用户名: 密码: 验证码:
地下水平衡与生态演替耦合模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源缺乏作为一个世纪性课题,已经引起了各个国家的重视和关注。由于水资源的短缺导致的一系列问题,如生态环境恶化、植被退化、土地过度干旱、地下水资源的滥采滥用、农业生产受到影响等不利因素在困扰很多地区的发展。植被作为生态系统的重要因子,其变迁演替对生态环境的改善具有重要作用,植被生态系统作为生态循环演替大循环的子系统,是区域水资源分布格局,水质状态、土壤墒情、区域气候和水文等特征的直观表征,表达了水文地质的特点和状态,植被生态系统的演替发展,特别是在干旱区,其空间格局受到无机环境和社会经济等自然因素和人为因素的双重影响。在干旱区,由于天气干燥,区域干旱少雨,植被演替受到水资源时空分布格局、特别是地下水资源的控制,其演替过程和地下水动态及各项属性特征之间具有一定的耦合关系。对生态演替及地下水动态主导因素的分析,对掌握干旱区生态景观根据的特征和生态恢复具有重要意义,为疏勒河流域的生态保护提供帮助和指导。
     疏勒河流域作为西北重要的商品粮基地,具有极其重要的地位。疏勒河流域的生态环境治理研究对西北地区的发展和我国的生态环境问题的解决都起着举足轻重的作用。由于干旱少雨、日照强烈,生态系统极其脆弱,植被生态的演替长期受到环境的胁迫作用,地下水资源成了植被演替的关键因子,无机环境的水分胁迫和区域经济发展、人类活动对区域生态演替的干扰,成为了区域生态景观格局的关键性因素。
     本文以疏勒河流域2000年-2009年的地下水长观井监测数据为基础,利用克里格插值方法、对疏勒河流域的地下水埋深进行数值模拟,生成了地下水空间分布曲面,对疏勒河流域水文特征和植被生态要素进行分析;利用2006年疏勒河全景TM影像数据和土地利用数据在ERDAS 8.4系统中做了监督分类,提取了植被景观格局特征指数,结合相应植被生理周期内的地下水分布格局,利用分形理论分析了植被景观格局的分布状况,研究了植被景观格局的的分形维数和地下水分布之间的耦合关系,建立植被演替与水分胁迫的空间关系模型,利用1:100万的大尺度归一化植被指数(NDVI)影像数据对耦合模型做了验证;结合疏勒河流域的实际现状,以景观生态学理论为基础,研究了项目区景观格局特征及成因,对疏勒河流域的景观格局演替特征进行了分析,以希望对疏勒河流域的生态演替和恢复提供理论支持。
     疏勒河流域生态景观的研究,对改善西北干旱区的生态环境和区域经济发展、社会稳定具有重要意义。干燥导致流域的农业生产完全依靠人工灌溉,对于水资源的开发利用,一直是以工农业生产为第一需要、将地表径流可开采量的结余作为生态用水,将最重要的生态用水需求放到了次要位置。工农业生产对自然资源的开发利用短期效益是为了满足人民生活需要和经济发展,长期效益是为了改善人居环境和生活水平,水资源的过度开发利用对生态的演替造成了干扰、对人居环境造成了破坏,只顾及眼前利益而忽略了长远目标,本末倒置。本文通过景观格局动态过程的分析,希望改变流域用水观念、建立以水资源的开发利用为生态恢复服务、一切经济行为和社会活动以生态保护为出发点,改造干旱贫瘠、肆虐蔓延的荒漠,建立人与自然和谐、统一的新河西走廊。
As a cross-century topic, the shortage of water resources has come to the fore in many countries. The development of many areas is bothered by a series of problems related to shortage of water resources, such as ecological deterioration, vegetation degradation, excessive dry of farmland, abusive exploitation and usage of underground water and the bad effect on agricultural industry, etc. As the important factor of ecological system, the change and succession of vegetation are of importance to the improvement of ecological environment. As the subsystem in the main system of ecological cycle succession, the vegetation ecological system is the direct token of such characteristics as regional water resources distribution pattern, water quality, soil moisture, regional climate and hydrology. It indicates the characteristics and state of hydrogeology. The spatial pattern of the succession and development of vegetarian ecological system, especially in dry area is influenced by both the natural elements of inorganic environment and the manmade elements of social economy. Due to the dry weather and scarceness of rain, the succession of vegetation in dry areas is intimidated and controlled by the time and spatial distribution patterns of water resources, especially underground water. It succession process has certain coupling relationships with the dynamic state and each feature of underground water. The analysis of ecological succession and the major dominating factor of underground water dynamic state is of great significance to the grasp of the characteristics of ecological landscape and ecological recovery. It can also provide help and guide to the ecological protection of Shule River basin.
     As an important commodity grain base in northwest area, Shule River basin enjoys a very important place. The research of the ecological environment governance in Shule River basin is of importance to the development of northwest area and the resolution to the problems of China's ecological environment. Due to the draught and scarce rain and strong sunlight the ecological system is extremely vulnerable and the succession of vegetation ecology is long intimidated by environment. In this condition, underground water resources become the key factor of vegetation succession. Both the moisture intimidation of inorganic environment and the interference of regional economical development and human activities become the key factors of regional ecological landscape pattern.
     Based on the monitoring data from the underground water long observing wells in Shule River basin from 2000-2009 and using Kriging interpolation method, this paper performs numerical simulation to the burial depth of the underground water in Shule River basin and generates the curved surface of underground water spatial distribution and analyzes the characteristics of Shule River basin hydrology and vegetation distribution elements. This paper does monitoring classification in ERDAS 8.4 system by using 2006 Shule River panoramic view video data and land usage data. It analyses the distribution situation of vegetation landscape pattern by extracting the index of vegetation landscape pattern characteristics, combining the corresponding underground water distribution pattern in vegetation physical period and using the Fractal Theory. It also studies the coupled relation between the fractal dimension of vegetation landscape pattern and the distribution of underground water and sets up the spatial relation model of vegetation succession and moisture intimidation. In addition, it inspects and verifies the coupled model by using 1:1000000 large scale normalization vegetation index (NDVI) video data.In combination with the current situation of Shule River basin and on the basis of landscape ecology theory, this paper studies the cause of formation and characteristics of landscape pattern in Project area. It also analyses the characteristics of the landscape pattern succession of Shule River in the hope of providing theoretical support of the ecological succession and recovery of Shule River.
     The research of Shule River basin ecological landscape is of great significance to the improvement of ecological environment and regional economy development in northwest dry areas and social stability. The agricultural production in the river basin is totally dependent on artificial irrigation because of draught. The first priority of water resources development and exploitation is long put on agricultural industry and the available yield of surface runoff is used as ecological water whereas the most important ecological need of water is put on the second place. The short-term benefits of the natural resources exploitation by agricultural and industrial production are to satisfy the need of people's daily life and economical development; the long-term benefits are to improve the living environment and living quality of people. But the excessive exploitation of water resources interferes with the ecological succession, destroys the living environment. They focus only on the short-term benefits but neglect the long-term goal. Through the analysis of landscape dynamic pattern process, this paper hopes to change the concept of river basin water usage and build a harmonious and unified Hosi Corridor where the exploitation of water resources serves the ecological protection, all economical behavior and social activities start with the ecological protection so that to change the dry, barren and poor desert.
引文
[1]缪韧.水文学原理.北京:中国水利水电出版社,2007.09.第一版
    [2.]The Ministry of Water Resources of the People's republic of china. The Status of Water Resources in China,2003,09.
    [3]马德海.疏勒河流域水资源开发利用研究.水利水电技术,vol 36,2006,04
    [4]上官士青,蒋宗霖,陈新勇,秦骞.浅谈地下水过量开采的危害与防治.科学之友,2009,07.
    [5]丁宏伟,张荷生,高玉卓.河西走廊西端地下水资源.甘肃地质学报,2000,vol9,01.
    [6]陈德华,刘少玉,王昭.疏勒河流域中游生态环境变化及成因分析,水温地质工程地质,vol 28.6,2001,061
    [7]王昭,陈德华,李雨阳.疏勒河流域水资源与生态环境变化2005,08.
    [8]韩金强.甘肃内陆河流域水问题及对策研究.中国水利2002,02.
    [9]陆乐,吴吉春.地下水数值模拟不确定性的贝叶斯分析.水利学报,vol41(3),2010,03.
    [10]陆乐,吴吉春,陈景雅.基于贝叶斯方法的水文地质参数识别[J].水文地质工程地质,2008,35(5):58-63.
    [11]薛禹群.中国地下水数值模拟的现状与展望.高校地质学报,vo1.16,No1,2010,03.
    [12]崔起,于颖.水资源优化配置研究与展望.地下水,2007,11.Vol 29(6).
    [13]王金生,王长申,腾彦国.地下水可持续开采量评价方法综述.水利学报,2006,37(5).
    [14]梁汝超关于地下水储量分类和概念的改革问题地下水资源评价理论与方法的研究中国地质学会首届地下水资源评价学术会议论文选编北京地质出版社,1992.34-38.
    [15]籍传茂侯景岩王兆馨世界各国地下水开发和国际合作指南北京地震出版社,1996.
    [16.]Sophocleous M. From safe yield to sustainable of water resource-the Kansas experlence [J]. Journal of Hydrology,2000,235:27-43.
    [17]张人权.地下水资源特性及其合理开发利用[J].水文地质工程地质,2003,30(6):1-5.
    [18]王金生,王长申,腾彦国.地下水可持续开采量评价方法综述.水利学报,2006,37(5).
    [19.]France, P.W. Finite Element Analysis of Three-Dimensional Groundwater Flow Problems. Journal of Hydrology. Apr 1974, Vol 21. p381-398
    [20.]Haimes, Yacov Y. Multilevel Optimization For Conjunctive Use of Groundwater and Surface Water. Water Resources Research, Aug 1974, Vol 10. p625-636
    [21]陈志恺,王浩,汪党献.西北地区水资源配置生态环境建设和可持续发展战略研究(水资源卷).中国工程院重大咨询项目,北京:科学出版社,2004
    [22]鲁振宇,杨太保,郭万钦.降水空间插值方法应用研究-以黄河源区为例.兰州大学学报(自然科学版),2006,42(4):11-14.
    [23]朱会义,贾绍风.降雨信息空间插值的不确定性分析[J].地理科学进展,2004,23(2):34-39.
    [24]陈家军,王红旗,张征,王金生.地质统计学方法在地下水水位估计中的应用.水文地质工程地质,1998.06
    [25]孙琪,周锁铨,康娜,等.基于GIS的长江中上游降水的空间分布[J].南京气象学院学报,2007,30(2):201.
    [26]周锁铨,薛根元,孙琪,康娜.基于GIS降水空间分析的逐步插值方法.气象学报,2006,vol 64(1).
    [27]邬建国.景观生态学——格局、过程、尺度与等级.北京:高等教育出版社,2000,12,第一版.
    [28]宇振荣.景观生态学.北京:化学工业出版社,2008年3月第一版.
    [29]何芳良,钟杨.生态系统演替过程的数学模型.武汉植物研究,1988,05,vol 6(2).
    [30]马德海,马乐平,易善桢等.甘肃省疏勒河灌区信息化系统工程技术研究报告.甘肃省疏勒河流域水资源管理局,2008,10.
    [31]刘强,艾学山.疏勒河灌区三大水库联合调度研究.中国农村水利水电,2008,04.
    [32]刘立昱,王国栋,钟方,王应革.甘肃省河西走廊(疏勒河)项目中期计划调整水资源供需平衡机水库优化调度研究专题报告.甘肃省水利水电勘测设计研究院,2002,12.
    [33]张玉.河西走廊(疏勒河)项目灌区地下水动态预测研究.甘肃水利水电技术,2008(6).
    [34]马德海.疏勒河流域水资源开发利用研究.水利水电技术,2007年06,Vol 37.
    [35]王忠静,潘世兵,王海峰,孙涛.甘肃省河西走廊(疏勒河)项目灌区地下水动态预测研究报告.清华大学,甘肃省水利水电客车设计研究院,2004,10.
    [36]胡安焱.干旱地区内陆河水文生态特征及其水资源合理开发利用研究-以塔里木河为例.长安大学,2006,06.
    [37]耿雷华,黄永基等.西北内陆河流域水资源特点初析[J].水科学进展,2002,13(4):496501.
    [38]蓝永超,康尔泗.河西内陆干旱区主要河流出山径流特征及变化趋势分析[J].冰川冻土,2000,22(2):147-151.
    [39]马德海,刘强,闫瑞云,李宏志等.疏勒河流域水资源开发利用报告(讨论稿).2006年10月.
    [40]薛禹群.地下水动力学.南京:南京大学出版社,1996,03.
    [41]魏林宏,束龙仓,郝振纯.地下水流数值模拟的研究现状和发展趋势.重庆大学学报(自然科学版),2000,z1
    [42.]Ger, Metinl; Baran, Ozgur Ugras; Irfanoglu, Bulent. Numerical simulation of groundwater contamination. Joint Conference on Water Resource Engineering and Water Resources Planning and Management 2000, July 30,2000-August 2, 2000 Minneapolis, MN, United states.
    [43.]Ashby, S.F.; Bosl, W.J.; Falgout, R.D.; Smith, S.G.;Tompson, A.F.B.; Williams, T.J. A numerical simulation of groundwater flow and contaminant transport on the Cray T3D and C90 supercomputers. International Journal of High Performance Computing Applications(JA), Spring,1999, p80-9.
    [44.]Kammerer, G.,Loiskandl, W.,Zelezo, G. Numerical simulationof pollution in agroundwaterbasin in AustriaAuthors. Proceedings of Sixth International Conference ENVIROSOFT 96. Development and Application of Computer
    Techniques to Environmental Studies, Conference location:Como, Italy,18-20 Sept.1996, p37-46.
    [45.]Ma Xiu-Yuan, Yu Feng, Li Jing-Long. Numerical simulationof local groundwater. Rock Soil Mech, October 2006, vol 27, p131-136.
    [46.]Springer Abraham E., Wright Julie M., Shafroth Patrick B.,Stromberg, Juliet C.,Patten, Duncan T..Coupling groundwater and riparian vegetation models to assess effects of reservoir releases. Water Resources Research, Vol:35, December 1999, p3.621-3630.
    [47.]Loheide II, Steven P.,Gorelick, Steven M..Riparian hydroecology:Acoupled model of the observed interactions between groundwater flow and meadow vegetation patterning. Water Resources Research, Vol:43, July 2007.
    [48.]Jiang yanxiao,Guo-Yue Niu,Zong-Liang Yang. Impacts of vegetation and groundwater dynamics on warm season precipitation over the Central United States. Journal of Geophysical Research-Part D-Atmospheres(USA), Vol:114,27 March 2009.
    [49.]Zhao Chengyi, Wang Yuchao, Chen Xi, Li Baoguo. Simulation of the effects of groundwater level on vegetation change by combining FEFLOW software. Ecological Modelling, Vol 187, Sep 25,2005,p341-351.
    [50.]Brolsma R.J., van Beek L.P.H., Bierkens M.F.P.. Vegetation competition model for water and light limitation. Ⅱ:Spatial dynamics of groundwater and vegetation. Ecological Modelling, vol221, May 24,2010, p1364-1377.
    [51.]Eagleson, P.S. Climate, soil, and vegetation. Ⅰ. Introduction to water balance dynamics. Water Resources Research(USA), vol14, Oct.1978, p705-712.
    [52]周仰效.国外地下水流及传输的模拟[C].现状与趋势,1995,200-209.
    [53.]Liu Ying, Bao Anming, Chen Xi. Using limited observations to inverse dynamically groundwater spatial distribution:A case study from the lower reaches of Tarim River. International Geoscience and Remote Sensing Symposium (IGARSS),2006, p1048-1051.
    [54.]Brozovic Nicholas; Sunding David L., Zilberman David. On the spatial nature of the groundwater pumping externality. Resource and Energy Economics, vol 32, April 2010, p154-164.
    [55.]Gong Huili, Hu Zhuowei, Zhao Wenji, Li Xiaojuan, Wang Yanhui, Gong Zhaoning, Zhang Songmei. Three dimensional groundwater virtual reality system and its spatial database.2007 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2007,23-28 July 2007, Barcelona, Spain, p4741-4.
    [56.]Zhang Hua, Wang Cheng, Ma De-hai. Optimization of the Spatial Interpolation for Groundwater Depth in Shule River Basin. International Conference on Environmental Science and Information Application Technology,2009. Vol 2:415-418, Wuhan China, July 2009.
    [57.]Taniguchi M., Ishitobi T., Shimada J. Takamoto N. Evaluations of spatial distribution of submarine groundwater discharge. Geophysical Research Letters, (USA), vol 33,28 March,2006,4 pp.
    [58.]Hansen E.A., Harris A.R.. An improved technique for spatial sampling of solutes in shallow groundwater systems. Water Resources Research(USA), vol 16, Aug. 1980,p827-9.
    [59.]Mogheir Y.1, de Lima J.L.M.P. Singh, V.P.. Characterizing the spatial variability of groundwater quality using the entropy theory:Ⅱ. Case study from Gaza Strip. Hydrological Processes Abbreviated(UK), vol 18, Sept,2004, p2579-90.
    [60.]Gomez-Hernandez J.J., Gorelick S.M.. Effective groundwater model parameter values:influence of spatial variability of hydraulic conductivity, leakage, and recharge. Water Resources Research(USA), vol 25, March 1989, p405-19.
    [61.]Sungkwon Kang, Stauffer T.B., Hatfield K.. A practical estimation technique for spatial distribution of groundwater contaminant. Proceedings of Control of Distributed Parameter and Stochastic Systems Conference International Conference, Hangzhou, China,19-22 June 1998, p55-62.
    [62.]Cay Tayfun, Uyan Mevlut. Spatial and temporal groundwater level variation geostatistical modeling in the city of Konya. Water Environment Research, vol 81, 2009, p2460-2470.
    [63.]Hua Zhang, Cheng Wang, Shanzhen Yi, Qing Jiang. Geostatistical Analysis of Spatial and Temporal Variations of Groundwater Depth in Shule River.2009 WASE International Conference on Information Engineering, Vol 2:453-457. Taiyuan. China, July 2009.
    [64.]Emil O. Frind. Simulation of long-term transient density-dependent transport in groundwater. Advances in Water Resources, 2003, March.
    [65]陈崇希,万军伟.地下水水平井流的模型及数值模拟方法-考虑井管内不同流态[M].地球科学-中国地质大学学报,武汉,2002,3.
    [66.]Mogheir Y.1, de Lima J.L.M.P., Singh V.P.. Characterizing the spatial variability of groundwater quality using the entropy theory. I. Synthetic data. Hydrological Processes (UK), vol 18,15 Aug,2004, p2165-79.
    [67.]Liu Yong, Minsker Barbara S., Saied Faisal. Spatial multi-scale techniques for groundwater management modeling. Joint Conference on Water Resource Engineering and Water Resources Planning and Management 2000, vol 104,
    [68.]Delhomme, J.P. Spatial variability and uncertainty in groundwater flow parameters:a geostatistical approach. Water Resources Research(USA). Vol 15, April 1979, p269-80.
    [69.]Najjar Y.M., Basbeer I.A.. Spatial mapping of groundwater contamination using neuronets. Proceedings of Intelligent Engineering Systems through Artificial Neural Networks Conference. St. Louis, MO, USA,12-15 Nov,1995, p817-22.
    [70]陈崇希,林敏.地下水动力学[M].武汉:中国地质大学出版社,1999.
    [71]陈崇希,林敏,叶善士,等.地下水混合井流的理论及应用[M].武汉:中国地质大学出版社,1998.
    [72.]Bear J. Dynamics of fluids in porous media [M]. New York:Elsevier,1972.
    [73]代群力.地下水非线性流动模拟.水文地质工程地质,2000,2.
    [74.]Bense V.F., Kooi H.. Temporal and spatial variations of shallow subsurface temperature as a record of lateral variations in groundwater flow. Journal of Geophysical Research (USA), vol 109,10 April 2004,13 pp.
    [75.]Meng Ling, Rifai HS, Newell C.J.. Optimizing groundwater long-term monitoring networks using Delaunay triangulation spatial analysis techniques. Environmetrics (UK), vol 16, Sept.2005, p635-57.
    [76.]Bouton P.1, Fai Ma. On spatial dependence in Monte Carlo simulations of random fields [groundwater flow]. International Journal of Modelling and Simulation (USA), vol 8,1988,p94-7.
    [77.]Zhenghe Zhang, Qiuming Cheng. GIS spatial statistical analysis of groundwater in GTA, Canada.:Proceedings of IEEE International Geoscience and Remote Sensing Symposium. IGARSS Toronto, Ont., Canada,2002, vol.4, p2229-31.
    [78]范锡鹏.河西走廊地下水与河水的互相转化及水资源合理利用问题[J].水文 地质及工程地质,1981(4):1-6.
    [79]新疆人民政府,中国水利部.塔里木河流域近期规划治理综合报告[M].北京:中国水利水电出版社,2002.
    [80]刘昌明,何希唔等.中国21世纪水问题方略[M].北京:科学出版社,1998:1-190.
    [81]肖笃宁,布仁仓,李秀珍.生态空间理论与景观异质性.生态学报,1997,17(5):453-461.
    [82.]Lambs Luc. Interactions between groundwater and surface water at river banks and the confluence of rivers. Journal of Hydrology, vol 288, March 30,2004, p312-326.
    [83.]Xiaoling Pan, Wei Gao, Fengxue Gu, Weiqing Li, Shunli Chang, Yuandong Zhang, Qian Ye, Anabiek S.. The evaluation on interaction between structures and succession of vegetation/ecosystems and arid land environment in western China: a case study on Fukang, Xinjiang. Ecosystems Dynamics, Ecosystem-Society Interactions, and Remote Sensing Applications for Semi-Arid and Arid Land, 24-27 Oct,2002, Hangzhou, China, p45-57.
    [84.]Wang Kaicun, Liang Shunlin. An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation, vegetation index, temperature and soil moisture.2008 IEEE International Geoscience and Remote Sensing Symposium, July 6-11,2008, Boston, MA, United states, vol 3, p875-878.
    [85.]Amoros Claude, Bornette Gudrun, Henry Christophe Pascall. Avegetation-based method for ecological diagnosis of riverine wetlands. Environmental Management, vol 25, February 2000, p211-227.
    [86.]Wanke Heike, Dunkeloh Armin; Udluft Peter. Groundwater recharge assessment for the Kalahari catchment of north-eastern Namibia and north-western Botswana with a regional-scale water balance model. Water Resources Management, vol 22, September 2008, p1143-1158.
    [87.]Carrillo-Rivera J.J., Cardona A., Huizar-Alvarez R., Graniel E.. Response of the interaction between groundwater and other components of the environment in Mexico. Environmental Geology, vol 55, July 2008, p303-319.
    [88.]Wu, Y. Mechanism analysis of hazards caused by the interaction between
    groundwater and geo-environment. Environmental Geology, vol 44, October 1, 2003,p811-819.
    [89.]Scibek Jacek, Allen Diana M., Cannon Alex J., Whitfield Paul H.. Groundwater-surface water interaction under scenarios of climate change using a high-resolution transient groundwater model. Journal of Hydrology, vol 333, Febrary 15,2007,p165-181.
    [90]彭宏嘉,傅伯杰,陈利顶,杨自辉.甘肃民勤荒漠区植被演替特征及驱动力研究[J].中国沙漠,2004,9(5).
    [91]刘亚传.民勤绿洲生态环境演变的初步研究[J].沈阳:生态学杂志,1984,(3):1-4.
    [92]黄子琛,刘家琼.民勤地区梭梭林衰亡原因的初步研究[J].林业科学,1983,19(1):83-87.
    [93]张树誉,李登科,李星敏,高蓓.省级MODIS植被指数序列的建立与应用.陕西气象,2006(3).
    [94.]Forman R T T, Godron. Landscape Ecology. New York:John Wiley and Sons, 1986.
    [95.]Molles M C. Ecology:Scale Concept and Application. Beijing:Science Press, 2000.
    [96]李红,柯世朕,孙玉冰,王春叶,赵鲁青,李立科,李德志,周燕,卢振兰,宋云.上海崇明县植被覆盖度动态变化遥感监测研究.城市环境与城市生态,2008,4,vol 22.
    [97.]Aguiar M.R. and Saia O.E. Patch structure, dynamics and implications for the functioning of arid ecosystems. Tree,1999,14:273-277.
    [98]王明全,刘少军.基于MODIS数据的儋州市植被覆盖变化研究.2007中国气象学会年会论文集,广州,2007.
    [99]李苗苗,吴炳方,颜长珍等.密云水库上游植被覆盖的遥感估算[J].资源科学,2004,26(4):153-159.
    [100.]Molles M C. Ecology:Scale Concept and Application. Beijing:Science Press, 2000.
    [101.]Forman R T T, Godron. Landscape Ecology. New York:John Wiley and Sons, 1986.
    [102.]Liu J, Taylor W W, et al. Integrating Landscape Ecology into Natural Resource Management. Cambridge University Press,2002.
    [103.]Franklin J F, Forman R T T. Creating landscape patterns by forest cutting: Ecological consequences and principles. Landscape Ecology,1987,1:5-18
    [104]陈文波,肖笃宁,李秀珍.景观空间分析的特征和主要内容.生态学报,2002,07,Vol 22.
    [105.]Wu J G. Landscape Ecology:Concept and Theory. Chin J Ecol. (In Chinese), 200019(1):42-52.
    [106]刘茂松,张明娟.景观生态学——原理与方法.北京:化学工业出版社,2004年5月第一版.
    [107.]Goodchild M F. Spatial Autocorrelation. Norwich:Geo Books,1986.
    [108.]Cliff A D, Ord J K. Spatial Processes:Models and Applications. London:Pion, 1981
    [109.]Wu J, Jelinski D E, Qi Y. Spatial pattern analysis of a boreal forest landscape: scale effects and interpretation. In:Proceedings of the VI international Congress of Ecology, August 21-26,1994, Manchester, UK.165.
    [110.]Cliff A D, Ord J K. Spatial Processes:Models and Applications. London:Pion, 1981.
    [111]苏宏新,桑卫国.宏观植物生态模型的研究现状与展望.植物生态学报,2002,26(增刊):98-106.
    [112.]Capodici F., La Loggia G., D'Urso G, Maltese A., Ciraolo G. Sensitivity analysis on the relationship between vegetation growth and multi-polarized radar data. Remote Sensing for Agriculture, Ecosystems, and Hydrology XI, September 1-3, 2009, Berlin, Germany.
    [113.]Schluter M., Savitsky A.G, McKinney D.C., Lieth H.. Optimizing long-term water allocation in the Amudarya River delta:a water management model for ecological impact assessment. Environmental Modelling & Software.(UK), vol 20, May 2005, p529-45.
    [114.]Badosa Anna; Boix Dani; Brucet Sandra; Lopez-Flores Rocio; Quintana Xavier D.. Short-term effects of changes in water management on the limnological characteristics and zooplankton of a eutrophic Mediterranean coastal lagoon (NE Iberian Peninsula). Marine Pollution Bulletin, vol 54, August 2007, p1273-1284.
    [115.]Casanova Joaquin J.,;Judge Jasmeet. Estimation of energy and moisture fluxes for dynamic vegetation using coupled SVAT and crop-growth models. Water Resources Research, vol 44, July 2008.
    [116]植物百科知识.http://www.10vv.com/asp/catList.asp
    [117.]Aguiar M.R. and Saia O.E. Patch structure, dynamics and implications for the funct ioning of arid ecosystems. Tree,1999,14:273-277.
    [118.]Liu J, Taylor W W, et al. Integrating Landscape Ecology into Natural Resource Management. Cambridge University Press,2002.
    [119]宇振荣,杨喜田,刘云惠,周建勤.景观生态学.北京:化学工业出版社,2008年10月
    [120.]McGarigal K, and Marks BJ. FRAGSTATS:Spatial Pattern Analysisi Program for Quantifying Landscape Structure. Gen. Tech. Report PNW_GTR-351,1995.
    [121.]McGarigal K. Ecosystem Management. W&Fcon/Forestry 597b Course Notes. Department of Forestry and Wildlife, University of Massachusetts at Amherst. MA,1998.
    [122.]McGarigal K, Cushman S A. Comparative evaluation of experimental approaches to the study of habitat fragmentation. Ecological Applications,2002,12 (2): 335-345.
    [123.]Franklin J F, Forman R T T. Creating landscape patterns by forest cutting: Ecological consequences and principles. Landscape Ecology,1987,1:5-18.
    [124.]Franklin J F. Preserving biodiversity:Species, ecosystems, or landscape. Ecological Applications,1993,3:202-205.
    [125]植物学百科知识全书.http://amuseum.cdstm.cn/Museu/static//499.html.中国数字科技馆,2006,12.
    [126]梅安新,彭望碌,秦其明,刘慧平.遥感导论.北京:高等教育出版社,2001年7月第一版.
    [127]张仁铎.空间变异理论及应用.北京:科学出版社,2005年1月.
    [128.]Wu J, Jelinski D E, Qi Y. Spatial pattern analysis of a boreal forest landscape: scale effects and interpretation. In:Proceedings of the VI international Congress of Ecology, August 21-26,1994, Manchester, UK.165.
    [129.]Wu J. Landscape Ecology Pattern, Process, Scale and Hierarchy. Beijing:Higher Education Press,2000.
    [130.]Cliff A D, Ord J K. Spatial Processes:Models and Applications. London:Pion, 1981.
    [131.]Goodchild M F. Spatial Autocorrelation. Norwich:Geo Books,1986.
    [132.]Mandelbmt, B. B.,1982, The fractal geometry of nature:W. H. Freeman and Co., San Francisco, p468
    [133.]Burrough, P. A.,1985, Fakes, facsimilies and facts:fractal models of geophysical phenomena, in Nash, S., ed., Science and uncertainty: Sheridan House, Dobbs Ferry, New York, p219
    [134.]Goodchild. M. F., Mark D. M.. The fractal nature of geographic phenomena: Ann. Assoc. Am. Geographers,1987, v.77, no.2, p.265-278.
    [135.]Mandelbrot B. B.. How long is the coast of Britain Statistical self-similarity and fractal dimension:Science,1977, vol156, no.3775, p.636-638.
    [136.]Mandelbrot B.B.. Fractals:form, chance and dimension:W. H. Freeman and Co., San Francisco,1977, p365.
    [137.]Falconer.K.J.. Mathematical foundations and applications [M]. Lonon:John, Wiley Sons,1990:164-166.
    [138.]Hentschel H G E., Procaccia I.. The infinite number of generalized dimensions of fractals and strange attractors [J]. Physical D,1983,8:435-444.
    [139.]Halsey T.C, Jensen M.H. et al. Fractals measures and their singularities:the characterization of Strange sets [J]. Phys Rev A,1986,33:1141-1151.
    [140]李景文.森林生态学[M].北京:中国林业出版社,2000,211-212.
    [141]郭晋平,周志翔.景观生态学.北京:中国林业出版社,2007年1月第一版.
    [142]蔡庆华.武汉东湖浮游植物水华的多元分析.水生生物学报,1990,3(14),1.
    [143.]Timouk F.1, Kergoat L., Mougin E., Lloyd C.R., Ceschia E.1, Cohard J.-M., Rosnay P. del, Hiernaux P., Demarez V.1, Taylor C.M.. Response of surface energy balance to water regime and vegetation development in a Sahelian landscape. Journal of Hydrology, vol 375, August 30,2009, p178-189.
    [144.]Rodriguez-Iturbe I. Ecohydrology:A hydrological perspective of climate-soil-vegetation dynamics. Water Resources Reseach,2000, vol 36:3-9.
    [145.]Chen Liang, Du Jin-yang, Shi Jiancheng. Microwave vegetation index derived from multi-angular passive microwave observations at L-band.2008 International
    Workshop on Education Technology and Training and 2008 International Workshop on Geoscience and Remote Sensing, ETT and GRS 2008, December 21-22,2008, Shanghai, China, p396-399.
    [146.]Xiaoyan Jiang, Guo-Yue Niu, Zong-Liang Yang. Impacts of vegetation and groundwater dynamics on warm season precipitation over the Central United States. Journal of Geophysical Research-Part D-Atmospheres (USA), Vol114, 27 March 2009, p6109-23.
    [147.]Loheide, Steven P., Gorelick Steven M.. Riparian hydroecology:A coupled model of the observed interactions between groundwater flow and meadow vegetation patterning. Authors:Source title:Water Resources ResearchAbbreviated source title:Water Resour. Res.Volume:43Issue:7Issue date:July 2007Publication year:2007
    [148.]Kotze J., van Tonder G, Dennis I., Zimmermann S.. Determination of sustainable well field yield considering groundwater-surface water interaction. Proceedings of the IASTED International Conference on Environmentally Sound Technology in Water Resources, Gaborone, Botswana,2006, p40-6.
    [149.]Lamontagne S., Leaney F.W., Herczeg A.L.. Groundwater-surface water interactions in a large semi-arid flood plain:implications for salinity management. Hydrological Processes (UK), vol 19,30 Oct.2005, p3063-80.
    [150.]Jayawickreme Dushmantha H., van Dam Remke L., Hyndman David W. Sub surface imaging of vegetation, climate, and root-zone moisture interactions. Geophysical Research Letters, vol 35, September 28,2008.
    [151.]Webb Robert H., Leake Stanley A.. Ground-water surface-water interactions and long-term change in riverine riparian vegetation in the southwestern United States. Journal of Hydrology, vol 320, April 15,2006, p302-323.
    [152.]Yonghua Zhul, Liliang Ren, Skaggs T.H., Haishen Lu, Zhongbo Yu, Yanqing Wu, Xiuqin Fang. Simulation of Populus euphratica root uptake of groundwater in an arid woodland of the Ejina Basin, Hydrological Processes(UK), vol 23,15 Aug. 2009, p2460-9.
    [153.]Hotta Norifumi, Tanaka Nobuaki, Sawano Shinji, Kuraji Koichiro, Shiraki Katsushige, Suzuki Masakazu. Changes in groundwater level dynamics after low-impact forest harvesting in steep, small watersheds. Journal of Hydrology, vol 3855 May 7,2010,p120-131.
    [154.]Hattermann F., Krysanova V., Wechsung F., Wattenbach M.. Integrating groundwater dynamics in regional hydrological modeling. Environmental Modelling and Software, vol 19, November 2004, p1039-1051.
    [155.]Iida Toshiaki, Higashiur Masao, Yokoyama Takao, Okubo Hiroshi, Nakagawa Hidetoshi, Kajihara Akihiko. Spatial distribution of ions in groundwater under agricultural land. Journal of Irrigation and Drainage Engineering, vol 130, November/December 2004, p468-475.
    [156.]Schmid T., Koch M., Gumuzzio J.. Multisensor approach to determine changes of wetland characteristics in semi-arid environments (central Spain). IEEE Transactions on Geoscience and Remote Sensing. Vol 43, Nov.2005, p2516-25.
    [157.]Zhou H P, Liu H, Wang Y, et,al. Relationship between Ejina oasis and water resources in the tower Heihe River Basin. Advances in Water Science,2002, 13(2):223-228.
    [158.]Liu X Y, Zhang X M, Zeng F J, et, al. Water relations on Alhagi sparsifolia in the southern fringe of Taklamakan Desert. Acta Botanica Sinica,2002, 44(10):1219-1224.
    [159]程水英.疏勒河流域景观动态变化研究.西北大学,2004,6.
    [160.]Liu X Y, Zhang X M, HeXY, et, al. Water relation characteristics and four perennial plant species growing in the transition zone between oasis and open dersert. Acta Ecologica Sinica,2004,24(6):1164-1171.
    [161]王嵩,冯平,李建柱.地下水生态环境控制指标问题的研究现状.干旱区资源与环境,2005,7(19),4.
    [162.]Sulis Mauro, Meyerhoff Steven B., Paniconi Claudio, Maxwell Reed M., Putti Mario, Kollet Stefan J., A comparison of two physics-based numerical models for simulating surface water-groundwater interactions. Advances in Water Resources, vol 33, April 2010, p456-467.
    [163.]Crowe A.S., Shikaze S.G., Ptacek C.J.. Numerical modelling of groundwater flow and contaminant transport to Point Pelee marsh, Ontario, Canada. Hydrological Processes(UK), vol 18, Feb.2004, p293-314.
    [164]赵传燕,李守波,贾艳红,姜云超.黑河下游地下水波动带地下水与植被动态耦合模拟.应用生态学报,2008,12.
    [165.]Krause Stefan, Bronstert Axell., The impact of groundwater-surface water interactions on the water balance of a mesoscale lowland river catchment in northeastern Germany. Hydrological Processes, vol 21, January 15,2007, p169-184.
    [166.]Li Fadong, Tang Changyuan, Zhang Qiuying, Pan Guoying. Surface water-groundwater interactions in a Yellow River alluvial fan. Groundwater-Surface Water Interaction:Process Understanding, Conceptualization and Modelling International Conference, July 11-13,2007, Perugia, Italy, p189-196.
    [167.]Urbano L.D., Person M., Hanor J.. Groundwater-lake interactions in semi-arid environments. Geofluids Ⅲ-3rd International Conference on Fluid Evolution, Migration andInteractionin Sedimentary Basins and Orogenic Belts, July 12, 2000-July 14,2000, p423-427.
    [168]陈南祥,霍洪媛.黄河下游影响带地下水系统动力学特征.灌溉排水学报,2008,6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700