及实验方法.国外金属矿选矿,1991,(9):36-42.
    [108]黎铉海.机械活化强化含砷金精矿浸出的工艺及机理研究:[博士学位论文],长沙:中南大学,2001.
    [109]陈鼎,陈振华.机械力化学,北京:化学工业出版社,2008,42-272.
    [110]吴其胜.无机材料机械力化学,北京:化学工业出版社,2008,202-221.
    [111]陈世琯.机械活化及其在浸出过程中的应用,上海有色金属1998,19(2):91-96
    [112]P Balaz, J Ficeriova, V Sepelak, R Kammel. Thiourea leaching of sliver mechanically activated tetrahedrite. Hydrometallurgy,1996,43(1-3):367-377.
    [113]Michel Gueguin, Francois Cardarelli.Chemistry and mineralogy of titania-rich salgs, Part 1 hemo-ilmenite, sulphate and upgraded titania salgs. Mineral Processing and Extractive Metallurgy Review,2005,28(1):1-58.
    [114]林传仙,白正华,张哲儒.矿物及有关化合物热力学数据手册.北京:科学出版社,1985: 110,140,205-206.
    [115]叶大伦,胡建华.实用无机物热力学数据手册(第2版).北京:冶金工业出版社,2002:1-25,387,1046-1052,
    [116]梁英教,车荫昌.无机物热力学手册.沈阳:东北大学出版社,1993.
    [117]郭宇峰,肖春梅,姜涛,邱冠周,黄柱成,董海刚.活化焙烧-酸浸法富集中低品位富钛料.中国有色金属学报,2005,15(9):1446-1451.
    [118]陈代荣,孟祥建.偏钛酸作前驱体水热合成TiO2微粉.无机材料学报,1997,12(1):110-114.
    [119]德国钢铁工程师协会编,王俭等译.渣图集.北京:冶金工业出版社,1989.
    [120]A. Kuhn, F. Garcia-Alvaradoa, E. Morin, M.A. Alario-France, U. Amador. Structural effects of sodium extraction on NaxFexTi2-xO4 single crystal. Solid State Ionics,1996,86-88:811-818.
    [121]A. Kuhn, et al. Study of the Conductivity of Nax-δFexTi2-xO4 (x=0.875, 0≤δ≤0.40). Journal of Solid Chemistry,1998,137:168-173.
    [122]Junji Akimoto, et al. Synthesis and structure analysis of a new sodium iron titanate Na2+xFexTi4-xO9 with x=0.65. Solid State Ionics,2004,172:495-497.
    [123]A. Kuhn, et al. Topotactic Oxidation of the Quadruple-Rutile-Type Chain StructureNa0.875Fe0.875Ti1.125O4. Journal of Solid Chemistry,1997,130: 184-191.
    [124]GV. Shilov, L.O. Atovmyan, V.A. Volochaev, V.B. Nalbandyan. Crystal structure and ionic conductivity of a new sodium magnesium titanium oxide. Crystallography Reports,1999,44(6):960-964.
    [125]V. B. Nalbandyan. Composition and structure of a ternary Na-Mg-Ti oxide solid electrolyte. Crystallography Reports,1995,40(5):761-765.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700