用户名: 密码: 验证码:
芦苇及其根围微生物对石油污染响应的生态系统生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的发展,石油已成为当前全球最大的环境污染源之一。面对日趋严重的土壤石油污染,寻求行之有效的修复途径成为迫在眉睫的生态环境治理问题。植物修复是利用植物与微生物的相互作用清除环境中的污染物,具有环境友好与成本低等优势,已成为一项具有广阔应用前景的治理石油污染技术。然而,石油污染对修复植物、微生物及其相互关系有强烈的负面影响,并导致土壤功能退化。本论文选择芦苇作为植物修复工具种,从生态系统角度探讨芦苇及其根围微生物对石油污染的响应,着眼于黄河三角洲石油污染对植物修复系统的影响以及生物适应性对于植物修复的重要性,研究了微生物群落在芦苇根围效应作用下对石油污染的响应,揭示了植物修复过程中芦苇与微生物的相互作用,探讨了石油污染对芦苇光合作用产物分配与周转的影响,揭示了石油污染下芦苇对氮的利用方式以及土壤氮转化过程,得出以下主要结论:
     (1)石油污染深刻影响着芦苇、根围微生物及其相互关系。石油污染对芦苇的个体大小、生物量以及光合作用效率存在显著的负面作用;土壤微生物群落结构与动态、菌根真菌侵染率、胞外酶活性以及微生物驱动的氮循环均受到石油污染不同程度的影响;在石油污染下芦苇在生长早期加强了与菌根真菌的互作,对于缓解生长阶段营养缺乏以及促进营养吸收有积极的作用。
     (2)芦苇通过其根围效应缓解了环境胁迫对微生物的影响,对于根围微生物群落具有保育作用。芦苇根围效应能够有效地缓解黄河三角洲的土地次生盐渍化,降低土壤盐度以及提高水份含量。芦苇根围土壤中各类型细菌数量显著高于裸地土壤,包括细菌总数、十六烷细菌、F2油细菌与多环芳香烃细菌。在芦苇根围效应下缓解了土地次生盐渍化对各细菌多度的控制作用。此外,在芦苇根围较裸地土壤具有高的细菌多样性。表明芦苇根围为细菌的生长与发育提供了合适的微环境。
     (3)芦苇的生长期是植物修复的关键阶段。在整个芦苇生长阶段,石油污染对芦苇多个性状有显著影响,在生长早期显得尤为明显,表明该时期的芦苇对石油污染的胁迫最为敏感。此外,在芦苇生长早期,表征细菌数量的rpoB基因以及石油烃降解微生物的关键基因alkB与tol的拷贝数具有较高多度,表明植物修复主要在该时期完成。另外,在芦苇生长早期,石油浓度对各基因的拷贝数影响最为强烈,表明芦苇和石油烃降解微生物的相互作用在该阶段较为强烈。
     (4)石油污染下芦苇增加了生物量向地下的分配。芦苇生物量的积累被石油污染显著地抑制,然而根冠比随着石油浓度的升高而显著地升高,表明在石油污染下芦苇增加了其生物量向根部的分配。此外,在土壤受到石油污染后,较高的13C分配百分率在芦苇地下系统中被检测到(包括根13C、土壤13C、微生物生物量13C以及土壤呼吸13C)。上述结果表明,石油污染下芦苇将增加光合作用固定碳向其根部的分配并以土壤呼吸形式被快速周转,具有增进植物与微生物协作的潜力。
     (5)芦苇具有通过增加吸收有机氮来缓解石油污染土壤中无机氮周转快、消耗大等不利条件的潜力。石油污染阻碍了芦苇吸收无机氮与有机氮,但芦苇增加了有机氮在总吸收氮中的比重。不同氮形式利用的变化可能反映出芦苇对石油污染的适应性,在受石油污染土壤中有机氮对于芦苇的生长可发挥更加重要的氮源作用。此外,石油污染不同程度地促进了土壤中各种氮的转化过程,潜在地影响土壤中氮的平衡、动态以及可利用性。由于石油污染土壤中具有较高的总固持与总硝化速率,从而可能减少芦苇可利用无机氮的数量。
Petroleum has become one of the world's largest sources of environmental pollution with industrial development. It is urgent to develpop effective techniques for remediation of petroleum pollution. Phytoremediation, an environmentally-friendly and cost-effective technology based on the removal of petroleum hydrocarbons from the polluted soil by plants and their associated microbes, is becoming an increasingly important field in environmental and ecological research. However, petroleum pollution has profound effects on plants, microbes, and their interactions. In this way, soil functions are degraded seriously under petroleum pollution. In this study, we used Phragmites australis as a phytoremediation species to examine the ecosystem-level responses of P. australis, microbes and their interactions to petroleum pollution, and emphasized the effects of petroleum pollution on the phytoremediation systems and the significance of biological adaptations toin phytoremediation in the Yellow River Delta. The aims of this thesis were to:1) examine the rhizosphere effects on microbial abundance and diversity in petroleum-polluted soils; 2) better understand plant-microbe interactions for phytoremediation of petroleum-polluted soil; 3) evaluate allocation and turnover of photosynthetically-fixed carbon as influenced by petroleum pollution; 4) analyze P. australis's use of different nitrogen forms and soil nitrogen transformation in the polluted environments. The major findings are summarized as follow:
     (1) Petroleum pollution had profound effects on P. australis, microbes, and their interactions. Plant size, biomass, and potentially photosynthetic capability were negatively related to petroleum concentration. Soil bacterial community structure and dynamics, colonization of arbuscular mycorrhizal fungi (AMF), extracellular enzyme activity, and nitrogen transformation driven by microbes were subject to changes after soil was polluted by petroleum. Higher rate of AMF colonization was found in P. australis roots in polluted soils compared to those in unpolluted soils at early stage of vegetative growth, suggesting AMF might play an important role in reducing initial nutrient deficiency of the plant in petroleum-polluted soil.
     (2) P. australis through rhizosphere effects could alleviate soil stresses and positively influenced soil microbes. P. australis roots could alleviate the stresses from soil salinization in the Yellow River Delta, and rhizosphere soils were mainly characterized by lower salinity and higher water content. For bacterial abundance, the numbers of total bacteria and hydroscarbon degraders were significantly higher in rhizosphere soils than those in bulk soils. Soil salinization was not the major determinant of total bacterial abundance. In addition, rhizosphere soils had higher bacterial diversity in comparison to that of bulk soil. High abundance and diversity of total bacteria with more hydrocarbon degraders in plant rhizospheres would potentially improve the roles of bacteria in maintaining ecosystem functioning and remediating polluted soils in the degraded ecosystems.
     (3) Early plant vegetative growth was the key period for phytoremediation. Petroleum pollution resulted in reduced P. australis performances across the growth stages, especially during vegetative growth. P. australis would be highly susceptible to petroleum pollution in the stage of plant vegetative growth. Petroleum had significantly positive effects on the rpoB, alkB and tol genes at plant vegetative growth stage, and greater abundance of these two genes was also detected at plant vegetative growth stage. These results showed that the effectiveness of phytoremediation was plant-dependent, and that the interactions between P. australis and petroleum-degrading bacteria appeared to be relatively stronger at plant vegetative growth stage.
     (4) P. australis increased biomass allocation to roots. Plant biomass significantly decreased under petroleum pollution, but root/shoot ratio both in plant biomass and 13C increased with increasing petroleum concentration, suggesting that the plant could increase biomass allocation to roots in petroleum-polluted soil. Furthermore, assimilated 13C was found to be higher in soil, microbial biomass, and soil respiration after the soil is polluted by petroleum. These results suggested that C released from roots rapidly turns over by soil microbes under petroleum pollution. The increased allocation of plant biomass to its below-ground parts might be adaptive in petroleum-polluted soil.
     (5) Plant assimilation of both inorganic and organic N was low in petroleum-polluted soil, but the percentage of organic N in total plant assimilated N increased with petroleum concentration, suggesting organic N made a great contribution to plant N availability. In addition, petroleum pollution promoted gross N transformations to some extent, but larger increases in gross N immobilization and nitrification rates relative to the increases in gross N mineralization rate might reduce inorganic-N availability to the plant. Therefore, the increased importance of organic N in plant N assimilation might be of great significance for plants growing in petroleum-polluted soils. Our results provide insights into the effects of pollutants on soil available N to the plant, and suggest that plants might regulate N capture under petroleum pollution.
引文
[1]Ahmad, R., Arshad, M., Khalid, A., Zahir, Z.A.,2008. Effectiveness of organic-/bio-fertilizer supplemented with chemical fertilizers for improving soil water retention, aggregate stability, growth and nutrient uptake of maize (Zea mays L.) [J].Journal of Sustainable Agriculture 31,57-77.
    [2]Alarcon, A., Davies, F.T., Autenrieth, R.L., Zuberer, D.A.,2008. Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil [J]. International Journal of Phytoremediation 10,251-263.
    [3]Alkio, M., Tabuchi, T.M., Wang, X.C., Colon-Carmona, A.,2005. Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms [J]. Journal of Experimental Botany 56,2983-2994.
    [4]Amund, O.O., Igiri, C.O.,1990. Biodegradation of petroleum hydrocarbons under tropical estuarine conditions [J]. World Journal of Microbiology& Biotechnology 6,255-262.
    [5]Aprill, W., Sims, R.C.,1990. Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil [J]. Chemosphere 20,253-265.
    [6]Arocena, J.M., Rutherford, P.M.,2005. Properties of hydrocarbon-and salt-contaminated flare pit soils in northeastern British Columbia (Canada) [J]. Chemosphere 60,567-575.
    [7]Arthur, E.L., Rice, P.J., Rice, P.J., Anderson, T.A., Baladi, S.M., Henderson, K.L.D., Coats, J.R.,2005. Phytoremediation-an overview [J]. Critical Reviews in Plant Sciences 24,109-122.
    [8]Asaeda, T., Manatunge, J., Roberts, J., Hai, D.N.,2006. Seasonal dynamics of resource translocation between the aboveground organs and age-specific rhizome segments of Phragmites australis [J]. Environmental and Experimental Botany 57,9-18.
    [9]Ashton, I.W., Miller, A.E., Bowman, W.D., Suding, K.N.,2008. Nitrogen preferences and plant-soil feedbacks as influenced by neighbors in the alpine tundra [J]. Oecologia 156,625-636.
    [10]Badri, D.V., Vivanco, J.M.,2009. Regulation and function of root exudates [J]. Plant Cell and Environment 32,666-681.
    [11]Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., Vivanco, J.M.,2006. The role of root exudates in rhizosphere interations with plants and other organisms [J]. Annual Review of Plant Biology 57,233-266.
    [12]Baker, J.,1970. The effects of oils on plants [J]. Environmental Pollution 1, 27-44.
    [13]Baldwin, B.R., Nakatsu, C.H., Nies, L.,2003. Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR [J]. Applied and Environmental Microbiology 69,3350-3358.
    [14]Baran, S., Bielinska, J.E., Oleszczuk, P.,2004. Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons [J]. Geoderma 118, 221-232.
    [15]Bardgett, R.D., Streeter, T.C., Bol, R.,2003. Soil microbes compete effectively with plants for organic-nitrogen inputs to temperate grasslands [J]. Ecology 84, 1277-1287.
    [16]Becker, J.M., Parkin, T., Nakatsu, C.H., Wilbur, J.D., Konopka, A.,2006. Bacterial activity, community structure, and centimeter-scale spatial heterogeneity in contaminated soil [J]. Microbial Ecology 51,220-231.
    [17]Berendse, F., Moller,F.,2009. Effects of competition on root-shoot allocation in Plantago lanceolata L.:adaptive plasticity or ontogenetic drift? [J]. Plant Ecology 201,567-573.
    [18]Berg, G, Smalla, K.,2009. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere [J]. FEMS Microbiology Ecology 68,1-13.
    [19]Besalatpour, A., Khoshgoftarmanesh, A.H., Hajabbasi, M.A., Afyuni, M.,2008. Germination and growth of selected plants in a petroleum contaminated calcareous soil [J]. Soil& Sediment Contamination 17,665-676.
    [20]Bloom, A.J., Chapin, F.S., Mooney, H.A.,1985. Resource limitation in plants-an economic analogy [J]. Annual Review of Ecology and Systematics 16, 363-392.
    [21]Bol, R., Ostle, N.J., Petzke, K.J.,2002. Compound specific plant amino acid delta N-15 values differ with functional plant strategies in temperate grassland [J]. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 165,661-667.
    [22]Bonifas, K.D., Walters, D.T., Cassman, K.G., Lindquist, J.L.,2005. Nitrogen supply affects root:shoot ratio in corn and velvetleaf (Abutilon theophrasti) [J]. Weed Science 53,670-675.
    [23]Brito, E.M., Guyoneaud, R., Goni-Urriza, M., Ranchou-Peyruse, A., Verbaere, A., Crapez, M.A.C., Wasserman, J.C.A., Duran, R.,2006. Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil [J]. Research in Microbiology 157,752-762.
    [24]Brooks, P.D., Stark, J.M., McInteer, B.B., Preston, T.,1989. Diffusion method to prepare soil extracts for automated N-15 analysis [J]. Soil Science Society of America Journal 53,1707-1711.
    [25]Burdick, D., Konisky, R.A.,2003. Determinants of expansion for Phragmites australis, common reed, in natural and impacted coastal marshes [J]. Estuaries 26,407-416.
    [26]Butler, J.L., Bottomley, P.J., Griffith, S.M., Myrold, D.D.,2004. Distribution and turnover of recently fixed photosynthate in ryegrass rhizospheres [J]. Soil Biology& Biochemistry 36,371-382.
    [27]Cabello, M.N.,1997. Hydrocarbon pollution:Its effect on native arbuscular mycorrhizal fungi (AMF) [J]. FEMS Microbiology Ecology 22,233-236.
    [28]Cai, W.M.,2004. Land use changes and its sustainable assessment in the Yellow River Delta In:College of Resources and Environmental Sciences [D]. China Agricultural University, Beijing.
    [29]Campos, V.M., Merino, I., Casado, R., Pacios, L.F., Gomez, L.,2008. Phytoremediation of organic pollutants [J]. Spanish Journal of Agricultural Research 6,38-47.
    [30]Caravaca, F., Roldan, A.,2003. Assessing changes in physical and biological properties in a soil contaminated by oil sludges under semiarid Mediterranean conditions [J]. Geoderma 117,53-61.
    [31]Chalot, M., Brun, A.,1998. Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas [J]. FEMS Microbiology Reviews 22,21-44.
    [32]Chapin, F.S., Vitousek, P.M., Vancleve, K.,1986. The nature of nutrient limitation in plant-communities [J]. American Naturalist 127,48-58.
    [33]Chapin, F.S., Bloom, A.J., Field, C.B., Waring, R.H.,1987. Plant-responses to multiple environmental-factors [J]. Bioscience 37,49-57.
    [34]Chaudhry, Q., Blom-Zandstra, M., Gupta, S., Joner, E.J.,2005. Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment [J]. Environmental Science and Pollution Research 12,34-48.
    [35]Chekol, T., Vough, L.R., Chaney, R.L.,2004. Phytoremediation of poly chlorinated biphenyl-contaminated soils:the rhizosphere effect [J]. Environment International 30,799-804.
    [36]Cheng, X.M., Bledsoe, C.S.,2004. Competition for inorganic and organic N by blue oak (Quercus douglasii) seedlings, an annual grass, and soil microorganisms in a pot study [J]. Soil Biology& Biochemistry 36,135-144.
    [37]Chu, W.K., Wong, M.H., Zhang, J.,2006a. Accumulation, distribution and transformation of DDT and PCBs by Phragmites australis and Oryza sativa L.: Ⅰ. Whole plant study [J]. Environmental Geochemistry and Health 28,159-168.
    [38]Chu, W.K., Wong, M.H., Zhang, J.,2006b. Accumulation, distribution and transformation of DDT and PCBs by Phragmites australis and Oryza sativa L.: Ⅱ. Enzyme study [J]. Environmental Geochemistry and Health 28,169-181.
    [39]Clemmensen, K.E., Sorensen, P.L., Michelsen, A., Jonasson, S., Strom, L.,2008. Site-dependent N uptake from N-form mixtures by arctic plants, soil microbes and ectomycorrhizal fungi [J]. Oecologia 155,771-783.
    [40]Cookson, W.R., Muller, C., O'Brien, P.A., Murphy, D.V., Grierson, P.F.,2006. Nitrogen dynamics in an Australian semiarid grassland soil [J]. Ecology 87, 2047-2057.
    [41]Cookson, W.R., Osman, M., Marschner, P., Abaye, D.A., Clark, I., Murphy, D.V., Stockdale, E.A., Watson, C.A.,2007. Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature [J]. Soil Biology& Biochemistry 39,744-756.
    [42]Cordova-Kreylos, A.L., Cao, Y.P., Green, P.G., Hwang, H.M., Kuivila, K.M., LaMontagne, M.G., Van De Werfhorst, L.C., Holden, P.A., Scow, K.M.,2006. Diversity, composition, and geographical distribution of microbial communities in California salt marsh sediments [J]. Applied and Environmental Microbiology 72,3357-3366.
    [43]Culbertson, J.B., Valiela, I., Pickart, M., Peacock, E.E., Reddy, C.M.,2008. Long-term consequences of residual petroleum on salt marsh grass [J]. Journal of Applied Ecology 45,1284-1292.
    [44]Datta, J.K., Banerjee, A., Sikdar, M.S., Gupta, S., Mondal, N.K.,2009. Impact of combined exposure of chemical, fertilizer, bio-fertilizer and compost on growth, physiology and productivity of Brassica campestries in old alluvial soil [J]. Journal of Environmental Biology 30,797-800.
    [45]Davies, L.C., Carias, C.C., Novais, J.M., Martins-Dias, S.,2005. Phytoremediation of textile effluents containing azo dye by using Phragmites australis in a vertical flow intermittent feeding constructed wetland [J]. Ecological Engineering 25,594-605.
    [46]DeBruyn, J.M., Chewning, C.S., Sayler, G.S.,2007. Comparative quantitative prevalence of Mycobacteria and functionally abundant nidA, nahAc, and nagAc dioxygenase genes in coal tar contaminated sediments [J]. Environmental Science& Technology 41,5426-5432.
    [47]Deni, J., Penninckx, M.J.,1999. Nitrification and autotrophic nitrifying bacteria in a hydrocarbon-polluted soil [J]. Applied and Environmental Microbiology 65, 4008-4013.
    [48]Dimkpa, C., Weinand, T., Asch, F,2009. Plant-rhizobacteria interactions alleviate abiotic stress conditions [J]. Plant Cell and Environment 32, 1682-1694.
    [49]Dowty, R.A., Shaffer, GP, Hester, M.W., Childers, G.W., Campo, F.M., Greene, M.C.,2001. Phytoremediation of small-scale oil spills in fresh marsh environments:a mesocosm simulation [J]. Marine Environmental Research 52, 195-211.
    [50]Dunn, R.M., Mikola, J., Bol, R., Bardgett, R.D.,2006. Influence of microbial activity on plant-microbial competition for organic and inorganic nitrogen [J]. Plant and Soil 289,321-334.
    [51]Ehrenfeld, J.G.,2004. Implications of invasive species for belowground community and nutrient [J]. Weed Technology 18,1232-1235.
    [52]Euliss, K., Ho, C.H., Schwab, A.P., Rock, S., Banks, A.K.,2008. Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone [J]. Bioresource Technology 99,1961-1971.
    [53]Fan, F.L., Zhang, F.S., Qu, Z., Lu, Y.H.,2008. Plant carbon partitioning below ground in the presence of different neighboring species [J]. Soil Biology& Biochemistry 40,2266-2272.
    [54]Fang, H.L., Liu, G.H., Kearney, M.,2005. Georelational analysis of soil type, soil salt content, landform, and land use in the Yellow River Delta, China [J]. Environmental Management 35,72-83.
    [55]Fine, P., Graber, E.R., Yaron, B.,1997. Soil interaction with petroleum hydrocarbons abiotic processes [J]. Soil technology 10,133-153.
    [56]Finlay, R.D.,2008. Ecological aspects of mycorrhizal symbiosis:with special emphasis on the functional diversity of interactions involving the extraradical mycelium [J]. Journal of Experimental Botany 59,1115-1126.
    [57]Finzi, A.C., Berthrong, S.T.,2005. The uptake of amino acids by microbes and trees in three cold-temperate forests [J]. Ecology 86,3345-3353.
    [58]Fitter, A.H.,1987. An architectural approach to the comparative ecology of plant root systems [J]. New Phytologist 106,61-77.
    [59]Gerhardt, K.E., Huang, X.D., Glick, B.R., Greenberg, B.M.,2009. Phytoremediation and rhizoremediation of organic soil contaminants:potential and challenges [J]. Plant Science 176,20-30.
    [60]Ghazali, F.M., Rahman, R., Salleh, A.B., Basri, M.,2004. Biodegradation of hydrocarbons in soil by microbial consortium [J]. International Biodeterioration & Biodegradation 54,61-67.
    [61]Giovannetti, M., Mosse, B.,1980. Evaluation of Techniques for Measuring Vesicular Arbuscular Mycorrhizal Infection in Roots [J]. New Phytologist 84, 489-500.
    [62]Graham, D.W., Smith, V.H., Law., K.P.,1995. Application of variable nutrient supplies to optimize hydrocarbon biodegradation [M]. Battelle Press, Columbus, OH,331-340 pp.
    [63]Greenberg, B.M., Huang, X.-D., Dixon, D.G., B.R. Glick,2005. An integrated multi-process phytoremediation system (MPPS) for removal of persistent organic contaminants from soil, Paper K-08 (8 printed pages) in In Situ and On-Site Bioremediation [M]. Batelle Press, Columbus, OH.
    [64]Gregory, S.T., Shea, D., Guthrie-Nichols, E.,2005. Impact of vegetation on sedimentary organic matter composition and polycyclic aromatic hydrocarbon attenuation [J]. Environmental Science& Technology 39,5285-5292.
    [65]Gurska, J., Wang, W.X., Gerhardt, K.E., Khalid, A.M., Isherwood, D.M., Huang, X.D., Glick, B.R., Greenberg, B.M.,2009. Three year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste [J]. Environmental Science& Technology 43,4472-4479.
    [66]Gustavsson, L., Hollert, H., Jonsson, S., van Bavel, B., Engwall, M.,2007. Reed beds receiving industrial Sludge Containing Nitroaromatic compounds-Effects of outgoing water and bed material extracts in the umu-C genotoxicity assay, DR-CALUX assay and on early life stage development in Zebrafish (Danio rerio) [J]. Environmental Science and Pollution Research 14,202-211.
    [67]Gutser, R., Ebertseder, T., Weber, A., Schraml, M., Schmidhalter, U.,2005. Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land [J]. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 168,439-446.
    [68]Haase, J., Brandl, R., Scheu, S., Schadler, M.,2008. Above-and belowground interactions are mediated by nutrient availability [J]. Ecology 89,3072-3081.
    [69]Hakmaoui, A., Ater, M., Boka, K., Baron, M.,2007. Copper and cadmium tolerance, uptake and effect on chloroplast ultrastructure. Studies on Salix purpurea and Phragmites australis [J]. Zeitschrift Fur Naturforschung C-a Journal of Biosciences 62,417-426.
    [70]Harrison, K.A., Bol, R., Bardgett, R.D.,2007. Preferences for different nitrogen forms by coexisting plant species and soil microbes [J]. Ecology 88,989-999.
    [71]Harrison, K.A., Bol, R., Bardgett, R.D.,2008. Do plant species with different growth strategies vary in their ability to compete with soil microbes for chemical forms of nitrogen? [J]. Soil Biology& Biochemistry 40,228-237.
    [72]Henry, H.A.L., Jefferies, R.L.,2003. Plant amino acid uptake, soluble N turnover and microbial N capture in soils of a grazed Arctic salt marsh [J]. Journal of Ecology 91,627-636.
    [73]Hermans, C., Hammond, J.P., White, P.J., Verbruggen, N.,2006. How do plants respond to nutrient shortage by biomass allocation? [J]. Trends in Plant Science 11,610-617.
    [74]Hernandez-Raquet, G., Budzinski, H., Caumette, P., Dabert, P., Le Menach, K., 2006. Molecular diversity studies of bacterial communities of oil polluted microbial mats from the Etang de Berre (France) [J]. FEMS Microbiology Ecology 58,550-562.
    [75]Herrmann, A.M., Witter, E.,2008. Predictors of gross N mineralization and immobilization during decomposition of stabilized organic matter in agricultural soil [J]. European Journal of Soil Science 59,653-664.
    [76]Hill, P., Kuzyakov, Y., Jones, D., Farrar, J.,2007. Response of root respiration and root exudation to alterations in root C supply and demand in wheat [J]. Plant and Soil 291,131-141.
    [77]Hogberg, P., Read, D.J.,2006. Towards a more plant physiological perspective on soil ecology [J]. Trends in Ecology& Evolution 21,548-554.
    [78]Hogberg, P., Nordgren, A., Buchmann, N., Taylor, A.F.S., Ekblad, A., Hogberg, M.N., Nyberg, G., Ottosson-Lofvenius, M., Read, D.J.,2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration [J]. Nature 411, 789-792.
    [79]Hu, S.J., van Bruggen, A.H.C., Grunwald, N.J.,1999. Dynamics of bacterial populations in relation to carbon availability in a residue-amended soil [J]. Applied Soil Ecology 13,21-30.
    [80]Hu, Y.C., Schmidhalter, U.,2005. Drought and salinity:A comparison of their effects on mineral nutrition of plants [J]. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 168,541-549.
    [81]Huang, B.R., Fry, J.D.,1998. Root anatomical, physiological, and morphological responses to drought stress for tall fescue cultivars [J]. Crop Science 38,1017-1022.
    [82]Huang, X.D., Zeiler, L.F., Dixon, D.G., Greenberg, B.M.,1996. Photoinduced toxicity of PAHs to the foliar regions of Brassica napus (Canola) and Cucumbis sativus (Cucumber) in simulated solar radiation [J]. Ecotoxicology and Environmental Safety 35,190-197.
    [83]Huang, X.D., El-Alawi, Y., Penrose, D.M., Glick, B.R., Greenberg, B.M.,2004. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils [J]. Environmental Pollution 130, 465-476.
    [84]Huang, X.D., El-Alawi, Y, Gurska, J., Glick, B.R., Greenberg, B.M.,2005. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils [J]. Microchemical Journal 81, 139-147.
    [85]Hunt, R., Nicholls, A.O.,1986. Stress and the coarse control of growth and root-shoot partitioning in herbaceous plants [J]. Oikos 47,149-158.
    [86]Hutchinson, S.L., Banks, M.K., Schwab, A.P.,2001. Phytoremediation of aged petroleum sludge:effect of inorganic fertilizer [J]. Journal of Environmental Quality 30,395-403.
    [87]Hutchinson, S.L., Schwab, A.P., Banks, M.K.,2003. Biodegradation of petroleum hycrocarbons in the rhiozosphere [M]. John Wiley, Hoboken, NJ, 355-386 pp.
    [88]Illman, W.A., Alvarez, P.J.,2009. Performance assessment of bioremediation and natural attenuation [J]. Critical Reviews in Environmental Science and Technology 39,209-270.
    [89]Ingestad, T., Agren, G.I.,1991. The influence of plant nutrition on biomass allocation [J]. Ecological Applications 1,168-174.
    [90]Johnson, D.W.,1992. Nitrogen-retention in forest soils [J]. Journal of Environmental Quality 21,1-12.
    [91]Joner, E.J., Corgie, S.C., Amellal, N., Leyval, C.,2002. Nutritional constraints to degradation of polycyclic aromatic hydrocarbons in a simulated rhizosphere [J]. Soil Biology& Biochemistry 34,859-864.
    [92]Jones, D.L.,1999. Amino acid biodegradation and its potential effects on organic nitrogen capture by plants [J]. Soil Biology& Biochemistry 31, 613-622.
    [93]Jones, D.L., Hodge, A., Kuzyakov, Y.,2004. Plant and mycorrhizal regulation of rhizodeposition [J]. New Phytologist 163,459-480.
    [94]Juutinen, S., Larmola, T., Remus, R., Mirus, E., Merbach, W., Silvola, J., Augustin, J.,2003. The contribution of Phragmites australis litter to methane (CH4) emission in planted and non-planted fen microcosms [J]. Biology and Fertility of Soils 38,10-14.
    [95]Kastovska, E., Santruckova, H.,2007. Fate and dynamics of recently fixed C in pasture plant-soil system under field conditions [J]. Plant and Soil 300,61-69.
    [96]Katznelson, H., Lochhead, A.G., Timonin, M.I.,1948. Soil microorganisms and the rhizosphere [J]. Botanical Review 14,543-587.
    [97]Kaur, T., Brar, B.S., Dhillon, N.S.,2008. Soil organic matter dynamics as affected by long-term use of organic and inorganic fertilizers under maize-wheat cropping system [J]. Nutrient Cycling in Agroecosystems 81, 59-69.
    [98]Kechavarzi, C., Pettersson, K., Leeds-Harrison, P., Ritchie, L., Ledin, S.,2007. Root establishment of perennial ryegrass (L-perenne) in diesel contaminated subsurface soil layers [J]. Environmental Pollution 145,68-74.
    [99]Kingston, P.F.,2002. Long-term environmental impact of oil spills [J]. Spill Science& Technology Bulletin 7,53-61.
    [100]Kirk, J.L., Klironomos, J.N., Lee, H., Trevors, J.T.,2005a. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil [J]. Environmental Pollution 133,455-465.
    [101]Kirk, J.L., Moutoglis, P., Klironomos, J., Lee, H., Trevors, J.T.,2005b. Toxicity of diesel fuel to germination, growth and colonization of Glomus intraradices in soil and in vitro transformed carrot root cultures [J]. Plant and Soil 270,23-30.
    [102]Kirkham, D., Bartholomew, W.V.,1954. Equations for following nutrient transformations in soil, utilizing tracer data [J]. Soil Science Society of America Journal 18,33-34.
    [103]Kirkpatrick, W.D., White, P.M., Wolf, D.C., Thoma, G.J., Reynolds, C.M.,2006. Selecting plants and nitrogen rates to vegetate crude-oil-contaminated soil [J]. International Journal of Phytoremediation 8,285-297.
    [104]Kisselle, K.W., Garrett, C.J., Fu, S., Hendrix, P.F., Crossley, D.A., Coleman, D.C., Potter, R.L.,2001. Budgets for root-derived C and litter-derived C: comparison between conventional tillage and no tillage soils [J]. Soil Biology& Biochemistry 33,1067-1075.
    [105]Kleikemper, J., Schroth, M.H., Sigler, W.V., Schmucki, M., Bernasconi, S.M., Zeyer, J.,2002. Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer [J]. Applied and Environmental Microbiology 68,1516-1523.
    [106]Ko, J.Y., Day, J.W.,2004. A review of ecological impacts of oil and gas development on coastal ecosystems in the Mississippi Delta [J]. Ocean& Coastal Management 47,597-623.
    [107]Kourtev, P.S., Ehrenfeld, J.G., Haggblom, M.,2002. Exotic plant species alter the microbial community structure and function in the soil [J]. Ecology 83, 3152-3166.
    [108]Kusel, K., Chabbi, A., Trinkwalter, T.,2003. Microbial processes associated with roots of bulbous rush coated with iron plaques [J]. Microbial Ecology 46, 302-311.
    [109]Kuzyakov, Y., Cheng, W.,2001. Photosynthesis controls of rhizosphere respiration and organic matter decomposition [J]. Soil Biology& Biochemistry 33,1915-1925.
    [110]Kuzyakov, Y., Kretzschmar, A., Stahr, K.,1999. Contribution of Lolium perenne rhizodeposition to carbon turnover of pasture soil [J]. Plant and Soil 213, 127-136.
    [111]Labbe, D., Margesin, R., Schinner, F., Whyte, L.G., Greer, C.W.,2007. Comparative phylogenetic analysis of microbial communities in pristine and hydrocarbon-contaminated Alpine soils [J]. FEMS Microbiology Ecology 59, 466-475.
    [112]Ladd, J.N., Butler, J.H.A.,1972. Short-term assays of soil proteolytic enzyme activities using proteins and peptide derivatives as substrates [J]. Soil Biology & Biochemistry 4,19-30.
    [113]Lamontagne, M.G., Leifer, I., Bergmann, S., Van De Werfhorst, L.C., Holden, P.A.,2004. Bacterial diversity in marine hydrocarbon seep sediments [J]. Environmental Microbiology 6,799-808.
    [114]Landi, A., Mermut, A.R., Anderson, D.W.,2003. Origin and rate of pedogenic carbonate accumulation in Saskatchewan soils, Canada [J]. Geoderma 117, 143-156.
    [115]Langenheder, S., Ragnarsson, H.,2007. The role of environmental and spatial factors for the composition of aquatic bacterial communities [J]. Ecology 88, 2154-2161.
    [116]Langworthy, D.E., Stapleton, R.D., Sayler, G.S., Findlay, R.H.,1998. Genotypic and phenotypic responses of a riverine microbial community to polycyclic aromatic hydrocarbon contamination [J]. Applied and Environmental Microbiology 64,3422-3428.
    [117]Laurie, A.D., Lloyd-Jones, G.,2000. Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR [J]. Applied and Environmental Microbiology 66,1814-1817.
    [118]Lejon, D.P.H., Sebastia, J., Lamy, I., Chaussod, R., Ranjard, L.,2007. Relationships between soil organic status and microbial community density and genetic structure in two agricultural soils submitted to various types of organic management [J]. Microbial Ecology 53,650-663.
    [119]Leps, J., Smilauer, P.,2003. Multivariate analysis of ecological data using CANOCO [M]. Cambridge University Press, United Kingdom.
    [120]Li, F.L., Bao, W.K., Wu, N.,2009. Effects of water stress on growth, dry matter allocation and water-use efficiency of a leguminous species, Sophora davidii [J]. Agroforestry Systems 77,193-201.
    [121]Li, H., Zhang, Y., Zhang, C.G., Chen, G.X.,2005. Effect of petroleum-containing wastewater irrigation on bacterial diversities and enzymatic activities in a paddy soil irrigation area [J]. Journal of Environmental Quality 34,1073-1080.
    [122]Lin, Q.X., Mendelssohn, I.A.,1996. A comparative investigation of the effects of south Louisiana crude oil on the vegetation of fresh, brackish and salt marshes [J]. Marine Pollution Bulletin 32,202-209.
    [123]Lin, Q.X., Mendelssohn, I.A., Suidan, M.T., Lee, K., Venosa, A.D.,2002. The dose-response relationship between No.2 fuel oil and the growth of the salt marsh grass, Spartina alterniflora [J]. Marine Pollution Bulletin 44,897-902.
    [124]Lipson, D., Nasholm, T.,2001. The unexpected versatility of plants:organic nitrogen use and availability in terrestrial ecosystems [J]. Oecologia 128, 305-316.
    [125]Lissner, J., Schierup, H.H.,1997. Effects of salinity on the growth of Phragmites australis [J]. Aquatic Botany 55,247-260.
    [126]Liu, M.Q., Hu, F., Chen, X.Y., Huang, Q.R., Jiao, J.G., Zhang, B., Li, H.X., 2009a. Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: The influence of quantity, type and application time of organic amendments [J]. Applied Soil Ecology 42,166-175.
    [127]Liu, W.X., Luo, Y.M., Teng, Y., Li, Z.G., Christie, P.,2009b. Prepared bed bioremediation of oily sludge in an oilfield in northern China [J]. Journal of Hazardous Materials 161,479-484.
    [128]Mahoney, K.J., Swanton, C.J.,2008. Nitrogen and light affect the adaptive traits of common lambsquarters (Chenopodium album) [J]. Weed Science 56,81-90.
    [129]Maila, M.P., Randima, P., Dronen, K., Cloete, T.E.,2006. Soil microbial communities:Influence of geographic location and hydrocarbon pollutants [J]. Soil Biology& Biochemistry 38,303-310.
    [130]Manchanda, G., Garg, N.,2008. Salinity and its effects on the functional biology of legumes [J]. Acta Physiology Plant 30,595-618.
    [131]Margesin, R., Walder, G., Schinner, F.,2000. The impact of hydrocarbon remediation (diesel oil and polycyclic aromatic hydrocarbons) on enzyme activities and microbial properties of soil [J]. Acta Biotechnologica 20,313-333.
    [132]Marques, A., Rangel, A., Castro, P.M.L.,2007. Zinc accumulation in plant species indigenous to a Portuguese polluted site:Relation with soil contamination [J]. Journal of Environmental Quality 36,646-653.
    [133]Marwood, C.A., Solomon, K.R., Greenberg, B.M.,2001. Chlorophyll fluorescence as a bioindicator of effects on growth in aquatic macrophytes from mixtures of polycyclic aromatic hydrocarbons [J]. Environmental Toxicology and Chemistry 20,890-898.
    [134]McCutcheon, S.C., Schnoor, J.L.,2003. Overview of Phytotransformation and Control of Wastes [M]. John Wiley& Sons, Inc., Hoboken, NJ.
    [135]Melero, S., Madejon, E., Ruiz, J.C., Herencia, J.F.,2007. Chemical and biochemical properties of a clay soil under dryland agriculture system as affected by organic fertilization [J]. European Journal of Agronomy 26, 327-334.
    [136]Mendelssohn, I.A., Hester, M.W., Sasser, C., Fischel, M.,1990. The Effect of a Louisiana crude-oil discharge from a pipeline break on the vegetation of a southeast Louisiana Brackish Marsh [J]. Oil& Chemical Pollution 7,1-15.
    [137]Merkl, N., Schultze-Kraft, R., Arias, M.,2005. Influence of fertilizer levels on phytoremediation of crude oil-contaminated soils with the tropical pasture grass Brachiaria brizantha (Hochst. ex A. Rich.) Stapf [J]. International Journal of Phytoremediation 7,217-230.
    [138]Metlen, K.L., Aschehoug, E.T., Callaway, R.M.,2009. Plant behavioural ecology:dynamic plasticity in secondary metabolites [J]. Plant Cell and Environment 32,641-653.
    [139]Meudec, A., Dussauze, J., Deslandes, E., Poupart, N.,2006. Evidence for bioaccumulation of PAHs within internal shoot tissues by a halophytic plant artificially exposed to petroleum-polluted sediments [J]. Chemosphere 65, 474-481.
    [140]Miller, A.E., Bowman, W.D., Suding, K.N.,2007. Plant uptake of inorganic and organic nitrogen:Neighbor identity matters [J]. Ecology 88,1832-1840.
    [141]Miller, E.K., Boydston, J.A., Dyer, WE.,1998. Mechanisms of pentachlorophenol phytoremediation in soil [M].7 pp.
    [142]Mueller, K.E., Shann, J.R.,2007. Effects of tree root-derived substrates and inorganic nutrients on pyrene mineralization in rhizosphere and bulk soil [J]. Journal of Environmental Quality 36,120-127.
    [143]Mummey, D.L., Rillig, M.C.,2008. Spatial characterization of arbuscular mycorrhizal fungal molecular diversity at the submetre scale in a temperate grassland [J]. FEMS Microbiology Ecology 64,260-270.
    [144]Munns, R.,2005. Genes and salt tolerance:bringing them together [J]. New Phytologist 167,645-663.
    [145]Muratova, A., Hubner, T., Narula, N., Wand, H., Turkovskaya, O., Kuschk, P., Jahn, R., Merbach, W.,2003a. Rhizosphere microflora of plants used for the phytoremediation of bitumen-contaminated soil [J]. Microbiological Research 158,151-161.
    [146]Muratova, A.Y., Turkovskaya, O.V., Hubner, T., Kuschk, P.,2003b. Studies of the efficacy of alfalfa and reed in the phytoremediation of hydrocarbon-polluted soil [J]. Applied Biochemistry and Microbiology 39,599-605.
    [147]Muratova, A.Y., Dmitrieva, T.V., Panchenko, L.V., Turkovskaya, O.V.,2008. Phytoremediation of oil-sludge-contaminated soil [J]. International Journal of Phytoremediation 10,486-502.
    [148]Muyzer, G,. Brinkhoff, T., Niibel, U., Santegoeds, C., Schafer, H., Wawer, C., 1998. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology [J]. Kluwer Academic Publishers, Netherlands,1-27 pp.
    [149]Nadim, F., Liu, S.L., Hoag, G.E., Chen, J.P., Carley, R.J., Zack, P.,2002. A comparison of spectrophotometric and gas chromatographic measurements of heavy petroleum products in soil samples [J]. Water Air and Soil Pollution 134, 97-109.
    [150]Nakamura, R., Kachi, N., Suzuki, J.I.,2008. Root growth and plant biomass in Lolium perenne exploring a nutrient-rich patch in soil [J]. Journal of Plant Research 121,547-557.
    [151]Nasholm, T., Huss-Danell, K., Hogberg, P.,2000. Uptake of organic nitrogen in the field by four agriculturally important plant species [J]. Ecology 81, 1155-1161.
    [152]Nasholm, T., Kielland, K., Ganeteg, U.,2009. Uptake of organic nitrogen by plants [J]. New Phytologist 182,31-48.
    [153]Nepovim, A., Hebner, A., Soudek, P., Gerth, A., Thomas, H., Smrcek, S., Vanek, T.,2005. Degradation of 2,4,6-trinitrotoluene by selected helophytes [J]. Chemosphere 60,1454-1461.
    [154]Newman, L.A., Reynolds, C.M.,2004. Phytodegradation of organic compounds [J]. Current Opinion in Biotechnology 15,225-230.
    [155]Nguyen, C.,2003. Rhizodeposition of organic C by plants:mechanisms and controls [J]. Agronomie 23,375-396.
    [156]Noaman, M.N., El-Haddad, E.S.,2000. Effects of irrigation water salinity and leaching fraction on the growth of six halophyte species [J]. Journal of Agricultural Science 135,279-285.
    [157]Nordin, A., Schmidt, I.K., Shaver, G.R.,2004. Nitrogen uptake by arctic soil microbes and plants in relation to soil nitrogen supply [J]. Ecology 85,955-962.
    [158]Osuji, L.C., Onojake, C.M.,2004. Trace heavy metals associated with crude oil: A case study of Ebocha-8 oil-spill-polluted site in Niger Delta, Nigeria [J]. Chemistry& Biodiversity 1,1708-1715.
    [159]Paffrath, A., Milz, E.,2008. Effect of presprouting, organic nitrogen-fertilization and copper-treatment on yield and quality of potato in organic farming [J]. Gesunde Pflanzen 60,1-4.
    [160]Pagter, M., Bragato, C., Malagoli, M., Brix, H.,2009. Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis [J]. Aquatic Botany 90, 43-51.
    [161]Pansu, M., Gautheyrou, J.,2006. Handbook of soil analysis [M]. Springer, The Netherlands,526-530 pp.
    [162]Patel, M.R., Sadhu, A.C., Patel, J.C.,2008. Effect of irrigation, nitrogen and bio-fertilizer inoculation on N, P and K content and uptake of forage oat (Avena sativa L.). Research on Crops 9,544-546.
    [163]Paterson, E., Midwood, A.J., Millard, P.,2009. Through the eye of the needle:a review of isotope approaches to quantify microbial processes mediating soil carbon balance [J]. New Phytologist 184,19-33.
    [164]Paterson, E., Gebbing, T., Abel, C., Sim, A., Telfer, G,2007. Rhizodeposition shapes rhizosphere microbial community structure in organic soil [J]. New Phytologist 173,600-610.
    [165]Paterson, E., Thornton, B., Midwood, A.J., Osborne, S.M., Sim, A., Millard, P., 2008. Atmospheric CO2 enrichment and nutrient additions to planted soil increase mineralisation of soil organic matter, but do not alter microbial utilisation of plant-and soil C-sources [J]. Soil Biology& Biochemistry 40, 2434-2440.
    [166]Patil, S.L., Sheelavantar, M.N.,2006. Soil water conservation and yield of winter sorghum (Sorghum bicolor L. Moench) as influenced by tillage, organic materials and nitrogen fertilizer in semi-arid tropical India [J]. Soil& Tillage Research 89,246-257.
    [167]Peng, S.W., Zhou, Q.X., Cai, Z., Zhang, Z.N.,2009. Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment [J]. Journal of Hazardous Materials 168,1490-1496.
    [168]Peterson, C.H., Rice, S.D., Short, J.W., Esler, D., Bodkin, J.L., Ballachey, B.E., Irons, D.B.,2003. Long-term ecosystem response to the Exxon Valdez oil spill [J]. Science 302,2082-2086.
    [169]Pezeshki, S., DeLaune, R.,1993. Effect of crude oil on gas exchange functions of Juncus roemerianus and Spartina alterniflora [J]. Water, Air, and Soil Pollution 68,461-468.
    [170]Pezeshki, S.R., Hester, M.W., Lin, Q., Nyman, J.A.,2000. The effects of oil spill and clean-up on dominant US Gulf coast marsh macrophytes:a review [J]. Environmental Pollution 108,129-139.
    [171]Phillips, J.M., Hayman, D.S.,1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection [J]. Transactions of the British Mycological Society 55, 158-161.
    [172]Phillips, L.A., Greer, C.W., Germida, J.J.,2006. Culture-based and culture-independent assessment of the impact of mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare-pit soil [J]. Soil Biology& Biochemistry 38,2823-2833.
    [173]Phillips, L.A., Greer, C.W., Farrell, R.E., Germida, J.J.,2009. Field-scale assessment of weathered hydrocarbon degradation by mixed and single plant treatments [J]. Applied Soil Ecology 42,9-17.
    [174]Pignatello, J.J., Xing, B.S.,1996. Mechanisms of slow sorption of organic chemicals to natural particles [J]. Environmental Science& Technology 30, 1-11.
    [175]Pilon-Smits, E.,2005. Phytoremediation [J]. Annual Review of Plant Biology 56,15-39.
    [176]Polymenakou, P.N., Bertilsson, S., Tselepides, A., Stephanou, E.G.,2005. Links between geographic location, environmental factors, and microbial community composition in sediments of the Eastern Mediterranean Sea [J]. Microbial Ecology 49,367-378.
    [177]Powell, S.M., Ferguson, S.H., Bowman, J.P., Snape, I.,2006. Using real-time PCR to assess changes in the hydrocarbon-degrading microbial community in Antarctic soil during bioremediation [J]. Microbial Ecology 52,523-532.
    [178]Pradhan, S.P., Conrad, J.R., Paterek, J.R., Srivastava, V.J.,1998. Potential of phytoremediation for treatment of PAHs in soil at MGP sites [J]. Journal of Soil Contamination 7,467-480.
    [179]Qiu, X.J., Leland, T.W., Shah, S.I., Sorensen, D.L., Kendall, E.W.,1997. Field study:Grass remediation for clay soil contaminated with polycyclic aromatic hydrocarbons [J]. Phytoremediation of Soil and Water Contaminants 664, 186-199.
    [180]Quander, J.,2008. Phytotechnology project profiles. In:U.S. Environmental protection agency.
    [181]Radler, M., Bell, L.,2007. Economic growth boosting US, global energy demand [J]. Oil& Gas Journal 105,18-27.
    [182]Rains, K.C., Bledsoe, C.S.,2007. Rapid uptake of N-15-ammonium and glycine-C-13, N-15 by arbuscular and ericoid mycorrhizal plants native to a Northern California coastal pygmy forest [J]. Soil Biology& Biochemistry 39, 1078-1086.
    [183]Rangarajan, S., Saleena, L.M., Nair, S.,2002. Diversity of Pseudomonas spp. isolated from rice rhizosphere populations grown along a salinity gradient [J]. Microbial Ecology 43,280-289.
    [184]Reichenauer, T.G., Germida, J.J.,2008. Phytoremediation of Organic Contaminants in Soil and Groundwater [J]. Chemsuschem 1,708-717.
    [185]Rennenberg, H., Dannenmann, M., Gessler, A., Kreuzwieser, J., Simon, J., Papen, H.,2009. Nitrogen balance in forest soils:nutritional limitation of plants under climate change stresses [J]. Plant Biology 11,4-23.
    [186]Robertson, S.J., McGill, W.B., Massicotte, H.B., Rutherford, P.M.,2007. Petroleum hydrocarbon contamination in boreal forest soils:a mycorrhizal ecosystems perspective [J]. Biological Reviews 82,213-240.
    [187]Robles-Gonzalez, I.V., Fava, F., Poggi-Varaldo, H.M.,2008. A review on slurry bioreactors for bioremediation of soils and sediments [J]. Microbial Cell Factories 7.
    [188]Rowell, M.J.,1977. The effect of crude-oil spills on soil:a review of the literature [M]. Department of Social Science, University of Alberta, Edmonton, Canada,1-33 pp.
    [189]Roychoudhury, A.N.,2007. Spatial and seasonal variations in depth profile of trace metals in saltmarsh sediments from Sapelo Island, Georgia, USA [J]. Estuarine Coastal and Shelf Science 72,675-689.
    [190]Saiki, Y., Habe, H., Yuuki, T., Ikeda, M., Yoshida, T., Nojiri, H., Omori, T.,2003. Rhizoremediation of dioxin-like compounds by a recombinant Rhizobium tropici strain expressing carbazole 1,9a-dioxygenase constitutively [J]. Bioscience Biotechnology and Biochemistry 67,1144-1148.
    [191]Samanta, S.K., Singh, O.V., Jain, R.K.,2002. Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation [J]. Trends in Biotechnology 20, 243-248.
    [192]Saul, D.J., Aislabie, J.M., Brown, C.E., Harris, L., Foght, J.M.,2005. Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica [J]. FEMS Microbiology Ecology 53,141-155.
    [193]Seemann, J.R., Critchley, C.,1985. Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. [J]. Planta 164,151-162.
    [194]Seghers, D., Top, E.M., Reheul, D., Bulcke, R., Boeckx, P., Verstraete, W., Siciliano, S.D.,2003. Long-term effects of mineral versus organic fertilizers on activity and structure of the methanotrophic community in agricultural soils [J]. Environmental Microbiology 5,867-877.
    [195]Sey, B.K., Manceur, A.M., Whalen, J.K., Gregorich, E.G., Rochette, P.,2008. Small-scale heterogeneity in carbon dioxide, nitrous oxide and methane production from aggregates of a cultivated sandy-loam soil [J]. Soil Biology& Biochemistry 40,2468-2473.
    [196]Siciliano, S.D., Germida, J.J.,1997. Bacterial inoculants of forage grasses that enhance degradation of 2-chlorobenzoic acid in soil [J]. Environmental Toxicology and Chemistry 16,1098-1104.
    [197]Siciliano, S.D., Germida, J.J., Banks, K., Greer, C.W.,2003. Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial [J]. Applied and Environmental Microbiology 69,483-489.
    [198]Singh, D.K.,2008. Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments [J]. Indian Journal of Microbiology 48,35-40.
    [199]Smits, E., Freeman, J.L.,2006. Environmental cleanup using plants: Biotechnological advances and ecological considerations [J]. Frontiers in Ecology and the Environment 4,203-210.
    [200]So, C.M., Young, L.Y.,2001. Anaerobic biodegradation of alkanes by enriched consortia under four different reducing conditions [J]. Environmental Toxicology and Chemistry 20,473-478.
    [201]Southichak, B., Nakano, K., Nomura, M., Chiba, N., Nishimura, O.,2006. Phragmites australis:A novel biosorbent for the removal of heavy metals from aqueous solution [J]. Water Research 40,2295-2302.
    [202]Srogi, K.,2007. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons:a review [J]. Environmental Chemistry Letters 5,169-195.
    [203]Stanley, E.H., Maxted, J.T.,2008. Changes in the dissolved nitrogen pool across land cover gradients in Wisconsin streams [J]. Ecological Applications 18, 1579-1590.
    [204]Stapleton, R.D., Sayler, G.S., Boggs, J.M., Libelo, E.L., Stauffer, T., Macintyre, W.G,2000. Changes in subsurface catabolic gene frequencies during natural attenuation of petroleum hydrocarbons [J]. Environmental Science& Technology 34,1991-1999.
    [205]Susarla, S., Medina, V.F., McCutcheon, S.C.,2002. Phytoremediation:An ecological solution to organic chemical contamination [J]. Ecological Engineering 18,647-658.
    [206]Tabatabai, M.A.,1994. Soil enzymes [M]. Soil Science Society of America, Madison,775-833 pp.
    [207]Thompson, O.A., Wolf, D.C., Mattice, J.D., Thoma, G.J.,2008. Influence of nitrogen addition and plant root parameters on phytoremediation of pyrene-contaminated soil [J]. Water Air and Soil Pollution 189,37-47.
    [208]Tordoff, G.M., Baker, A.J.M., Willis, A.J.,2000. Current approaches to the revegetation and reclamation of metalliferous mine wastes [J]. Chemosphere 41, 219-228.
    [209]Unterbrunner, R., Wieshammer, G., Hollender, U., Felderer, B., Wieshammer-Zivkovic, M., Puschenreiter, M., Wenzel, W.W.,2007. Plant and fertiliser effects on rhizodegradation of crude oil in two soils with different nutrient status [J]. Plant and Soil 300,117-126.
    [210]van der Meer, J.R.,2006. Environmental pollution promotes selection of microbial degradation pathways [J]. Frontiers in Ecology and the Environment 4,35-42.
    [211]Van Hamme, J.D., Singh, A., Ward, O.P.,2003b. Recent advances in petroleum microbiology [J]. Microbiology and Molecular Biology Reviews 67,503-549.
    [212]Vance, E.D., Brookes, P.C., Jenkinson, D.S.,1987. An Extraction Method for Measuring Soil Microbial Biomass-C [J]. Soil Biology& Biochemistry 19, 703-707.
    [213]Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., Thewys, T., Vassilev, A., Meers, E., Nehnevajova, E., van der Lelie, D., Mench, M.,2009. Phytoremediation of contaminated soils and groundwater:lessons from the field [J]. Environmental Science and Pollution Research 16,765-794.
    [214]Walecka-Hutchison, C.M., Walworth, J.L.,2007. Evaluating the effects of gross nitrogen mineralization, immobilization, and nitrification on nitrogen fertilizer availability in soil experimentally contaminated with diesel [J]. Biodegradation 18,133-144.
    [215]Walworth, J.L., Woolard, C.R., Braddock, J.F., Reynolds, C.M.,1997. Enhancement and inhibition of soil petroleum biodegradation through the use of fertilizer nitrogen:An approach to determining optimum levels [J]. Journal of Soil Contamination 6,465-480.
    [216]Wang, J.Y., Yang, L., Tseng, C.C., Hsu, H.L.,2008a. Application of phytoremediation on soil contaminated by pyrene [J]. Environmental Engineering Science 25,829-838.
    [217]Wang, X.Y., Feng, J., Zhao, J.M.,2010. Effects of crude oil residuals on soil chemical properties in oil sites, Momoge Wetland, China [J]. Environmental monitoring and assessment 161,271-280.
    [218]Wang, Y., Chen, H., Chen, H., Wu, J.,2009. Influences of chronic contamination of oil field exploitation on soil nematode communities at the Yellow River Delta of China [J]. Frontiers of Biology in China 4,376-383.
    [219]Wang, Z.H., Li, S.X., Malhi, S.,2008b. Effects of fertilization and other agronomic measures on nutritional quality of crops [J]. Journal of the Science of Food and Agriculture 88,7-23.
    [220]Weigelt, A., Bol, R., Bardgett, R.D.,2005. Preferential uptake of soil nitrogen forms by grassland plant species [J]. Oecologia 142,627-635.
    [221]Wenzel, W.W.,2009. Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils [J]. Plant and Soil 321,385-408.
    [222]Westover, K.M., Kennedy, A.C., Kelley, S.E.,1997. Patterns of rhizosphere microbial community structure associated with co-occurring plant species [J]. The Journal of Ecology 85,863-873.
    [223]Whalley, W.R., Riseley, B., Leeds-Harrison, P.B., Bird, N.R.A., Leech, P.K., Adderley, W.P.,2005. Structural differences between bulk and rhizosphere soil [J]. European Journal of Soil Science 56,353-360.
    [224]Wilcke, W.,2007. Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil [J]. Geoderma 141,157-166.
    [225]Wrenn, B.A., Venosa, A.D.,1996. Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most probable number procedure [J]. Canadian Journal of Microbiology 42,252-258.
    [226]Xu, S.P., Jaffe, P.R.,2006. Effects of plants on the removal of hexavalent chromium in wetland sediments [J]. Journal of Environmental Quality 35, 334-341.
    [227]Xu, X.L., Stange, C.F., Richter, A., Wanek, W., Kuzyakov, Y.,2008. Light affects competition for inorganic and organic nitrogen between maize and rhizosphere microorganisms [J]. Plant and Soil 304,59-72.
    [228]Yakimov, M.M., Gentile, G., Bruni, V., Cappello, S., D'Auria, G., Golyshin, P.N., Giuliano, L.,2004. Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria [J]. FEMS Microbiology Ecology 49,419-432.
    [229]Zahran, H.H.,1997. Diversity, adaptation and activity of the bacterial flora in saline environments [J]. Biology and Fertility of Soils 25,211-223.
    [230]Zhang, X.X., Wu, W.L., Shan, B.L., Lu, J.,2007. Enzyme activities in petroleum polluted soil of Shengli oilfield, China [J]. Progress in Environmental Science and Technology,1,1243-1246.
    [231]Zhao, R.F., Chen, X.P., Zhang, F.S., Zhang, H.L., Schroder, J., Romheld, V., 2006. Fertilization and nitrogen balance in a wheat-maize rotation system in North China [J]. Agronomy Journal 98,938-945.
    [232]Zhao, Y., Song, C.,1995. The Yellow River Delta National Nature Reserve [M]. Forestry Publishing House, Beijing, China.
    [233]Zhou, E., Crawford, R.L.,1995. Effects of oxygen, nitrogen, and temperature on gasoline biodegradation in soil [J]. Biodegradation 6,127-140.
    [234]Zhuang, X.L., Chen, J., Shim, H., Bai, Z.H.,2007. New advances in plant growth-promoting rhizobacteria for bioremediation [J]. Environment International 33,406-413.
    [235]Ziesche, T.M., Roth, M.,2008. Influence of environmental parameters on small-scale distribution of soil-dwelling spiders in forests:what makes the difference, tree species or microhabitat? [J]. Forest Ecology and Management 255,738-752.
    [236]田家怡,王秀凤,蔡学军,张士华,曹桂荣,张红进,万秀敏,李长海,王勇,郝文倩,2005.黄河三角洲湿地生态系统保护与恢复技术[J].中国海洋大学出版社,青岛.
    [237]李政海,王海梅,刘书润,宋国宝,高吉喜,2006.黄河三角洲生物多样性分析[J].生态环境15,577-582.
    [238]郝洪强,孙祎敏,陈洪利,2008.石油烃类的微生物降解研究进展[J].河北化工31,4-6.
    [239]刘五星,骆永明,滕应,李振高,吴龙华,2007.我国部分油田土壤及油泥的石油污染初步研究[J].土壤39,247-251.
    [240]刘继朝,张燕平,邹树增,2009.土壤石油污染对植物种子萌发和幼苗生长的影响[J].水土保持通报29,123-126.
    [241]张乃明,段永蒽,毛昆明,北京,2002..土壤环境保护[M].中国农业科学技术出版社,北京.
    [242]许学工,1998.黄河三角洲地域结构、综合开发与可持续发展[M].海洋出版社,北京.
    [243]贾建丽,刘莹,李广贺,张旭,2009.油田区土壤石油污染特性及理化性质关系[J].化工学报60,726-732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700