用户名: 密码: 验证码:
地下水保护理论及修复技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水超采易导致含水层疏干,引起地面沉降,诱发地裂缝活动等一系列的环境地质问题。西安市经过10年多的连续超采,问题尤为严重,开展地下水保护及修复是该区水资源可持续利用和地下水环境保护的一项亟待研究的课题。鉴于地下水脆弱性评价是地下水保护理论研究及修复区确定的基础,及目前水量修复研究较少的现状,本文对地下水保护与修复进行系统的研究。
     目前地下水脆弱性多对潜水水质的脆弱性进行评价,承压水及水量的脆弱性研究较少,且评价标准不统一,评价方法有待完善。减少地下水开采量,对脆弱性较高地区及地下水位降落漏斗地区的地下水位具有一定的修复作用,但修复速度较慢,尚需通过地下水回灌对其进行修复。而且,在短期数据系列情况下,地下水水位预测模型的研究亦有待深入。管井回灌为地下水回灌措施的一种,适用于无较大空地的城区地下水位修复。承压含水层的管井回灌研究处于试验阶段,其对地下水位的修复效果及地下水动力场的变化情况,尚需通过试验作进一步探讨,且目前缺乏成熟的回灌标准和计算的理论依据。为了解决地下水保护和修复中存在的上述问题,本文结合西安市地下水资源保护利用和地下水人工回灌研究课题,对地下水脆弱性内涵进行深入探讨,在分析确定地下水脆弱性评价标准体系及评价方法的基础上,进行地下水脆弱性评价,研究减少开采量及管井回灌对水量脆弱性地区及地下水位降落漏斗地区的修复效果等问题。通过理论研究和管井回灌试验验证,得出以下研究成果:
     1.通过分析现有的地下水脆弱性概念,提出了涵盖潜水和承压水、水量和水质的较全面的地下水脆弱性评价内涵,及相应的特点和评价原则;通过地下水水质分类实例验证了“W-F拓广定律”确定标准值的合理性,将其用于地下水脆弱性评价中指标标准的确定。
     2.提出了地下水脆弱性评价的新方法——基于“W-F拓广定律”的概率神经网络法,并将其应用到西安市地下水脆弱性评价中,与西安市实际情况及以往评价结果对比,该评价方法的优点表现为:避免了现有评价方法的主观性;不受地域性限制;评价范围更广,可进行承压水和潜水的水量、水质脆弱性评价;能够反映地下水系统的非线性关系;能够反映未来开采量和污染物排放负荷相同情况下,地下水的敏感程度和恢复能力;评价结果更符合实际情况。
     3.分析了西安市灞河、沣皂河、渭滨水源地及城郊自备井开采区的地下水位动态及其影响因素。选择降雨、蒸发、径流及人工开采量为地下水位预测模型的输入变量,地下水位为输出变量。对比分析Back-Propagation (BP)网络、径向基(RBF)网络及灰色模型的预测效果,得出径向基网络的拟合精度较好。在预测蒸发、降雨、径流及确定需减少的开采量的基础上,利用RBF模型对水源地减少开采量后,2006-2023年的地下水位进行了预测。结果表明:减少开采量对地下水位的短期修复效果不显著,应利用丰水期的地表余水进行人工回灌,加速地下水修复进程。RBF模型具有所需训练样本较少、拟合精度高、运算速度快、所需调整参数少、稳定性优、不会陷入局部极小、结果可靠,特别适合于短期数据系列的地下水位预测等优点。
     4.根据水量平衡原理,估算了2023年西安市城郊自备井开采区水位恢复至1984年水位,所需的回灌量约为3.25×108m3.该成果对西安市封停井工作的实施及地下水回灌的开展提供了技术参考依据。
     5.开展了地下水管井回灌的试验研究,建立了计算水位上升值的修正泰斯公式。利用自来水管网水,对西安市南郊承压水量高脆弱性区,即严重超采区,100-300m的中、细砂承压含水层进行了定流量加压回灌试验研究。结果表明:回灌井及观测井的水位上升值△h与lnt之间呈线性关系,可将加压回灌看作抽水的逆过程。单井加压回灌时,可用修正泰斯公式计算水位上升值。该公式可在理论上反映回灌井周围的水位上升与回灌量和时间的关系,对适宜回灌量和合理井距的确定提供了技术参考。同时得出回灌渗透系数随时间呈幂函数衰减,并小于抽水时渗透系数的规律,且小流量回灌的渗透系数衰减较慢,比大流量的回灌效果好。研究成果为在西安市范围内开展地下水人工回灌提供了理论基础和技术依据,也可为类似地区城市地下水回灌提供技术参考。
Groundwater overexploitation leaded to series of environmental and geological problems, such as aquifer draining, land subsidence, and inducing ground fissure. The problems are very serious in Xi'an after at least 10 years groundwater overexploitation. The research of groundwater protection and recovery is urgent for the sustainable use of water resources and groundwater environmental protection in Xi'an. As the groundwater vulnerability assessment was the base of groundwater protection theories and selecting the recovery region, furthermore the research of water quantity recovery was few. The groundwater protection and recovery were studied entirely in this paper.
     The existing research of groundwater vulnerability was more about assessing the unconfined water quality vulnerability; the vulnerability for confined water and quantity of water were few. The evaluation criterions were non-uniform and the methods needed to be perfect. Reducing the groundwater exploitation in high vulnerability region and groundwater depression cone was useful to the groundwater level recover, but the effect was not obvious. Artificial groundwater recharge was needed to raise the speed of recovery. The study of groundwater level prediction for short time data should be enhanced also. The well reinjection was another recovery technology and was suitable for groundwater level recovery for the regions with little bare area. The research of well reinjection to confined aquifer was also short. The recovery effect of well reinjection and the groundwater hydrodynamic field needed to be further studied. The mature standard and theory were scarce. For resolving the above problems, combining with the subject of groundwater protection and utilization and artificial groundwater recharge, the concept, criterion and method of groundwater vulnerability assessment was studied, the effect of reducing groundwater exploitation and carrying out well reinjection in high vulnerability regions and groundwater depression cone were researched. After theory research and well reinjection test verification, the results are as follows:
     1. The exiting concepts of groundwater vulnerability were analyzed. A more comprehensive concept was put forward, including the vulnerability of unconfined water, confined water, water quantity and quality. The character and assessment principle of groundwater vulnerability were presented. The rationality of Weber-Fechner expand law was test by an example for groundwater quality classify. The law was used at defined the groundwater vulnerability evaluation criterion.
     2. A new groundwater vulnerability assessment method was put forward, which was called Probabilistic Neural Network with W-F expand law method, the method combined Weber-Fechner expand law and Probabilistic Neural Network. The new method was used in Xi'an for groundwater vulnerability assessment. The assessment results were compared with the actual exploitation, water quality and the former assessment results. The new method results were more according with the actual situation. The PNN & W-F method avoided the subjectivity of present method, the determination of evaluation criterions was not restricted by the region, and the evaluation range was wider, the vulnerability of unconfined water, confined water, water quantity and quality could be evaluated. The new method could reflect the nonlinear relationship of groundwater, and the sensitive degree and recovery ability of groundwater under the same load of future exploitation and pollutant discharge.
     3. The dynamic groundwater level and its influence of 4 groundwater source region in Xi'an were deeply analyzed. The rainfall, evaporation, runoff and artificial exploitation were defined as the input of predict model, groundwater level was the output. The forecast results were compared among Back-Propagation Network, Radial Basis Function Neural Network and Gray model. The precision of Radial Basis Function Neural Network(RBF) was the highest. On the base of prediction for rainfall, evaporation and runoff, and determining the reducing exploitation value, the groundwater level was predicted by the optimal model RBF model. The result shows that the recovery effect of reducing exploitation was not obvious for short time. Artificial recharge should be done to improve the recovery speed, using the redundant surface water of wet season. The RBF model needs fewer data than other methods, the simulation precision was high, the computing speed was fast, the parameters needed to be adjusted were fewer, the predict result was reliable, the model was more steady, would not get into part minimum, and was very suitable to forecast the samples which had short-time data.
     4. Based on the water quantity balance principle, the needed quantity for artificial groundwater recharge was calculated. There were 3.25×108m3 water should be recharged to confined water for the groundwater level recovering to the level of 1984. The result supplies reference to carry out the project of artificial recharge, sealing well and stop overexploitation in Xi'an.
     5. The single well reinjection with pressure test was done. The formula for calculating the rise of water level was deduced and was called revised Theis formula. The water in tap-water supply was recharged to the medium sand, fine sand confined water for the cover depth of 100-300m at the south suburbs of Xi'an, where was the high water quantity vulnerability and serious overexploitation region. The result shows that the rise of water level of the reinjection well and observation well are linear with the lnt. The well reinjection could be regarded as the opposite process of water pumping. The rise of water level could be calculated by the revised Theis formula. This formula can inflect the relationship among the rise of water level, the quantity of water recharge and time. The suitable quantity of water recharge per unit time and influence radial could be calculated using the formula. The hydraulic conductivity for artificial groundwater recharge attenuated with time power function and the coefficient was smaller than the hydraulic conductivity for water pumping. When the quantity of water recharge per unit time was smaller, the attenuation of hydraulic conductivity was slower. The effect of small quantity of water recharge per unit time was better than the large. The results supplied theoretical and technological foundation for carrying out artificial groundwater recharge in Xi'an city, and also supplied technological reference for the similar region.
引文
[1]郑西来,吴新利,荆静.西安市潜水污染的潜在性分析与评价[J].工程勘察,1997,4(7):22-24
    [2]戴爽.西安大雁塔塔身回弹0.6毫米得益于地下水位回升[EB/OL], http://gb.cri.cn/27824/2009/12/04/3365s2695756.htm,2009-12-04
    [3]周维博,施埛林,杨路华.地下水利用[M].北京:中国水利水电出版社,2007:230-236
    [4]李佩成.论自流灌区的节水与养水[J].灌溉排水,2000,19(1):12-15
    [5]周维博.农田灌溉中节水与养水的哲理思考[J].节水灌溉,2000(1):4-5
    [6]Cohen R.M.. Method for Monitoring Pump-and-treat Performance[R]. R.S.Kerr Environmental Research Laboratory,Ada,OK,1994:102-115
    [7]吴玉成.治理地下水有机污染抽出处理技术影响因素分析[J].水文地质工程地质,1998,42(1):27-28
    [8]何文双.硝基苯污染地下水的修复技术研究[D]. 长春:吉林大学,2007
    [9]顾莹莹.海绵铁作为渗透反应墙介质还原地下水中硝酸盐的试验研究[D].青岛:中国海洋大学,2006
    [10]陈曜.垃圾堆放场地下水中硝酸盐污染原位修复模拟研究[D].合肥:合肥工业大学,2007
    [11]邢林.去除地下水中硝酸盐的方法研究[D].合肥:合肥工业大学,2008
    [12]陈锋,王业耀,孟凡生.重金属污染土壤和地下水电动修复技术研究[J].中国资源综合利用,2008,5(2):32-34
    [13]张文静.垃圾渗滤液污染物在地下环境中的自然衰减及含水层污染强化修复方法研究[D].长春:吉林大学,2007
    [14]冉德发,王建增.石油类污染地下水的原位修复技术方法论述[J].探矿工程(岩土钻掘工程),2005(增刊):206-208
    [15]郑艳梅,李鑫钢,王战强,等.AS技术修复MTBE污染地下水的传质研究[J].农业环境科学学报,2005,24(3):503-505
    [16]郭孟卓,赵辉.世界地下水资源利用与管理现状[J].中国水利,2005(3):59-62
    [17]王焰新.地下水污染与防治[M].北京:高等教育出版社,2007
    [18]杨梅,费宇红.地下水污染修复技术的研究综述[J].勘察科学技术,2008,48(4):12-16
    [19]雷静.地下水环境脆弱性的研究[D].北京:清华大学,2002
    [20]孙才志,潘俊.地下水脆弱性的概念、评价方法与研究前景[J].水科学进展,1999,10(4):444-449
    [21]高赞东.基于GIS的济南岩溶泉域地下水含水层脆弱性评价[D].北京:中国地质大学,2007
    [22]孙才志,林山杉.地下水脆弱性概念的发展过程与评价现状及研究前景[J].吉林地质,2000,19(1):30-36
    [23]Foster S.S.D. Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy[J]. Proceedings and informations/TNO Committee on Hydrological Research,1987(38): 36-86
    [24]Duijvenbooden W., Van Waegengh H.G.. Vulnerability of soil and groundwater to pollutants[C].Proceedings. International Conference. Steasdrukkerij, Gravenhage,Netherlands,1987
    [25]National Research Council(U.S.). Ground water vulnerability assessment-predicting relative contamination potential under conditions of uncertainty[M]. Committee on Techniques for Assessing Ground Water vulnerability. National Research Council, National Academy Press, Washington. DC, 1993:204.
    [26]刘淑芬,郭永海.区域地下水防污性能评价方法及其在河北平原的应用[J].河北地质学院学报, 1996,19(1):41-45
    [27]严明疆.地下水系统脆弱性对人类活动响应研究—以华北滹滏平原为例[D].石家庄:中国地质科学院,2006
    [28]李砚阁,雷志栋.地下水系统保护研究[M].北京:中国环境科学出版社,2008:81-82
    [29]Sergeldin I.. Toward Sustainable Management of Water Resource[M]. World Bank,Washington D C,1998:14
    [30]冶雪艳.黄河下游悬河段地下水开发风险评价与调控研究[D].长春:吉林大学,2006
    [31](希腊)甘乌利斯(Ganoulis, J. G.). Engineering risk analysis of water pollution[M].彭静,廖文根,李锦秀,等译.水污染的工程风险分析[M].北京:清华大学出版社,2005:201-208
    [32]束龙仓,朱元生,孙庆义,等地下水允许开采量确定的风险分析[J].水利学报,2000(3):77-80
    [33]Alkaly Camaral,刘金涛,束龙仓,等.ASMWIN在镇江市地下水渗流模拟中的应用[J].重庆大学学报(自然科学版),2000,23(增刊):35-37
    [34]李如忠,王家权,钱家忠地下水允许开采量的未确知风险分析[J].水利学报,2004(4):54-60
    [35]李如忠,钱家忠,汪家权,等.基于盲数理论的地下水允许开采量计算初探[J].地理科学,2004,24(6):733-737
    [36]夏富强.黄河下游悬河决溢风险评价[D].乌鲁木齐:新疆大学,2006
    [37]冶雪艳,赵坤,杜新强,等.突变理论在地下水开发风险评价中的应用研究[J].人民黄河,2007,29(10):47-50
    [38]刘春玲.吉林西部地下水开发风险评价[D].长春:吉林大学,2007
    [39]李绍飞,孙书洪,王向余.突变理论在海河流域地下水环境风险评价中的应用[J].水利学报,2007,38(11):1312-1317
    [40]王磊.西安市平原区地下水开发风险评价[D].西安:长安大学,2009
    [41]Civita M V, M De Maio. Assessing Groundwater Contamination risk using ArcInfo via GRID function[EB/OL], http://gis.esri.com/library/userconf/proc97/proc97/to600/pap591/p591.htm, 2006-05-02
    [42]Napolitano P. GIS for aquifer vulnerability assessment in the Piana Campana, southern Italy, using the DRASTIC and SINTACS methods [D]. Netherlands:ITC,Enschede,1995:172
    [43]张丽君.地下水脆弱性和风险性评价研究进展综述[J].水文地质工程地质,2006(6):113-119
    [44]姜桂华.地下水脆弱性研究进展[J].世界地质,2002,21(1):33-38
    [45]杨庆,栾茂田,崇金著,等.DRASTIC指标体系法在大连市地下水易污性评价中的应用[J].大连理工大学学报,1999,35(9):684-688
    [46]朱雪芹,徐秀娟,蒋丽艳,等.哈尔滨市地下水的易污性评价及计算机编图[J].世界地质,2001,20(4):54-58
    [47]范琦,王贵玲,蔺文静,等.地下水脆弱性评价方法的探讨及实例[J].水利学报,2007,38(5):601-605
    [48]雷静,张忠聪.唐山市平原区地下水脆弱性评价研究[J].水利学报,2003,23(1):94-99
    [49]Qinghai Guo, Yanxin Wang, Xubo Gao, et al. A new model (DRARCH) for assessing groundwater vulnerability to arsenic contamination at basin scale:A case study in Taiyuan basin, northern China[J]. Environmental Geology,2007,52(5):923-932
    [50]Antonakos A.K., Lambrakis N.J.. Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates, based on the drastic model, an example from NE Korinthia, Greece[J]. Journal of Hydrology,2007 (333):288-304
    [51]Van Seempvoort D., Ewert L., Wassenaar L. AVI:A Method for Groundwater Protection Mapping in the Prairie Provinces of Canada. PPWD pilot project, Sept.1991-March 1992. Groundwater and Contaminants Project, Environmental Sciences Division, National Hydrology Research Institute, March 31,1992
    [52]Palmer R.C., Lewis M.A. Assessment of groundwater vulnerability in England and Wales. In: Robins, N.S. (Ed.), Groundwater Pollution, Aquifer Recharge and Vulnerability. Geol. Soc. Spec. Publ,1998(130):191-198
    [53]马金珠.塔里木盆地南缘地下水脆弱性评价[J].中国沙漠,2001,21(2):170-174
    [54]王焰新.浅层孔隙地下水系统环境演化及污染敏感性研究:以山西大同盆地为例[M].北京:科学出版社,2004
    [55]Aller L., Bennett T., Lehr J. H.,& Petty R. J. DRASTIC:A standardized system for evaluating groundwater pollution potential using hydrogeologic settings[M]. EPA/600/2-85/018. Ada, OK: Robert S. Kerr Environmental Research Laboratory,1985
    [56]李祚泳,彭荔红.基于韦伯-费希纳拓广定律的环境空气质量标准[J].中国环境监测,2003,19(4):17-18
    [57]Gogu R.C., Dassargues A. Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods[J]. Environmental Geology,2000,39(6):549-559
    [58]Melloul A.J., Collin N. A proposed index for aquifer water quality assessment:the case of Israel's Sharon region. [J]. Environ. Qual,1998(54):131-142
    [59]Kim Y.J., Hamm S.Y. Assessment of the potential for groundwater contamination using the DRASTIC/EGIS technique, Cheongju area, South Korea[J]. Hydrogeol J,1999(7):227-235
    [60]Lynch S.D., Reynders A.G., Schulze, R.E. A DRASTIC approach to groundwater vulnerability in South Africa[J]. South African J. Sci,1997(93):59-60
    [61]Madl-Szonyi J., Fule L. Groundwater vulnerability assessment of the SW trans-Danubian central range. Hungary[J]. Environ. Geol.,1998(35):9-18
    [62]Zekster I.S., Belousova A.P., Dudov V.Y. Regional assessment and mapping of groundwater vulnerability to contamination[J]. Environ. Geol.,1995(25):225-231
    [63]Fobe B., Goossens M. The groundwater vulnerability map for the Flemish region-its principles and uses. Engng Geol.,1990(29):355-363
    [64]周磊.北京城近郊区地下水脆弱性研究[D].长春:吉林大学,2004
    [65]陈美贞.丽江市城市水资源及地下水脆弱性研究[D].昆明:昆明理工大学,2006
    [66]孟宪萌,束龙仓,卢耀如.基于熵权的改进DRASTIC模型在地下水脆弱性评价中的应用[J].水利学报,2001,38(1):94-99
    [67]姚文锋,张思聪,唐莉华,等.海河流域平原区地下水脆弱性评价[J].水力发电学报,2009,28(1):113-118
    [68]张泰丽.浙江省丽水市地下水脆弱性研究[D].北京:中国地质科学院,2006
    [69]张保祥.黄水河流域地下水脆弱性评价与水源保护区划分研究[D].北京:中国地质大学,2006
    [70]Garrett P., Williams J.S., Rossoll C.F., et al. Are ground water vulnerability classification systems workable?. In:National Ground Water Association Columbus[J]. Proceedings of the FOCUS Conference on Eastern Regional Ground-Water Issues, Kitchener, Ont., Canada,1989:329-343
    [71]Vrba J., Zaporozec A.. Guidebook on mapping groundwater vulnerability. International Association of Hydrogeologists International Contributions to Hydrogeology, vol.16. [M]. Hannover:GFR,1994
    [72]Merchant J.. GIS-based groundwater pollution hazard assessment:a critical review of the DRASTIC model. Photogrammetric Engineering and Remote Sensing,1994,60 (9),1117-1127
    [73]Rosen L.. A study of the DRASTIC methodology with emphasis on Swedish conditions. Ground Water,1994 (32),278-285
    [74]李梅,孟凡玲,李群,等.基于改进BP神经网络的地下水环境脆弱性评价[J].河海大学学报(自然科学版),2007,35(3):245-250
    [75]Nobre R.C.M., Rotunno Filho O.C., Mansur W.J., et al. Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool[J]. Journal of Contaminant Hydrology,2007 (94):277-292
    [76]陈学群.莱州市地下水脆弱性评价研究[D].济南:山东大学,2006
    [77]姚文锋,唐莉华,张思聪.过程模拟法及其在唐山平原区地下水脆弱性评价中的应用[J].水力发电学报,2009,28(1):119-123
    [78]Helsel D.R., Hirsch R.M.. Statistical Methods in Water Resources. Elsevier, New York,1992
    [79]Bonham-Carter G.F., Agterberg F.P., Wright D.F.. Weights of evidence modeling:a new approach to mapping mineral potential[J]. Geological Survey of Canada,1989. Paper89/9,171-183
    [80]Harris J.R., Wilkinson L., Heather K., et al. Application of GIS processing techniques for producing mineral prospectively maps-a case study:Mesothermal Au in the Swayze Greenstone Belt, Ontario, Canada[J]. Natural Resources Research,2001,10(2):91-124
    [81]Mueller D.K., Ruddy B.C., Battaglin W.A. Logistic model of nitrate in streams of the upper-midwestern United States[J]. Journal of Environmental Quality,1997,26 (5):1223-1230
    [82]Rupert M.G. Probability of detecting atrazine/desethylatrazine and elevated concentrations of nitrate in ground water of the Idaho part of the upper Snake River Basin. US Geological Survey Water-Resources Investigations Report,1998:98-203
    [83]Nolan B.T., Hitt K.J., Ruddy B.C. Probability of nitrate contamination of recently recharged groundwaters in the conterminous United States[J]. Environmental Science and Technology,2002:36 (10),2138-2145
    [84]Tesoriero A.J., Voss F.D.. Predicting the probability of elevated nitrate concentrations in the Puget Sound Basin:Implications for aquifer susceptibility and vulnerability[J]. Ground Water,1997,35(6):1029-1039
    [85]Sophocleous M., Tainshing M.. Adecision supportmodel to assess vulnerability to saltwater intrusion in the Great Bend Prairie aquifer of Kansas[J]. Ground Water,1998,36(3):476-483
    [86]Worrall F., Kolpin D. W.. Aquifer vulnerability to pesticide pollution—combining soil, land-use and aquifer properties with molecular descriptors[J]. Journal of Hydrology,2004 (293):191-204
    [87]Masetti M., Sterlacchini S., Ballabio C., et al. Influence of threshold value in the use of statistical methods for groundwater vulnerability assessment[J]. Science of the Total Environment,2009 (407):3836-3846
    [88]张树军,张丽君,王学凤,等.基于综合方法的地下水污染脆弱性评价——以山东济宁市浅层地下水为例[J].地质学报,2009,83(1):131-137
    [89]陈守煜,伏广涛,周惠成,等.含水层脆弱性模糊分析评价模型与方法[J].水利学报,2002(7):23-30
    [90]Zadeh A. L. Fuzzy sets. Information and Control,1965:8,338-353
    [91]张立杰,巩中友,孙香太.地下水环境脆弱性的模糊综合评判[J].哈尔滨师范大学自然科学学报,2001,17(2):109-112
    [92]陈南祥,董贵明,贺新春.基于AHP的地下水环境脆弱性模糊综合评价[J].华北水利水电学院学报,2005,26(3):63-66
    [93]左海军.下辽河平原地下水脆弱性研究[D].大连:辽宁师范大学,2006
    [94]梁婕,谢更新,曾光明,等.基于随机-模糊模型的地下水污染风险评价[J].湖南大学学报(自然科学版),2009,36(6):54-58
    [95]Dixon B.. Application of neuro-fuzzy techniques to predict ground water vulnerability in northwest Arkansas [D]. Arkansas:University of Arkansas,2001
    [96]贺新春,邵东国,陈南祥.地下水环境脆弱性分区研究[J].武汉大学学报.2005,38(1):73-78
    [97]Barnali Dixon(贝娜里·迪克森),李大秋,Julie Earls(朱丽·艾尔思),邓春凯,刘新华.地下水脆弱性评价方法研究[J].环境保护科学,2007,33(5):64-66
    [98]Ziad A. M., Amjad A.. Intrinsic vulnerability, hazard and risk mapping for karst aquifers:A case study [J]. Journal of Hydrology,2009 (364):298-310
    [99]邢立亭,高赞东,叶春和,等.岩溶含水层脆弱性评价的COP模型及其改进[J].中国农村水利水电,2009(7):39-42
    [100]张强.岩溶区地下水脆弱性风险性评价[D].西南大学,2009
    [101]刘仁涛.三江平原地下水脆弱性研究[D].哈尔滨:东北农业大学,2007
    [102]孙丰英,许光泉,唐文锋.灰色关联度法在地下水脆弱性评价与分区中的应用[J].地下水,2009,31(4): 15-17,64
    [103]刘卫林,董增川,陈南祥,等.基于多指标多级可拓评价地下水环境脆弱性分析[J].地质灾害与环境保护,2007,18(1):83-87
    [104]Dixon B.. Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability:a GIS-based sensitivity analysis[J]. Journal of Hydrology,2005 (309):17-38
    [105]孙艳伟.石羊河流域地下水系统脆弱性研究[D].杨凌:西北农林科技大学,2007
    [106]刘卫林,董增川,童芳,等.地下水环境脆弱性评价的遗传投影寻踪插值模型[J].水电能源科学,2006,24(3):21-24
    [107]Bojorquez-Tapia L.A., Cruz-Bello G.M., Luna-Gonzalez L., et al. V-DRASTIC:Using visualization to engage policymakers in groundwater vulnerability assessment[J]. Journal of Hydrology,2009 (373):242-255
    [108]孙伟,马国栋,金松培,等.基于GIS的地下水脆弱性评价[J].信息技术,2006(3):18-20
    [109]吴晓娟.西安市地下水污染脆弱性与时空动态分析[D].西安:陕西师范大学,2007
    [110]许传音.基于GIS的鸡西市地下水脆弱性评价[D].吉林大学,2009
    [111]Rahman A.. A GIS based DRASTIC model for assessing groundwater[J]. Applied Geography, 2008(28):32-53
    [112]吴夏懿.基于GIS的济宁市地下水水质脆弱性评价[D].南京:河海大学,2006
    [113]姜桂华,王文科,杨泽元.关中盆地潜水含水层脆弱性评价[J].西北农林科技大学学报(自然科学版),2004,32(10):111-115
    [114]朱章雄.重庆黔江地下水脆弱性评价及编图[D].重庆:西南大学,2007
    [115]Worrall F., Besien T.. The vulnerability of groundwater to pesticide contamination estimated directly from observations of presence or absence in wells[J]. Journal of Hydrology,2005 (303):92-107
    [116]黎明.新疆渭干河流域地下水开采-生态环境保护研究[D].武汉:中国地质大学,2005
    [117]杜新强.大庆市地下水位降落漏斗区水资源人工调蓄关键技术研究[D].长春:吉林大学,2006
    [118]高淑琴,苏小四,杜新强,等.大庆西部地下水位降落漏斗区水资源人工调蓄方案[J].吉林大学学报(地球科学版),2008,38(2):261-267
    [119]马秀媛.地下水预测的新方法研究[D].济南:山东大学,2007
    [120]万伟锋.西安地下水开采—地面沉降数值模拟及防治方案研究[D].西安:长安大学,2008
    [121]张子贤,袁德明,李瑞森,等.承压水漏斗地区地下水位时空分布预报的BP网络模型[J].水利学报,2007,38(7):838-844
    [122]钱家忠,吴剑锋,朱学愚,等.地下水资源评价与管理数学模型的研究进展[J].科学通报,2001,46(2):99-104
    [123]平建华,李升,钦丽娟,等.地下水动态预测模型的回顾与展望[J].水资源保护,2006,22(4):11-15
    [124]金菊良,丁晶,魏一鸣.加速遗传算法在地下水位动态分析中的应用[J].水文地质工程地质,1999(5):4-7
    [125]Berendrecht W.L., Heemink A.W., Van Geer F.C., Gehrels J.C.. A non-linear state space approach to model groundwater fluctuations[J]. Advances in Water Resources 2006(29):959-973
    [126]刘兆惠.基于灰色-径向基函数神经网络的交通事故多元预测模型[J].交通运输工程学报,2009,9(5):94-98
    [127]付强,王立坤,梁川.GM(1,1)模型在预测地下水位动态变化中的应用[J].农机化研究.2001(4):79-81
    [128]左其亭.地下水动态预测的灰色—周期外延组合预测模型[J].水文地质工程地质,1996(5):16-19
    [129]金菊良,杨晓华,金保明,等.基于遗传算法的地下水位动态预测双线性模型[J].水科学进展,2001,12(3):361-366
    [130]陈南祥,张海丰,李松海.基于混沌时间序列的地下水位多步预测模型[J].地球科学与环境学报,2007,29(1):66-69
    [131]宋宇,陈家军,孙雄.地下水水位时问序列中的混沌特征[J].水文地质工程地质,2004,31(1):14-18
    [132]李根义,朱学愚,钱家忠,等.实数编码遗传算法优化的神经网络模型在岩溶水水位预报中的应用[J].南京大学学报,2001,37(3):323-327
    [133]金菊良,丁晶,魏一鸣.基于遗传算法的门限自回归模型在浅层地下水位预测中的应用[J].水利学报,1999(6):51-55
    [134]金菊良.遗传算法及其在水问题中的应用[D].南京:河海大学.1998
    [135]刘勇健.基于智能算法的地下水位动态预测模型的建立与应用[J].水文地质工程地质,2004(3):55-57,61
    [136]张保祥,刘青勇,卢朝霞,等.基于神经网络和遗传算法的济南市区岩溶地下水预报模型研究[J].山东农业大学学报(自然科学版),2004,35(3):436-441
    [137]迟宝明,林岚,丁元芳.基于遗传算法的BP神经网络模型在地下水动态预测中的应用研究[J].工程勘察,2008(9):36-41
    [138]吴东杰,王金生, 滕彦国.小波分解与变换法预测地下水位动态[J].水利学报,2004(5):1-8
    [139]敬少群,王佳卫,童迎世.小波变换在少震、弱震区地下水位数据分析中的应用[J].华南地震,2002,2(22):9-15
    [140]王文圣,廖杰,丁晶.浅层地下水位预测的小波网络模型[J].土木工程学报,2004,37(12):17-20
    [141]宋宇,陈家军,孙雄.基于小波函数的地下水水位预测[J].工程勘察2006(4):20-22,29
    [142]French M.N., Krajewski W.F., Cuykendall R.R. Rainfall forecasting in space and time using a neural network. J. Hydrol.1992(137):1-31.
    [143]Firat M., Yurdusev M. A., Turan M. E.. Evaluation of Artificial Neural Network Techniques for Municipal Water Consumption Modeling[J]. Water Resour Manage,2009(23):617-632
    [144]Govindaraju R.S., Ramachandra Rao, A. Artificial Neural Networks in Hydrology[M]. The Netherlands:Kluwer Academic Publishing,2000
    [145]Yi-Ming Kuo, Chen-Wuing Liu, Kao-Hung Lin.Evaluation of the ability of an artificial neural networkmodel to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan[J]. Water Research,2004 (38):148-158
    [146]Daliakopoulos I. N., Coulibaly P., Tsanis I. K.. Groundwater level forecasting using artificial neural networks[J]. Journal of Hydrology,2005 (309):229-240
    [147]周维博.人工神经网络理论在井渠结合灌区地下水动态预报中的应用[J].西北水资源与水工程,2003,14(2):5-9
    [148]Fi-John Chang, Ya-Ting Chang. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir[J]. Advances in Water Resources,2006 (29):1-10
    [149]Lallahem S., Mania J., Hani A., et al. On the use of neural networks to evaluate groundwater levels in fractured media[J]. Journal of Hydrology,2005 (307):92-111
    [150]邱林,胡庆和,冯丽云,等.改进RBF神经网络在地下水动态预报中的应用[J].华北水利水电学院学报,2004,25(2):1-3
    [151]冯绍元,霍再林,康绍忠,等.干旱内陆区自然-人工条件下地下水位动态的ANN模型[J].水利学报,2007(7),38(7):873-885
    [152]高瑞忠.加速遗传算法和自适应人工神经网络模型在地下水系统计算中的应用研究[D].呼和浩特:内蒙古农业大学,2006
    [153]罗定贵,郭青,王学军.基于RBF神经网络的地下水动态模拟与预测[J].地球学报,2003,24(5):475-478
    [154]周德亮,王焕丽.径向基函数法在地下水模拟中的应用[J].辽宁师范大学学报(自然科学版),2008,31(4):390-392
    [155]蒋中明,徐卫亚,张新敏.滑坡地下水位动态预测的径向基函数法[J].岩石力学与工程学报,2003,22(9):1500-1504
    [156]罗金鸣,赵国材,谷雨.RBF神经网络在地下水动态预报中的应用[J].电气技术,2008,42(3):38-39
    [157]Dong Yanhui, Zhou Weibo. Urban residential water demand forecasting in Xi'an based on RBF model[J].2009 international conference on energy and environment technology:ICEET 2009, Volume 2.16-18 October 2009, Guilin, Guangxi, China:901-904
    [158]冯国章,李佩成.人工神经网络结构对径流预报精度的影响分析[J].自然资源学报,1998,13(2):169-174
    [159]李森,吕红,范敬华,等.ASMWIN在地下水资源评价中的应用[J].水文,2002,22(4):45-46,41
    [160]刘青勇,张保祥,马承新.地下水库回灌补源的数值模拟研究以山东省邹平县城北水源地为例[J].灌溉排水学报,2005,24(2):70-74
    [161]云桂春,成徐州等编著.人工地下水回灌[M].北京:中国建筑工业出版社,2004:4-9
    [162]张莲花.基坑降水引起的沉降变形时空规律及降水控制研究[D].成都理工学院,2001
    [163]李云峰,郑书彦,田春声,等.引黄回灌研究[M].西安:陕西科技术出版社,1996:9-10
    [164]张焱,裴青,孟令尧,等.河北省地下水人工补给方式、成效及应用设想[J/OL].水信息网,2002-04-17
    [165]王丽娜.城市污水再生用于地下水回灌及健康风险评价[D].哈尔滨:哈尔滨工业大学,2006
    [166]宓永宁,胡春媛,赵琳,等.辽阳首山地区地下水人工回灌的可行性研究[J].人民长江,2009,40(24):34-35
    [167]邬小波.地下含水层储能和地下水源热泵系统中地下水回路与回灌技术现状[J].暖通空调,2004,34(1):19-22
    [168]Nojd P., Lindroos A., Smolander A., et al. Artificial recharge of groundwater through sprinkling infiltration:Impacts on forest soil and the nutrient status and growth of Scots pine[J]. Science of the Total Environment,2009,407:3365-3371
    [169]刘青勇,潘世兵,武晓峰,等.地下水回灌补源防治咸水入侵技术研究—以山东省广绕县为例[J].自然灾害学报,2006,15(3):96-100
    [170]朱雁飞,娄荣祥,潘伟强.上海地区第1层承压水可持续回灌试验[J].中国市政工程,2008(4):76-77
    [171]朱慧峰,顾慧人.上海市污水厂出水用于地下水回灌探讨[J].中国给水排水,2005,21(4):91-93
    [172]吴建中,王寒梅,杨天亮.浅层地下水人工回灌应用于上海市工程性地面沉降防治的试验研究[J].现代地质,2009,23(6):1194-1200
    [173]王新娟,谢振华,周训,等.北京西郊地区大口井人工回灌的模拟研究[J].水文地质工程地质,2005(1):70-73
    [174]孙颖,苗礼文.北京市深井人工回灌现状调查与前景分析[J].水文地质工程地质,2001(1):21-23,48.
    [175]何满潮,刘斌,姚磊华,等.地热水对井回灌渗流场理论研究[J].中国矿业大学学报,2004,33(3):245-248
    [176]杨永明,景龙,常林祯,等.滨海平原第四系地层灌采井成井工艺及回灌方法[J].探矿工程(岩土钻掘工程),2008(5):5-8
    [177]林黎.天津地区雾迷山组热储地下热水资源可持续开发利用研究[D].北京:中国地质大学,2006
    [178]周世海,杨询昌,梁伟,等.德州市城区地热水人工回灌试验研究[J].山东国土资源,2007,23(9):11-14
    [179]白峰青,卢兰萍,贺屹.深层地下水人工补给模式试验研究[J].河北建筑科技学院学报,2005,22(4): 1-3
    [180]倪公平.西安市的地下水人工回灌[J].地下水,1990(4):226-228
    [181]谢娟,姜凌,李泉.地下水人工补给水质的研究——以西安市回灌为例[J].西安工程学院学报,2002,24(4):67-72
    [182]张学真,胡安炎,贺屹.地下水超采区混合井回灌流量计算与效率分析[J].干旱地区农业研究,2006,24(3):190-193
    [183]Taneja D.S., Khepar S.D..Effect of artificial ground-water recharge on aquifer parameters using cavity well[J]. Ground Water,1996,34(2):335-340
    [184]Abu-taleb M.F.. Use of infiltration field tests for groundwater artificial recharge[J]. Environmental Geology,1999,37(1-2):64-71
    [185]李旺林,束龙仓,李砚阁,等.承压含水层非完整反滤回灌井的稳定流计算[J].水文地质工程地质,2007(2):67-70
    [186]鲍戈莫洛夫г.B,A.X阿里特舒里.人工补给地下水[M].赵抱力,穆仲义,吴金祥.译.北京:水利出版社,1980:143-162
    [187]陈雨孙.地下水运动与资源评价[M].北京:中国建筑工业出版社,1986:246-248
    [188]王文科.地下水有限分析数值模拟的理论与方法[M].西安:陕西科技出版社,1996:11-12
    [189]李佩成.在黄土地区利用辐射井的回灌试验[R].杨凌:西北农学院,1982
    [190]马承新.山东省地下水人工回灌补源模式研究[D].武汉:武汉大学,2005
    [191]魏志范.粉性土地区钻孔常水头注水试验求取渗透系数[J].岩土工程界,2009,12(6):49-51
    [192]王贞国,王彦俊,冯守涛,等.德州市深层地下水人工回灌试验浅探[J].山东国土资源,2005,21(6-7):82-85
    [193]李旺林.松散介质地下水库设计理论研究[D].南京:河海大学,2006
    [194]姚彬,冯绍元,刘振河,等.利用回灌井回补地下水的田间试验研究[J].灌溉排水学报,1998,17(2):35-38
    [195]高宝珠,曾梅香.地热对井运行系统中回灌井堵塞原因浅析及预防措施[J].水文地质工程地质,2007(2):75-80
    [196]倪龙,马最良.地下水地源热泵回灌分析[J].暖通空调,2006,36(6):84-90
    [197]黄修东,束龙仓,刘佩贵,等.注水井回灌过程中堵塞问题的试验研究[J].水利学报,2009,40(4):430-434
    [198]张学真.地下水人工补给研究现状与前瞻[J].地下水,2005,27(1):25-28,66
    [199]Ghayoumian J., Saravi M. M., Feiznia S., Nouri B., et al. Application of GIS techniques to determine areas most suitable for artificial groundwater recharge in a coastal aquifer in southern Iran[J]. Journal of Asian Earth Sciences,2007 (30):364-374
    [200]Chowdhury A., Jha M.K., Chowdary V.M. Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques[J]. Environmental Earth Science,2010,59:1209-1222
    [201]Al-Assa'd T.A., Abdulla F.A. Artificial groundwater recharge to a semi-arid basin:case study of Mujib aquifer, Jordan[J]. Environ Earth Sci,2009
    [202]Gau H.S., Hsieh C.Y., Liu C.W. Application of grey correlation method to evaluate potential groundwater recharge sites[J]. Stochastic Environmental Research and Risk Assessment,2006,20: 407-421
    [203]Tarhouni J., Lebbe L. Optimization of Recharge and Pumping Rates by Means of an Inverse 3D Model[J]. Water Resources Management,1996,10:355-371
    [204]张保祥,刘青勇,马承新,等.基于GIS的山东省地下水回灌补源管理信息系统[J].水利水电科技进展,2005,25(4):49-52
    [205]周维博,马艳,董艳慧,等.西安市水资源可持续开发利用程度模糊综合评价[A].变化环境下的水资源响应与可持续利用——中国水利学会水资源专业委员会2009学术年会论文集[C].大连:大连理工大学出版社,2009:441-447
    [206]周维博,曾发琛,郭小砾,等.西安市地下水资源保护利用规划[R].西安:长安大学,西安市水务局,2007:21-22
    [207]李佩成,沈冰,张益谦,等.西安市供水水资源系统优化调配研究报告[R].西安:长安大学,西安理工大学.2002
    [208]高光第,刘君让,何建安,等.西安市水资源调查评价及水利区划[R].西安:西安市水利建筑勘测设计院.1986
    [209]陕西省地质矿产厅,陕西省计划委员会编制.西安地区环境地质图集[M].西安:西安地图出版社,1999.4
    [210]董艳慧,周维博,杨路华,等.平原区土壤水资源计算模型研究[J].干旱地区农业研究,2008,26(6):236-240
    [211]焦喜丽,王兴安,李辉,等.西安地区2005年地下水动态报告[R].西安:陕西省地质环境监测总站.2006
    [212]康金栓,徐从义,王兴安,等.西安地区1986-1995年地下水动态报告[R].西安:陕西省地质环境监测总站.1997
    [213]西安市城区2009-2010年封停自备井工作实施方案[Z].西安:西安市水资源科研服务中心,2009
    [214]武强,王志强,赵增敏,等.油气田区承压含水层地下水污染机理及其脆弱性评价[J].水利学报,2006,37(7):851-857
    [215]吴晓娟,孙根年.西安市地下水污染广义/狭义脆弱性对比研究[J].地球学报,2007,28(5):475-481
    [216]Lobo-Ferreira J.P.. GIS and Mathematical Modeling for the Assessment of Groundwater Vulnerability to Pollution:Application to Two Chinese Case-Study Areas[A]. In:Proceedings of the International Conference "Ecosystem Service and Sustainable Watershed Management Towards Flood Prevention, Pollution Control, and Socio-Economic Development in North China"[C]. Beijing, P R China,2000,23-25.
    [217]百度百科.韦伯-费希纳定律[EB/OL], http://baike.baidu.com/view/30879.html?goodTagLemma, 2009-4-3
    [218]董艳慧,周维博,赖坤容,等.基于概率神经网络的西安地区地下水水质评价[J].自然资源学报,2009,24(4):737-742
    [219]Specht D.F.. Probabilistic neural networks for classification, mapping or associative memory[J]. IEEE ICNN San DiegCA.1988,1:525-532
    [220]陈永灿,陈燕,郑敬云,等.概率神经网络水质评价模型及其对三峡近坝水域的水质评价分析[J].水力发电学报,2004,23(3):7-12
    [221]GB/T 14848-93,地下水环境质量标准[S].北京:国家技术监督局,1994
    [222]陈守煜.工程模糊集理论与应用[M].北京:国防工业出版社,1998:4-5,39,46.
    [223]百度百科.六价铬[EB/OL], http://baike.baidu.com/view/1011906.htm,2009-12-26
    [224]张存杰,高学杰,赵红岩.全球气候变暖对西北地区秋季降雨的影响[J].冰川冻土,2003,25(2):157-164
    [225]葛哲学,孙志强编著.神经网络理论与MATLAB R2007实现[M].北京:电子工业出版社,2007,116-117
    [226]郑重,马富裕,李江全,等.基于BP神经网络的农田蒸散量预报模型[J].水利学报,2008,39(2):230-234
    [227]周泰,叶怀珍,王亚玲.基于灰色径向基函数网络的铁路投资规模组合预测[J].北京交通大学学报(社会科学版),2009,8(4):33-37
    [228]Singh K. P., Basant A., Malik A., Jain G.. Artificial neural network modeling of the river water quality—A case study[J]. Ecological Modelling,2009(220):888-895
    [229]刘德钊,周海东,荣莉,等.GNNM(1,1)模型在城市用水量预测中的应用[J].山东建筑大学学报,2006,21(4):335-337
    [230]GB/T 14497-93,地下水资源管理模型工作要求[S].北京:国家技术监督局,1994
    [231]SL 250-2000,水文情报预报规范[S].北京:中华人民共和国水利部,2000
    [232]杨树青,史海滨,杨金忠.干旱区微咸水灌溉对地下水环境影响的研究[J].水利学报,2007,38(5):565-574
    [233]黄强,赵雪花,等编著.河川径流时间序列分析预测理论与方法[M].郑州:黄河水利出版社,2008:190-191
    [234]陕西省沿渭(河)主要城市地下水超采区划定及保护方案[Z].陕政发[2006]69号,2006
    [235]周维博.西安市水资源开发利用规划[R].西安:长安大学,西安市水务局,2007
    [236]周维博.关中地区水资源可持续开发利用对策[J].水利水电科技进展,2004,24(4):1-4,69
    [237]冯平,肖丽英,林超.地下水生态需水量的估算方法及其恢复问题的研究[J].干旱区资源与环境,2005,19(6):102-107
    [238]王春泽,乔广建.邢台市地下水生态环境恢复需水量估算[J].水资源保护,2005,21(5):42-45
    [239]张绪良,付炳中,陈东景.青岛市生态环境需水量研究[J].节水灌溉,2008(11):1-6
    [240]姜德娟,王会肖,李丽娟.生态环境需水量分类及计算方法综述[J].地理科学进展,2003,22(4): 369-378
    [241]张猛,成徐州,赵璇.采用组合式强化井灌的人工地下水回灌[J].清华大学学报(自然科学版),2009,49(9):1531-1533
    [242]中国地下水真空虹吸回灌网.地下水真空(无动力)回灌[EB/OL], http://www.water7788.com/D.html,2010-3-14
    [243]吴 林 奎 , 张 生 元 . 上 海 地 质 矿 产 志[EB/OL], http://www.shtong.gov.cn/node2/node2245/node4502/node55350/node55402/node55410/userobject lai41578.html,2009-12-10
    [244]孙美华,张金霞,尉建中.地下水源热泵重力回灌的回扬实验研究[J].煤气与热力,2009,29(8A):01-04
    [245]王平,徐秀云.水源热泵系统抽灌井常压、加压回灌试验[J].煤气与热力,2008,28(10A):01-03
    [246]柳文华.中水回灌的水质标准比较分析[J].北京水务,2007(4):24-26
    [247]何满潮,刘斌,姚磊华.地下热水回灌过程中渗透系数研究[J].吉林大学学报(地球科学版),2002,32(4):374-377
    [248]何满潮,刘斌,姚磊华,等.地热单井回灌渗流场理论研究[J].太阳能学报,2003,24(2):197-201
    [249]地质矿产部水文地质工程地质技术方法研究队.水文地质手册[M].北京:地质出版社,1985:380-381
    [250]李云峰.供水水文地质计算[M].北京:地质出版社,2007:3
    [251]泰 斯 公 式 的 讨 论[EB/OL] http://unit.cug.edu.cn/2007jpkc/dxsdlx8/wangye/wlkc/kcnr/word/dxsdlx/5_1_3.htm,2010-6-2
    [252]路莹.北京平谷地区雨洪地下水回灌堵塞机理分析与模拟研究[D].长春:吉林大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700