用户名: 密码: 验证码:
三种调节昆虫免疫应答的新型serpin的分离纯化及生物学功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与人类的凝血途径和补体系统同理,许多昆虫的免疫应答由丝氨酸蛋白酶(serine protease, SP)级联介导,如黑化反应和Toll信号通路等。过度产生免疫应答会对宿主造成自身伤害,所以对激活免疫应答的上游信号进行精确调节至关重要。Serpin(serine protease inhibitor)是蛋白酶抑制因子中最大也是最重要的超家族,serpin使用自杀底物原理与靶酶形成稳定的共价复合物,导致靶酶失活。大量研究证实serpin参与脊椎动物中多种SP级联的活性调控,但对于serpin调节无脊椎动物的先天免疫应答的具体分子机理,我们仍然所知甚少,其原因主要是难以确定serpin的天然特异靶酶。
     最近,本实验室报导了黄粉虫中的由三种SP组成的级联反应可以特异的激活Toll信号通路和黑色素合成。利用以上三种SP,我们从黄粉虫血淋巴中成功的检测到并纯化了三种新型的serpin,根据在SDS-PAGE胶上显示的分子量将它们分别命名为SPN40、SPN55和SPN48。
     下一步我们克隆了新型serpin的cDNA序列,三种serpin的核苷酸序列在Genbank的登陆号分别是AB514563、AB514564和AB514565。这些serpin与Toll信号通路中的三种上游SP形成特异的复合物,如SPN40-MSP (Modular Serine Protease), SPN55-SAE(Spatzle-processing enzyme-Activating Enzyme)和SPN48-SPE (Spatzle-Processing Enzyme)三种配对。我们测定了靶酶在serpin的RCL(Reactive Center Loop)上的特异水解位点,出乎意料的是SPN55和SPN48分别在Tyr和Glu被特异水解,不符合它们的靶酶SAE和SPE的胰蛋白酶活性特点,这种现象归因于以上serpin使用外识别位点的机制增强自身的靶酶特异性。
     在向黄粉虫中注射入Toll受体的天然配基Spatzle后,血淋巴中的SPN40和SPN55的含量大幅增加,说明了在Toll被激活后产生的细胞内信号能够诱导相关serpin的表达,大量的SPN40和SPN55以负反馈的机理从细胞进入血淋巴并阻断上游信号的传递。
     体外活性重建实验证实了三种serpin可以共同阻断SP级联的信号传递,注射三种serpin混合物能够明显的抑制由β-1,3葡聚糖诱导的黑化反应并增加黄粉虫在黑化反应下的存活率。
     综上所述,本研究发现并证实了三种新型serpin特异的调节昆虫的两种主要免疫应答Toll信号通路和黑化反应。在国际上对Toll信号通路的研究中首次阐明了完整的serpin-SP的配对关系,证实了本领域研究中对昆虫SP级联的每步反应都受到抑制因子精确调控的假想。
Analogous to blood coagulation and complement system in human, many insect defense responses such as melanin biosynthesis and Toll pathway signaling are mediated by serine proteinase (SP) cascades, however, excessive activation of the immune response is harmful to host tissues and cells, thus, a precise negative regulation of the upstream signal is extremely critical for host surviving. Serpins (serine protease inhibitors) are the largest and most important superfamily of protease inhibitors, they act as suicide substrates by binding covalently to their target proteases, leading inactivation of activity. As we known, SP cascades are usually regulated by the serpins in vertebrates, however, the mechanisms of how serpins regulate the innate immune responses of invertebrates are not well understood due to the uncertainty of the identity of the serine proteases targeted by the serpins.
     We recently reported the molecular activation mechanisms of three serine protease mediated Toll and melanin synthesis cascades in a large beetle, Tenebrio molitor. By using these SPs, we detected and purified three novel serpins from the hemolymph of T. molitor, according their molecule sizes on SDS-PAGE gel, we named them SPN40, SPN55 and SPN48, respectively.
     We then cloned the serpin genes. The nucleotide sequence of serpins has been submitted to Genbank with accession numbers of AB514563, AB514564 and AB514565. These serpins made specific serpin-SP pairs with three Toll cascade-activating serine proteases:such as SPN40-MSP (Modular Serine Protease), SPN55-SAE (Spatzle-processing enzyme-Activating Enzyme), and SPN48-SPE (Spatzle-Processing Enzyme). we determined cleavage sites of each serpin on their reactive center loops (RCL). Unexpectedly, SPN55 and SPN48 were cleaved at Tyr and Glu residues in RCL, respectively, despite being targeted by trypsin-like SAE and SPE。
     The levels of SPN40 and SPN55 were dramatically increased in vivo by the injection of a Toll-ligand, processed Spatzle, into Tenebrio larvae. This increase in SPN40 and SPN55 levels indicates that these serpins function as inducible negative feedback inhibitors.
     Results of in vitro reconstitution experiment suggest three serpins cooperatively blocked the Toll signaling cascade, furthermore, injection of three serpins into Tenebrio larvae inhibitedβ-1, 3-glucan mediated melanin biosynthesis in vivo.
     Taken together, these results demonstrate the specific regulatory evidences of innate immune responses by three novel serpins, This is the first determination and functional study of specific SP-serpin pairs that are directly involved in the regulation of the pattern recognition protein-dependent Toll signaling cascade.
引文
[1]Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, GettinsPG, et al. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition,novel functions, and a revised nomenclature. J Biol.Chem,2001,276:33293-33296.
    [2]Irving JA, Steenbakkers PJ, Lesk AM, Op den Camp HJ, Pike RN, Whisstock JC. Serpins in prokaryotes. Mol Biol Evol,2002,19:1881-1890.
    [3]Gettins, P.G. Serpin structure, mechanism, and function. Chem. Rev.2002,102,4751-4804
    [4]Irving, J.A. et al. Phylogeny of the serpin superfamily:implications of patterns of amino acid conservation for structure and function. Genome Res,2000,10:1845-1864
    [5]Ruby HP Law, Qingwei Zhang, Sheena McGowan, Ashley M Buckle, Gary A Silverman, Wilson Wong, Carlos J Rosado, Chris G Langendorf, Rob N Pike, Philip I Bird and James C Whisstock. An overview of the serpin superfamily. Genome Biology,2006,7:216
    [6]Irving JA, Pike RN, Dai W, Bromme D, Worrall DM, Silverman GA, et al. Evidencethat serpin architecture intrinsically supports papain-like cysteine protease inhibition:engineering alpha(1)-antitrypsin to inhibit cathepsin proteases. Biochemistry,2002,41:4998-5004.
    [7]Pemberton PA, Stein PE, Pepys MB, Potter JM, Carrell RW. Hormone binding globulins undergo serpin conformational change in inflammation. Nature,1988,336:257-258
    [8]Nagata K. Hsp47:a collagen-specific molecular chaperone. Trends Biochem Sci.1996,21:22-26.
    [9]Zou Z, Anisowicz A, Hendrix MJ, Thor A, Neveu M, Sheng S, et al. Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science,1994,263:526-529.
    [10]Elliott PR, Lomas DA, Carrell RW, Abrahams JP. Inhibitory conformation of the reactive loop of al-antitrypsin. Nat. Struct. Biol,1996,3:676-81
    [11]Huntington JA, Read RJ, Carrell RW. Structure of a serpin-protease complex shows inhibition by deformation. Nature,2000,407:923-6.
    [12]Huntington JA. Shape-shifting serpins-advantages of a mobile mechanism. Biochem Sci Trends,2006,3: 427-35.
    [13]Dementiev A, Petitou M, Herbert JM, et al. The ternary complex of antithrombin-anhydrothrombin-heparin reveals the basis of inhibitor specificity. Nat Struct Mol Biol,2004,11:863-7.
    [14]Bock PE, Olsen ST, Bjork I. Inactivation of thrombin by antithrombin is accompanied by inactivation of regulatory exosite I. J Biol Chem,1997,272:19837-145
    [15]Huntington JA. Mechanisms of glycosaminoglycan activation of the serpins in hemostasis. J Thromb Haemost,2003,1:1535-49.
    [16]Johnson DJ, Langdown J, LiW, Luis SA, Baglin TP,Huntington JA. Crystal structure of monomeric native antithrombin reveals a novel reactive center loop conformation. J Biol Chem,2006,281:35478-86.
    [17]Janciauskiene S. Conformational properties of serine proteinase inhibitors (serpins) confer multiple pathophysiological roles. Biochim Biophys Acta,2001,1535:221-235
    [18]Huber R, Carrell RW. Implications of the three-dimensional structure of al-antitrypsin for structure and function of serpins. Biochemistry,1989,28:8951-8966.
    [19]Torpy DJ, Bachmann AW, Grice JE, Fitzgerald SP, Phillips PJ, Whitworth JA, Jackson RV. Familial corticosteroid-binding globulin deficiency due to a novel null mutation:association with fatigue and relative hypotension. J Clin Endocrinol Metab,2001,86:3692-3700.
    [20]Lomas DA, Evans DL, Finch JT, Carrell RW. The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature,1992,357:605-607.
    [21]Lomas DA, Finch JT, Seyama K, Nukiwa T, Carrell RW. Alpha 1-antitrypsin Siiyama (Ser53→Phe). Further evidence for intracellular loop-sheet polymerization. J Biol Chem,1993,268:15333-15335.
    [22]Lomas DA, Elliott PR, Sidhar SK, Foreman RC, Finch JT, Cox DW, Whisstock JC, Carrell RW. alpha 1-Antitrypsin Mmalton (Phe52-deleted) forms loop-sheet polymers in vivo. Evidence for the C sheet mechanism of polymerization. J Biol Chem,1995,270:16864-16870.
    [23]Lomas DA. Molecular mousetraps, alphal-antitrypsin deficiency and the serpinopathies. Clin Med,2005, 5:249-257.
    [24]Suzuki K, Deyashiki Y, Nishioka J, Toma K. Protein C inhibitonstructure and function. Thromb Haemost, 1989,61:337-342.
    [25]Torpy DJ, Bachmann AW, Gartside M, Grice JE, Harris JM, Clifton P, Easteal S, Jackson RV, Whitworth JA. Association between chronic fatigue syndrome and the corticosteroid-binding globulin gene ALA SER224 polymorphism. Endocr Res,2004,30:417-429.
    [26]Rau JC, Beaulieu LM, Huntington JA, Church FC. Serpins in thrombosis, hemostasis and fibrinolysis. J Thromb Haemost,2007,5:102-15
    [27]Miles LA, Plow EF, Donnelly KJ, Hougie C, Griffin JH. A bleeding disorder due to deficiency of alpha 2-antiplasmin. Blood,1982,59:1246-1251.
    [28]Miyata T, Nangaku M, Suzuki D, Inagi R, Uragami K, Sakai H, Okubo K, Kurokawa K. A mesangium-predominant gene, megsin, is a new serpin upregulated in IgA nephropathy. J Clin Invest,1998, 102:828-836.
    [29]Kim HS, Krege JH, Kluckman KD, Hagaman JR, Hodgin JB, Best CF, Jennette JC, Coffman TM, Maeda N, Smithies O. Genetic control of blood pressure and the angiotensinogen locus. Proc Natl Acad Sci USA,1995, 92:2735-2739.
    [30]De Marchi M, Jacot-Guillarmod H, Ressa TG, Carbonara AO. Hereditary angioedema:report of a large kindred with a rare genetic variant of C1-esterase inhibitor. Clin Genet.1973,4:229-236.
    [31]Refetoff S, Murata Y, Mori Y, Janssen OE, Takeda K, Hayashi Y.Thyroxine-binding globulin:organization of the gene and variants. Horm Res,1996,45:128-138.
    [32]Roberts TH, Marttila S, Rasmussen SK, Hejgaard J. Differential gene expression for suicide-substrate serine proteinase inhibitors (serpins) in vegetative and grain tissues of barley. J Exp Bot,2003,54:2251-2263
    [33]Fulton KF, Buckle AM, Cabrita LD, Irving JA, Butcher RE, Smith I, Reeve S, Lesk AM, Bottomley SP, Rossjohn J, Whisstock JC:The high-resolution crystal structure of a native thermostable serpin reveals the complex mechanism underpinning the stressed to relaxed transition. J Biol Chem,2005,280:8435-8442.
    [34]Kounnas MZ, Church FC, Argraves WS, Strickland DK. Cellular internalization and degradation of antithrombin III-thrombin, heparin cofactor II-thrombin, and alpha 1-antitrypsintrypsin complexes is mediated by the low density lipoprotein receptor-related protein. J Biol Chem,1996,271:6523-6529.
    [35]Makarova A, Mikhailenko I, Bugge TH, List K, Lawrence DA, Strickland DK. The low density lipoprotein receptor-related protein modulates protease activity in the brain by mediating the cellular internalization of both neuroserpin and neuroserpin-tissue-type plasminogen activator complexes. J Biol Chem,2003,278: 50250-50258.
    [36]Beauchamp NJ, Pike RN, Daly M, Butler L, Makris M, Dafforn TR, Zhou A, Fitton HL, Preston FE, Peake IR, Carrell RW:Antithrombins Wibble and Wobble (T85M/K):archetypal conformational diseases with in vivo latent-transition, thrombosis, and heparin activation. Blood 1998,92:2696-2706.
    [37]Lomas DA, Carrell RW. Serpinopathies and the conformational dementias. Nat Rev Genet,2002,3:759-768.
    [38]Huntington JA, Pannu NS, Hazes B, Read RJ, Lomas DA, Carrell RW. A 2.6 A structure of a serpin polymer and implications for conformational disease. J Mol Biol,1999,293:449-455.
    [39]Carrell RW, Stein PE:The biostructural pathology of the serpins. critical function of sheet opening mechanism. Biol Chem, Hoppe Seyler 1996,377:1-17.
    [40]Hopkins PC, Carrell RW, Stone SR. Effects of mutations in the hinge region of serpins. Biochemistry,1993, 32:7650-7657.
    [41]Skinner R, Abrahams JP, Whisstock JC, Lesk AM, Carrell RW, Wardell MR. the 2.6 A structure of antithrombin indicates a conformational change at the heparin binding site. J Mol Biol,1997,266:601-609.
    [42]Aulak KS, Pemberton PA, Rosen FS, Carrell RW, Lachmann PJ, Harrison RA. Dysfunctional C1-inhibitor(At), isolated from a type II hereditary-angio-oedema plasma, contains a P1'reactive centre' (Arg444->His) mutation. Biochem J,1988,253:615-618.
    [43]Schick C, Pemberton PA, Shi GP, Kamachi Y, Cataltepe S, Bartuski AJ, et al. Crossclass inhibition of the cysteine proteinases cathepsins K, L,and S by the serpin squamous cell carcinoma antigen 1:a kinetic analysis. Biochemistry.1998,37:5258-5266.
    [44]Dunstone MA, Dai W, Whisstock JC, Rossjohn J, Pike RN, Feil SC, Le Bonniec BF, Parker MW, Bottomley SP. Cleaved antitrypsin polymers at atomic resolution. Protein Sci,2000,9:417-420.
    [45]Gooptu B, Hazes B, Chang WS, Dafforn TR, Carrell RW, Read RJ, Lomas DA:Inactive conformation of the serpin alpha(1)-antichymotrypsin indicates two-stage insertion of the reactive loop. implications for inhibitory function and conformational disease. Proc Natl Acad Sci, USA 2000,97:67-72.
    [46]Ross, J. et al. Serine proteases and their homologs in the Drosophila melanogaster genome:an initial analysis of sequence conservation and phylogenetic relationships. Gene,2003,304,117-131
    [47]Lemaitre, B., and Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol.2007,25, 697-743
    [48]Michel, T., Reichhart, J. M., Hoffmann, J. A., and Royet, J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature,2001,414,756-759
    [49]Bischoff, V., Vignal, C., Boneca, I. G., Michel, T., Hoffmann, J. A., and Royet, J. Function of the drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nat. Immunol,2007,5, 1175-1180
    [50]Ferrandon, D., Imler, J. L., Hetru, C., and Hoffmann, J. A. The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat. Rev,2007, Immunol.7,862-874
    [51]Kan, H., Kim, C. H., Kwon, H. M., Park, J. W., Roh, K. B., Lee, H., Park, B. J. Zhang, R., Zhang, J., Soderhall, K., Ha, N. C., and Lee, B. L. Molecular control of phenoloxidase-induced melanin synthesis in an insect. J. Biol.Chem,2008,283,25316-25323
    [52]Kanost, M. R., Jiang, H., and Yu, X. Q. Comparative analysis of serine protease-related genes in the honey bee genome:possible involvement in embryonic development and innate immunity Immunol. Rev.2004,198, 97-105
    [53]Fujita, T. Evolution of the lectin-complement pathway and its role in innate immunity. Nat. Rev. Immunol, 2002,2,346-353
    [54]Park, J. W., Kim, C. H., Kim, J. H., Je, B. R., Roh, K. B., Kim, S. J., Lee, H. H., Ryu, J. H., Lim, J. H., Oh, B. H., Lee, W. J., Ha, N. C., and Lee, B. L. Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects. Proc. Natl. Acad. Sci. U.S.A.2007,104,6602-6607
    [55]Jiang R, Kim EH, Gong JH, Kwon HM, Kim CH, Ryu KH, Park JW, Kurokawa K, Zhang J, Gubb D, Lee BL. Three pairs of protease-serpin complexes cooperatively regulate the insect innate immune responses. J Biol Chem.2009,284:35652-35658
    [56]Kim, C. H., Kim, S. J., Kan, H., Kwon, H. M., Roh, K. B., Jiang, R., Yang, Y., Park, J. W., Lee, H. H., Ha, N. C., Kang, H. J., Nonaka, M., Soderhall, K., andLee, B. L. A three-step proteolytic cascade mediates the activation of the peptidoglycan-induced toll pathway in an insect. J. Biol. Chem.2008,283:7599-7607
    [57]Roh, K. B., Kim, C. H., Lee, H., Kwon, H. M., Park, J. W., Ryu, J. H., Kurokawa, K., Ha, N. C., Lee, W. J., Lemaitre, B., Soderhall, K., and Lee, B. L. Proteolytic cascade for the activation of the insect toll pathway induced by the fungal cell wall component. J. Biol. Chem,2009,284:19474-19481
    [58]Reichhart JM. Tip of another iceberg:Drosophila serpins. Trends Cell Biol.2005,15:659-665
    [59]Gettins, P. G., and Olson, S. T. Exosite determinants of serpin specificity. J. Biol. Chem.2009,284: 20441-20445
    [60]Levashina, E. A., Langley, E., Green, C., Gubb, D., Ashburner, M., Hoffmann, J. A., and Reichhart, J. M. Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science,1999,285: 1917-1919
    [61]Tong, Y., Kanost, M.R. Manduca sexta serpin-4 and serpin-5 inhibit the prophenoloxidase activation pathway. J. Biol. Chem.2005,280:14923-14931
    [62]Wang, Y., Jiang, H.. Purification and characterization of Manduca sexta serpin-6:aserine proteinase inhibitor that selectively inhibits prophenoloxidase-activating proteinase-3. Insect Biochem. Mol. Biol.2004,34, 387-395
    [63]Zhu, Y., Wang, Y., Gorman, M.J., Jiang, H., Kanost, M.R.. Manduca sexta serpin-3 regulates prophenoloxidase activation in response to infection by inhibiting prophenoloxidase-activating proteinases. J. Biol. Chem.2003,278,46556-46564
    [64]Hermann. S. Tricine-SDS-PAGE. Nature protocol.2006,1:16-21
    [65]Zou Z, Evans JD, Lu Z, Zhao P, Williams M, Sumathipala N, Hetru C, Hultmark D, Jiang H. Comparative genomic analysis of the Tribolium immune system. Genome Biology,2007,8:R177
    [66]Chris Rushlow. Dorsoventral Patterning:A Serpin Dispatch Pinned down at Last. Current Biology,2004,14, 16-R18.
    [67]Sun Hee Park, Rui Jiang, Shunfu Piao, Bing Zhang, Eun-Hye Kim, Hyun-Mi Kwon, Xiao Ling Jin, Bok Luel Lee, and Nam-Chul Ha.Crystal structure and molecular basis for a highly specific serpin SPN48 from the beetle Tenebrio molitor. J. Biol. Chem,2010
    [68]De Gregorio, E. et al. An immune-responsive Serpin regulate the melanization cascade in Drosophila. Dev. Cell.2002,3,581-592
    [69]K.S. Vinokurov. Diversity of digestive proteinases in Tenebrio molitor larvae.Comparative Biochemistry and Physiology,2006,145:126-137
    [70]Jules A Hoffmann. Innate immunity of insects. Current Opinion in Immunology,1995,7:4-10
    [71]Eric S. Loker, Coen M. Adema, Si-Ming Zhang, Thomas B. Kepler. Invertebrate immune systems-not homogeneous, not simple, not well understood. Immunological Reviews,2004,198,10-24
    [72]Medzhitov R, Preston-Hurlburt P, Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature,1997,388:394-397.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700