用户名: 密码: 验证码:
基于混合模型的中频振动声学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究工作由国家自然基金项目“薄壁结构—声耦合问题的中频计算方法研究”(项目编号:10872075)资助。本文采用基于波动的方法以及混合法,对三维结构声耦合问题、无限域中的声辐射以及组合结构振动声学问题进行了理论推导和数值模拟,并对组合结构振动分析进行了相关试验研究。系统地建立了复杂结构振动分析以及耦合结构声学问题的低中频分析模型,并对中频分析相关理论进行了探讨。研究内容包括如下几个方面:基于波动法的多域结构声耦合模型和无限域内结构声耦合模型,基于混合法的声、结构声耦合模型和组合结构模型,以及组合结构振动试验研究。分析考虑了实际工程需求,可为实际薄壁结构振动分析以及结构声学分析提供可靠实用的计算方法。
     提出了中频和混合模型的完整定义,讨论了中频分析方法的要求、中频动力学独特行为以及中频振动声预报中出现的不确定性,为中频振动声预报提供了理论基础和研究思路。
     推导了基于波动的方法在复杂结构声耦合中的通用建模步骤,提出了一组新的基于阻抗的连续性条件,新的连续性条件引入人工阻尼到数值模型中,增强了数值算法的稳定性,阻抗耦合因子采用特征声阻抗,得到了较好的效果。并将该方法应用到声腔问题以及薄板和声腔耦合的问题中。结果表明该方法具有自由度少、收敛性快等特点,为中频段的振动声学分析提供了有效方法。
     采用类似有限元处理无限域的方法,利用人工截断曲面将求解域分割成有界域和无界域,有界域再分割成凸形子域,在截断曲面内外分别定义可以表示声压场的波函数,提出了圆形截面下的波函数。利用波函数的特点,给出障板的隐式处理方法。通过连续性边界条件在人工截面上将内外子域联系起来,构造出可以求解的系统模型。最后将该方法应用到了声传输、声辐射和声散射等无限域结构声学问题中。算例验证了该方法的高计算效率。
     讨论了混合模型在结构声耦合分析中的应用。基于波动的方法的不足之处是高计算效率只针对中度复杂的几何模型。为了利用两者的优势:有限元法的广泛应用和基于波动的方法的高收敛特性,提出了混合预报法。基本原理是将有限元模型中较大且几何简单的部分采用基于波动的方法代替。得到的耦合模型仍具有较少的自由度,耦合方式为直接耦合。给出了混合法的建模程序。并针对声腔以及薄板和声腔的耦合问题进行了数值算例。利用有限元法的细分,可以得到更高精度的结果或者在相同计算资源下获得更高的计算频率范围。利用有限元法的模态叠加,可以进一步减少计算量,提高计算效率。
     讨论了混合模型在组合结构振动分析中的应用。通过连续性条件将两种非一致性近似场耦合起来,耦合方法为直接耦合,连续性条件直接作为子域的边界条件。针对实际工程中常出现的框架—面板结构建立了混合分析模型,对刚性比较大的框架结构采用传统的有限元分析而对薄板这类弹性结构采用基于波动的方法分析,如果采用纯有限元分析,则大量的计算资源都消耗在对薄板的建模上。算例分析表明:由于框架所需单元数目比较少,那么有限元部分对混合模型精度的影响也比较小,混合模型的精度主要由基于波动的方法来控制;收敛性和频响函数预报分析显示了混合模型比有限元法具有更高的计算效率,使得混合法可以用于中频振动分析。
     进行了组合结构振动试验研究。设计了薄板、折弯板、组合结构试验模型。采用混合法对结构进行了分析,并与试验进行了对比,证实了本文计算模型的有效性。并对振动分析中出现的不确定性也作了探讨。
     本文针对实际工程中常用的薄壁结构和组合结构的振动声学问题进行了研究,提出了基于波动法和基于混合模型的理论分析方法,并对结构振动分析进行了试验验证。经过进一步的完善和发展,可望形成复杂结构振动声学系统的分析计算方法。
The work of this thesis was supported by National Natural Science Foundation of China "Computation and analysis of structural-acoustic coupled problems in the medium frequency range for thin wall structures"(No.10872075).Based on wave based method and hybrid method, theoretical analysis and numerical simulation for three-dimensional structural acoustic analysis, sound radiation analysis in unbounded domain and buid-up structures are investigated respectively, and the experiment analysis of vibration for built-up structures is studied. The low and mid frequency models for complex structural vibration systems and coupled structural-acoustic systems are introduced, the theory about mid frequency analysis has investigated. Research include following sections:wave based modeling for multi-domain structural acoustic; wave based modeling for sound radiation in unbounded domains; hybrid method modeling for acoustic、structural acoustic and built-up structures; experiments of vibration analysis for built-up structures. Taking into account the requirements for practical engineering, provide a reliable calculating method for vibration analysis or structural acoustic analysis of practical thin-wall structures.
     Proposing complete definition for mid-frequency analysis and hybrid model. Discussing the requirements for mid-frequency method、exhibition for mid-frequency unique dynamics behavior and uncertainty for mid-frequency analysis. Provides a theoretical basis and research ideas for mid-frequency vibro-acoustic analysis.
     A new set of continuity conditions for multi-domain wave based modeling is introduced. The impedance coupling approach introduces artificial damping into the numerical model, which has a beneficial effect on the method's efficiency as compared to the conventional pressure and velocity coupling approach.A generally applicable selection criterium for the impedance coupling factor is proposed. The characteristic impedance of the considered fluid gives the best results. By applied the proposed method, the cavity model and thin plate and cavity coupled model are buit. It shows that the proposed method is more efficient than the element based method and better convergence properties.
     Wave based method applies similar methodologies as for the FE schemes for tackling problems in unbounded domains. After an initial truncation and partitioning into a number of bounded convex subdomains and one unbounded subdomain, separated by a truncation curve, novel wave function sets are defined. These wave function sets are able to represent the acoustic pressure field within the unbounded subdomain, exterior to the truncation surface. Wave function sets for circular truncation curves are defined and validated. The wave function sets defined for the unbounded subdomains allow the introduction of rigid baffle planes implicitly in the wave function definitions. Selection of appropriate wave functions within subdomains and enforcement of continuity conditions over the truncation surface between the bounded and unbounded region, yields a WB model which can be solved for the associated wave function contribution factors. Application of the proposed approach to various validation examples illustrates an enhanced computational efficiency as compared with element-based methods.
     The applicability of the WBM is limited since the high computational efficiency only appears for moderate geometrical complexity. In order to take advantage of the wide application range of the FEM and the high convergence rate of the WBM, the coupling between both prediction tools is proposed. The basic idea is to replace parts of the finite element model with simple geometrical shapes by much smaller wave models. The resulting hybrid model has fewer degrees of freedom (DOF's). The hybrid modeling concept is demonstrated for structural-acoustic systems. Results show that because of the finite element method part existing in hybrid model, therefore hybrid model also has numerical pollution. The use of modal reduction techniques for the structural part results in a significant gain in CPU time.
     Considering the hybrid model concept for vibration analysis of buit-up structures.The coupling between the non-conforming approximation fields is created by enforcing continuity conditions. In this case the continuity conditions are enforced directly to the subdomains as boundary conditions. For a pure FE model, the main portion of the computational load is spent in modelling the plate domains. In the hybrid approach the plates can be modelled very efficiently by the WBM, leaving only the stiff frame to be modelled by the FEM.The number of FE dofs required to accurately model the stiff frame is relatively small. Consequently, the accuracy of the hybrid model is mainly determined by the accuracy of the WB models. The convergence analysis and predicted frequency response functions show that the newly developped hybrid method has an enhanced computational efficiency over the FEM.
     The vibration analysis of built-up structures is studied by experiment. The models of thin plate, bending plate, built-up structures are designed. Calculation model confirmed the validity of proposed method in this paper. The uncertainty in mid frequency vibration analysis is also discussed.
     The vibration analysis of thin wall structures and built-up structures used in practical engineering is studied. The theory analysis models of wave based method and hybrid model are proposed.The vibration analysis of structures is also studied by experiment. Afte improving and developing, provide a reliable computation and analysis method of complex structural-acoustic systems.
引文
[1].Belytschko T B.Fluid-structure interaction. Computers and Structures,1980,12: 459-469
    [2].Atalla N, Bernhard RJ. Review of numerical solutions for low-frequency structural-acoustic problems, Applied Acoustics,1994,43:271-294
    [3]. Zienkiewicz, Taylor R.L. The Finite Element Method-Volume 1:the basis, Fifth Edition, Butterworth-Heinemann, Boston,2000
    [4]. Zienkiewicz, Taylor R L. The Finite Element Method-Vol.2:Solid and Fluid Mechanics, Dynamics and Non-Linearity. McGraw-Hill, London,1991
    [5]. Petyt M. Introduction to finite element vibration analysis, Cambridge University Press, Cambridge,1998
    [6]. Allik H, Dees R N and Moore S W. Efficient structural acoustic analysis using finite and infinite elements, Proceedings of the 1995 Design Engineering Technical Conferences (Boston,1995), Vol.3-part B ASME 1995:87-95
    [7]. Astley R J. Infinite elements for wave problems:a review of current formulations and an assessment of accuracy, International Journal for Numerical Methods in Engineering,2000,49:951-976
    [8]. Bettess P. Infinite elements. Penshaw Press, Sunderland,1992
    [9]. Astley R J, Coyette J P. The performance of spheroidal infinite elements, International Journal for Numerical Methods in Engineering,2001,52:1379-1396
    [10].Banerjee P K, Butterfield R. Boundary Element Methods in Engineering Science, (McGraw-Hill Book Company, UK),1981.
    [11].Brebbia C A, Telles J C, Wrobel L C. Boundary element techniques-theory and applications in engineering.Springer-Verlag:Heidelberg,1984
    [12].Ciskowski R D, Brebbia C A. Boundary element methods in acoustics. Elsevier Applied Science, London,1991
    [13].Deraemaeker A, Babuska I, Bouillard P. Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions, International Journal for Numerical Methods in Engineering,1999,46:471-499
    [14].Lyon R H, DeJong RG. Theory and Application of Statistical Energy Analysis. Butterworth-Heinemann, Boston,1995
    [15].Le Salver R. NVH optimization in car body design, Proceedings Euro Noise'98, edited by Fastl, H., and Scheuren, J. Munchen,1998:457-460
    [16]. Green I S. Vibro-acoustic FE analysis of the SAAB 2000 aircraft. Proceedings of the 4th NASA/SAE/DLR Aircraft Interior Noise Workshop-NASA Conference Publication 10103, edited by Stephens, D.G. Friedrichshafen,1992:47-69
    [17]. Shorter P J, Gardner B K and Bremner P G. a review of mid frequency methods for automotive structure borne noise.2003 SAE International
    [18].Harari I, Avraham D. High-order finite element methods for acoustic problems. Journal of Computational Acoustics,1997,5:33-51
    [19].Dey S, Datta D K, Shirron J J, Shephard M. S. p-Version FEM for structural acoustics with a posteriori error estimation. Computer Methods in Applied Mechanics and Engineering,2006,195:1946-1957
    [20].Bouillard P, Ihlenburg F. Error estimation and adaptivity for the finite element method in acoustics:2D and 3D applications. Computer Methods in Applied Mechanics and Engineering,1999,176:147-163
    [21].Bartsch G, Wulf C. Adaptive multigrid for Helmholtz problems. Journal of Computational Acoustics,2003,11:341-350
    [22].Oden J T, Prudhomme S, Demkowicz L. A posteriori error estimation for acoustic wave propagation. Archives of Computational Methods in Engineering,2005,12: 343-390
    [23].Zienkiewicz O C. The background of error estimation and adaptivity in finite element computations. Computer Methods in Applied Mechanics and Engineering,2006,195: 207-213.
    [24].Burnett D S.3D Structural acoustic modeling with hp-adaptive finite elements. In Proceedings of the XXI International Congress of Theoretical and Applied Mechanics ICTAM, Warsaw, Poland,2004
    [25].Rachowicz W, Pardo D, Demkowicz L. Fully automatic hpadaptivity in three dimensions. Computer Methods in Applied Mechanics and Engineering,2006,195, 37-40:4816-4842
    [26].Challa, S. High-order accurate spectral elements for wave propagation problems. Master's thesis, Clemson University, Mechanical Engineering Department,1998
    [27].Thompson L L, Kunthong P. A residual based variational method for reducing dispersion error in finite element methods. In Proceedings of the 2005 ASME International Mechanical Engineering Congress and Exposition, Orlando, Florida, USA, IMECE2005-80551,2005
    [28].Guddati M N, Yue B. Modified integration rules for reducing dispersion error in finite element methods. Computer Methods in Applied Mechanics and Engineering,2004,193:275-287
    [29].Saad Y. Iterative methods for sparse linear systems (second ed.), SIAM,2003
    [30].Erhel J. Iterative solvers for large sparse linear systems. Seminar notes, University of Neuchtel, Swiss,2001
    [31].Mazzia A, Pini G. Numerical performance of preconditioning techniques for the solution of complex sparse linear systems. Communications in Numerical Methods in Engineering,2003,19:37-48
    [32].Pardo D, Demkowicz L. Integration of hp-adaptivity and a two grid solver for elliptic problems. Computer Methods in Applied Mechanics and Engineering,2006,195: 674-710.
    [33].Craig Jr. Structural Dynamics:An Introduction to Computer Methods. John Wiley& Sons, New York Chichester Brisbane Toronto Singapore,1981
    [34].Bennighof J K, Kaplan M F, Muller M B, Kim M. Meeting the NVH Computational Challenge:Automated Multi-Level Substructuring. In Proceedings of the International Modal Analysis Conference ⅩⅧ (IMAC18), San Antonio, USA,2000: 909-915.
    [35].Kropp A, Heiserer D. Efficient broadband vibro-acoustic analysis of passenger car bodies using an FE-based component mode synthesis approach. Journal of Computational Acoustics,2003,11:139-157
    [36].Stryczek R, Kropp A, Wegner S. Vibro-acoustic computations in the mid-frequency range:efficiency, evaluation and validation. In Proceedings of the International Conference on Noise and Vibration Engineering ISMA2004, Leuven, Belgium,2004: 1603-1612.
    [37].Farhat C, Macedo A, Lesoinne M et al. Two-level domain decomposition methods with Lagrange multipliers for the fast iterative solution of acoustic scattering problems. Computer Methods in Applied Mechanics and Engineering,2000,184: 213-239
    [38].Benamou J D, Depres B. A domain decomposition method for the Helmholtz equation and related optimal control problems. Journal of Computational Physics, 1997,136:68-82
    [39].Farhat C, Li J. An iterative domain decomposition method for the solution of a class of indefinite problems in computational structural dynamics. Applied Numerical Mathematics,2005,54:150-166
    [40].Mandel J. An iterative substructuring method for coupled fluid-solid acoustic problems. Journal of Computational Physics,2002,177:95-116
    [41].Datta D K, Dey S, Shirron J J. Scalable Three-Dimensional Acoustics Using hp-finite/infinite elements and FETI-DP. In Proceedings of the 16th International Domain Decomposition Conference (DDM16), New York, USA,2005
    [42]. Goran E. Sandberg,Per-Anders Hansson and Mats Gustavsson.Domain decomposition in acoustic and structure-acoustic analysis.Computer Methods in Applied Mechanics and Engineering,2001,190:2979-2988.
    [43].Harari I, Hughes T J R. Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains. Computer Methods in Applied Mechanics and Engineering,1992b,98:411-454
    [44].Harari I, Magoules F. Numerical investigations of stabilized finite element computations for acoustics. Wave Motion,2004,39:339-349
    [45].Babuska I M, Sauter S A. Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers. SIAM Journal on Numerical Analysis,1997,34:2392-2423
    [46].Yue B, Guddati M N. Highly accurate local mesh-dependent augmented galerkin (L-MAG) FEM for simulation of time-harmonic wave propagation.In Proceedings of the 16th ASCE Engineering Mechanics Conference, University of Washington, Seattle, USA,2003
    [47].Strouboulis T, Babuska I, Copps K. The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering,2000,181:43-69
    [48].Laghrouche O, Bettess P. Short wave modelling using special finite elements. Journal of Computational Acoustics 2000,8:189-210
    [49].Melenk J M, Babuska I. The partition of unity finite element method:basic theory and applications. Computer Methods in Applied Mechanics and Engineering,1996, 139:289-314
    [50].Bettess P, Shirron J, Laghrouche O, et al. A numerical integration scheme for special finite elements for the Helmholtz equation. International Journal for Numerical Methods in Engineering,2003,56:531-552
    [51].Ortiz P, Sanchez E. An improved partition of unity finite element method for diffraction problems. International Journal for Numerical Methods in Engineering, 2001,50:2727-2740
    [52].Perrey-Debain E, Trevelyan J, Bettess P. Wave boundary elements:a theoretical overview presenting applications in scattering of short waves. Engineering Analysis with Boundary Elements,2004,28:131-141
    [53].Belytschko T, Krongauz Y, Organ D, et al. Meshless methods:An overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 1996,139:3-47
    [54].Bouillard P, Suleau S. Element-Free Galerkin solutions for Helmholtz problems: formulation and numerical assessment of the polution effect. Computer Methods in Applied Mechanics and Engineering,1998,162:317-335
    [55].Suleau S, Deraemaeker A, Bouillard P. Dispersion and pollution of meshless solutions for the Helmholtz equation. Computer Methods in Applied Mechanics and Engineering,2000,190:639-657
    [56].Lacroix D, Bouillard P. Improved sensitivity analysis by a coupled FE-EFG method. Computers and Structures,2003,81:2431-2439
    [57].Bouillard P, Lacroix V, De Bel E. A wave-oriented meshless formulation for acoustical and vibro-acoustical applications. Wave Motion,2004,39:295-305
    [58].Franca L, Farhat C, Macedo A, Lesoinne M. Residual-free bubbles for Helmholtz equation. International Journal for Numerical Methods in Engineering,1997,40: 4003-4009
    [59].Cipolla J L. Subgrid modeling in a Galerkin method for the Helmholtz equation. Computer Methods in Applied Mechanics and Engineering,1999,177:35-49
    [60].Farhat C, Harari I, Franca L P. The discontinuous enrichment method. Computer Methods in Applied Mechanics and Engineering,2001,190:6455-6479
    [61].Farhat C, Harari I, Hetmaniuk U. The discontinuous enrichment method for multiscale analysis. Computer Methods in Applied Mechanics and Engineering, 2003b,192:3195-3209
    [62].Farhat C, Harari I, Hetmaniuk U. A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency range. Computer Methods in Applied Mechanics and Engineering,2003a,192:1389-1419
    [63].Tezaur R, Farhat C. Three-dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid-frequency Helmholtz problems. International Journal for Numerical Methods in Engineering,2006,66: 796-815
    [64].Ladeveze P, Arnaud L. A new computational method for structural vibrations in the medium frequency range. Computer Assisted Mechanics and Engineering Sciences, 2000,7:219-26
    [65].Ladeveze P, Arnaud L, Rouch P et al. The variational theory of complex rays for the calculation of medium-frequency vibrations. Engineering Computations,2001,18 (1/2):193-21
    [66].Ladeveze P, Arnaud L, Rouch P et al. A multiscale computational method for medium-frequency vibrations of assemblies of heterogeneous plates. Computers and Structures,2003,81:1267-1276
    [67].Ladeveze P, Nouy A. On a multiscale computational strategy with time and space homogenization for structural mechanics. Computer Methods in Applied Mechanics and Engineering,2003,192:3061-3087
    [68].Philippe Rouch, Pierre Ladeveze. The variational theory of complex rays:a predictive tool for medium-frequency vibrations. Computer Methods in Applied Mechanics and Engineering,2003,192:3301-3315
    [69].Riou, H., P. Ladeveze and P. Rouch. Extension of the variational theory of complex rays to shells for medium-frequency vibrations. Journal of Sound and Vibration,2004, 272:341-360
    [70].Ladeve'ze P, Riou H. Calculation of medium-frequency vibrations over a wide frequency range. Computer Methods in Applied Mechanics and Engineering,2005, 194:3167-3191
    [71].Riou H, Ladeveze P. A multiscale computational approach for structural and acoustic medium-frequency vibrations. In Proceedings of the twelfth International Congress on Sound and Vibration (ICSV12), Lisbon, Portugal, pp. CDrom.2005
    [72].Rouch P, Ladeveze P. The variational theory of complex rays:a predictive tool for medium-frequency vibrations. Computer methods in applied mechanics and engineering,2003,192:3301-3315
    [73].Maxit L. Extension et reformulation de modele SEA par la prise en compte de la repartition des energies modales. Ph.D. Thesis, Institut National des Sciences Appliquees de Lyon, France,2000
    [74].Mace B R. Statistical energy analysis, energy distribution models and system modes. Journal of Sound and Vibration,2003,264:391-409
    [75].Christophe P, Matthew P C.Statistical Energy Methods for Mid-Frequency Vibration Transmission Analysis. SAE,1997
    [76].Soize C. A model and numerical method in the medium frequency range for vibroacoustic predictions using the theory of structural fuzzy, Journal of the Acoustical Society of America,1993,94:849-865
    [77].Soize C. Reduced models for structures in the medium-frequency range coupled with internal acoustic cavities, Journal of the Acoustical Society of America,1999,106: 3362-3374
    [78].Ohayon R. and Soize C. Structural Acoustics and Vibration-Mechanical Models, Variational Formulations and Discretization (Academic Press, San Diego),1998
    [79].Langley R.S., Bremner P. A hybrid method for the vibration analysis of complex structuralacoustic systems, Journal of the Acoustical Society of America,1999,105: 1657-1671
    [80]. Shorter P J, Gardner B K, Bremner P G.A hybrid method for full spectrum noise and vibration prediction, Proc. of WCCM V-Fifth World Congress on Computational Mechanics (Vienna,2002)
    [81].Gardner B K, Shorter P J, Bremner P G. An application of the resound mid-frequency method to structural-acoustic radiation, Proc. of ICSV 9 (Orlando,2002)
    [82].Zhao X and Nickolas V. A hybrid finite element formulation for mid-frequency analysis of systems with excitation applied on short members. Journal of Sound and vibration,2000,237(2):181-202
    [83].Zhao X.A basic development of a hybrid finite element method for mid-frequency computations of structural vibrations[dissertation].America:University of Michigan, 2000
    [84].Vlahopoulos N. and Zhao X. An investigation of power flow in the mid-frequency range for systems of co-linear beams based on a hybrid finite element formulation. Journal of Sound and vibration,2001,242(3):445-473
    [85].Zhao X, Vlahopoulos N. A basic hybrid finite element formulation for mid-frequency analysis of beams connected at an arbitrary angle. Journal of Sound and Vibration, 2004,269:135-164
    [86]. Sang Bum Hong.Hybrid finite element developments for vibroacoustic analysis of vehicle systems in the mid-frequency range[dissertation].America:University of Michigan,2004
    [87].Shorter P J, Langley R S. On the reciprocity relationship between direct field radiation and diffuse reverberant loading. Journal of the Acoustical Society of America,2005,117:85-95.
    [88].Shorter P J, Langley R S. Vibro-acoustic analysis of complex systems. Journal of Sound and Vibration,2005,288:669-699.
    [89]. Junger M C, Feit D. Sound, Structures and Their Interaction, The MIT Press, Cambridge, Massachusetts, London,1972
    [90]. Wolf J P, Song C. Finite Element Modelling of Unbounded Media, Wiley, Chichester,1996.
    [91]. Coyette J P. Validation of a new wave envelope formulation for handling exterior acoustic and elasto-acoustic problems in the frequency domain, in:DGLR (Ed.), Proceedings of the DGLR/AIAA
    [92]. Keller J B, Givoli D. Extracting non-reFecting boundary conditions, J. Comput. Phys,1998,143 (1):200-223
    [93]. Astley R J, Macaulay G J, Coyette J P, Cremers L. Three-dimensional wave-envelope elements of variable order for acoustic radiation and scattering. Part Ⅰ:formulation in the frequency domain. Journal of the Acoustical Society of America,1998,103 (1):49-63
    [94]. Ihlenburg F, Babuska I. Finite element solution to the Helmholtz equation with high wavenumber-part Ⅰ:the h-version of the FEM, Computer Methods in Applied Mechanics and Engineering,1995,30:9-37
    [95]. Coyette J P. Validation of a new wave envelope formulation for handling exterior acoustic and elasto-acoustic problems in the frequency domain, Proceedings of the DGLR/AIAA 14th Aeroacoustics Conference, edited by DGLR, (Aachen,1992), 421-427
    [96]. Bayliss A, Turkel E. Radiation boundary conditions for wave-like equations, Communications on Pure and Applied Mathematics,1980,33:707-725
    [97]. Bayliss A, Gunzburger M, Turkel E. Boundary conditions for the numerical solution of elliptic equations in exterior regions, SIAM Journal on Applied Mathematics, 1982,42:430-450
    [98]. Bossut R, Decarpigny J N. Finite element modeling of radiating structures using dipolar damping elements. Journal of the Acoustical Society of America,1989,86: 1234-1244
    [99]. Assaad J, Decarpigny J N, Bruneel C, et al. Application of the finite element method to two-dimensional radiation problems. Journal of the Acoustical Society of America,1993,94:562-573
    [100]. Assaad J, Bruneel C, Rouvaen J M, et al. An extrapolation method to cornpute far-field pressures from near-field pressures obtained by finite element method, Proceedings of the 1995 Design Engineering Technical Conferences (Boston,1995), Vol.3-part B ASME 1995:185-190
    [101]. Pinsky PM, Thompson L L, Abboud N N. Local high-order radiation boundary conditions for the two-dimensional time-dependent structural acoustics problem. Journal of the Acoustical Society of America,1992,91:1320-1335
    [102]. Harari I, Hughes T J R. Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains. Computer Methods in Applied Mechanics and Engineering,1992,98: 411-454
    [103]. Thompson L L. A multi-field space-time finite element method for structural acoustics, Proceedings of the 1995 Design Engineering Technical Conferences (Boston,1995), Vol.3-part B ASME 1995,49-64
    [104]. Allik H, Dees R.N, Moore S W. Efficient structural acoustic analysis using finite and infinite elements, Proceedings of the 1995 Design Engineering Technical Conferences (Boston,1995), Vol.3-part B ASME 1995,87-95
    [105]. Burnett D S. A three dimensional acoustic infinite element based on a prolate spheroidal multipole expansion. Journal of the Acoustical Society of America,1994, 96:2798-2816
    [106]. Bettess P. Infinite Elements, PenshawPress, Sunderland,1992
    [107]. Astley R J. Infinite elements for acoustics, Proceedings of the 6th International Congress on sound and Vibration, Copenhagen, Denmark,1999:523-538
    [108]. Astley R J, Coyette J P. Conditioning of infinite element schemes for wave problems. International Journal for Numerical Methods in Engineering,2001,17: 31-37
    [109]. Pluymers B, Desmet W, Vandepitte D. Application of an efficient wave-based prediction technique for the analysis of vibro-acoustic radiation problems,14th Aeroacoustics Conference, Aken, Germany,1992:421-427
    [110]. Cremers L, Fyfe KR, Sas P. A variable order infinite element for multi-domain boundary element modelling of acoustic radiation and scattering. Journal of Applied Acoustics,2000,59:185-220
    [111]. Desmet W. A wave based prediction technique for coupled vibro-acoustic analysis, KULeuven, Division PMA, Ph.D. Thesis 98D12,1998
    [112]. Banjeree PK, Butterfield R. Boundary Element Methods in Engineering Science, McGraw-Hill, London,1981
    [113]. Givoli D, Patlashenko I, Keller J B. High-order boundary conditions and finite elements for infinite domains. Computer Methods in Applied Mechanics and Engineering,1997,143:13-39
    [114]. Astley R J. Wave envelope and infinite elements for acoustic radiation. International Journal for Numerical Methods in Fluids,1983,3:507-526
    [115]. Wilton D T. Acoustic radiation and scattering from elastic structures. International Journal for Numerical Methods in Engineering,1978,13:123-138
    [116]. Mathews I C. Numerical techniques for three-dimensional steady-state fluid-structure interaction. Journal of the Acoustical Society of America,1986,79: 1317-1325
    [117]. Everstine G C. A symmetric potential formulation for fluid-structure interactions. Journal of Sound and Vibration,1981,79:157-160
    [118]. Everstine G C, Henderson F M. Coupled finite element/boundary element approach for fluid-structure interaction. Journal of the Acoustical Society of America, 1990,87:1938-1947
    [119]. Kirkup S. The Boundary Element Method in Acoustics, Integrated Sound Software,1998
    [120]. Herrera I. Boundary Methods:an Algebraic Theory, Pitman Adv. Publ. Program, London,1984
    [121]. Trefftz E. Ein Gegenst "uck zum Ritzschen Verfahren. Proceedings of the 2nd International Congress on Applied Mechanics, Zurich, Switzerland,1926:131-137
    [122]. Pluymers B, Desmet W, Vandepitte D. Application of the wave based prediction technique for the analysis of the coupled vibro-acoustic behaviour of a 3D cavity, Proceedings of the International Conference on Noise and Vibration Engineering ISMA2002, Leuven, Belgium,2002:891-900.
    [123]. Pluymers B, Hal B, Desmet W, et al. A Wave Based prediction technique for coupled structural-acoustic radiation problems.Fifth World Congress on Computational Mechanics July 7-12,2002, Vienna, Austria
    [124]. Hepberger A, Priebsch H H, Desmet W, et al. Application of the deterministic wave based prediction technique for the steady state response of a car cavity up to 1 kHz, Proc. of ISMA Conference Leuven,2002
    [125].姚昊萍,张建润,陈南等.弹性长方体封闭结构腔声辐射建模与分析.东南大学学报(自然科学版),2005,06:889-893
    [126]. 姚昊萍,张建润,陈南等.封闭弹性长方体与柱状体连接结构的辐射声场分析.振动与冲击,2007,08:125-131
    [127]. Rao Z S, Luo C, Zhao M. The analysis of structural-acoustic coupling of an irregular enclosure under the excitation of point force and PVDF. Journal of Vibration and Acoustic,2007; 129:202-208
    [128]. 姚昊萍,张建润,陈南等.不同边界条件下的封闭矩形声腔的结构一声藕合分析.声学学报,2007,11:497-502
    [129]. 靳国永,杨铁军,刘志刚等.弹性板结构封闭声腔的结构-声耦合特性分析.声学学报,2007;32(2):178-188
    [130]. 罗超,饶柱石,赵玫.基于格林函数法的封闭声腔的结构-声耦合分析.振动工程学报,2004;17(3):296-300
    [131]. 罗超,饶柱石,赵玫.非规则声腔的结构-声耦合分析.振动与冲击,2006;25(1):64-66
    [132]. Wu J H, Chen H L, Hu X L. Method to calculate interior sound field of arbitrary-shaped closed thin shell. Acta Acustica,2000; 25:468-471
    [133]. 吴九汇,陈花玲,胡选利.任意形状封闭薄壳内部声场计算的一种新方法研究.声学学报,2000,05:468-471
    [134].吴九汇,陈花玲,黄协清.复杂形状封闭薄壳内部存在散射体时的内部散射声场计算.声学学报,2001,04:307-310
    [135]. 吴九汇,王耀俊,陈花玲.双层弹性-非弹性封闭腔体的内部声场研究.振动工程学报,2003,01:29-35
    [136]. Zienkiewicz O, Kelly D, Bettess P. Marriage'a la mode-The Best of Both Worlds (Finite Elements and Boundary Integrals). In E. Y. Rodin, R. Glowinski, and O. C. Zienkiewicz (Eds.), Energy Methods in Finite Element Analysis. John Wiley& Sons,1978
    [137]. Teixeira de Freitas J. Hybrid-Trefftz displacement and stress elements for elastodynamic analysis in the frequency domain. Computer Assisted Mechanics and Engineering Sciences,1997,4:345-368.
    [138]. Teixeira de Freitas J. Hybrid finite element formulation for elastodynamic analysis in the frequency domain. International Journal of Solids and Structures,1998, 36:1883-1923.
    [139]. Teixeira de Freitas J, Cisma sC. Hybrid-Trefftz displacement element for spectral analysis of bounded and unbounded media. International Journal of Solids and Structures,2003,40:671-69
    [140]. Farhat C, Harari I, Hetmaniuk U. A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime. Computer methods in applied mechanics and engineering,2003,192: 1389-1419.
    [141]. Farhat C, Harari I, Hetmaniuk U. The discontinuous enrichment method for multiscale analysis. Computer methods in applied mechanics and engineering,2003, 192:3195-3209.
    [142]. Stojek M. Finite T-elements for the Poisson and Helmholtz equations. Ph. D. thesis,'Ecole Polytechnique F'ed'eral de Lausanne, Lausanne,1996
    [143]. Arnaud L, Ladev'eze P, Blanz'e C. First application of the variational theory of complex rays to forced vibrations of plates in the medium-frequency range. In B. Topping (Ed.), Computational Mechanics:Techniques and Developments,2000: 121-128.
    [144]. Ladeveze, P, Arnaud L, Rouch P, et al. The variational theory of complex rays for the calculation of medium-frequency vibrations. Engineering Computations,2001, 18:193-214.
    [145]. Ladeveze P, Rouch P, Riou H, et al. Analysis of medium-frequency vibrations in a frequency range. Journal of Computational Acoustics,2003,11:255-283.
    [146]. Rouch P, Ladeveze P. The variational theory of complex rays:a predictive tool for medium-frequency vibrations. Computer methods in applied mechanics and engineering,2003,192,3301-3315.
    [147]. Stein E. Die Kombination des modifizierten Trefftzschen Verfahrens mit der Methode der finiten Elemente. In Finite Elemente in der Statik,1973:172-185.
    [148]. Ruoff G. Die praktische Berechnung der Kopplungsmatrizen bei der Kombination der Trefftzschen Methode und der Methode der finiten Elemente bei flachen Schalen. In Finite Elemente in der Statik,1973:242-259.
    [149]. Jirousek J, Wr'oblewski W. T-elements:State of the Art and Future Trends. Archives of Computational Methods in Engineering-State of the art reviews,1996,3: 323-434.
    [150]. Babuska, I. The Finite Element Method with Lagrangian Multipliers. Numerische Mathematik,1973,20:179-192.
    [151]. Babuska I, Ihenburg F, Paik E, et al. A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution. Computer methods in applied mechanics and engineering,1995,128:325-359.
    [152]. Brezzi F, Fortin M. Mixed and hybrid finite element methods, Volume 15 of Springer series in computational mathematics. Springer,1991
    [153]. Dominguez J. Boundary Elements in Dynamics, Computational Mechanics Publications, Southampton, UK,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700