用户名: 密码: 验证码:
伺服系统提高速度平稳度的关键技术研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伺服系统的速度平稳度是衡量伺服系统性能的重要指标之一,光电测控仪器、精密测试转台等设备都对这一指标有明确要求。当伺服系统工作速度较低时,由于传感器的分辨率限制以及机械传动环节存在的各种扰动量,影响了伺服系统的速度平稳度。提高伺服系统速度平稳度的关键技术在于:提高传动机构设计、制造和装调水平;提高速度信号的检测精度;优化电机驱动控制技术;改进伺服控制技术,增强控制系统的抗扰能力。本文从自动控制技术的角度出发,围绕相关关键技术,展开论文研究,主要研究内容和成果如下:
     1.采用基于伺服系统内部动态的数学模型描述系统,采用机理分析和实验验证相结合的方法,建立了扰动环节的数学模型。
     2.分析了采用编码器位置信号做差分测速的不足,提出了采用基于系统动态信息的状态观测器测速方法和基于运动学信息的Kalman滤波测速方法。实验证明,在给定速度为1°/s时,这两种方法较差分测速精度提高了约30%;辅以Newton预测法,较好的解决了带宽和相角滞后间的矛盾。
     3.分析了摩擦扰动和电机力矩波动影响速度平稳度的模式。
     通过理论分析,论证了:当给定速度较高时,摩擦扰动对伺服系统的影响是产生一定的稳态误差;当给定速度在Stribeck速度附近时,摩擦扰动影响了系统的稳定性,使速度输出产生了周期震荡的极限环现象。进一步,本文通过对极限环Jacobi矩阵的分析,得出极限环是稳定极限环的结论。最后,通过仿真和实验,验证了上述结论。
     采用理论分析和实验验证的方法,证明了电机力矩波动可以视为伺服系统受到正弦形式的扰动,对伺服系统的影响是使速度产生了周期波动。
     这一部分的研究内容旨在揭示主要扰动量对伺服系统速度平稳度的影响模式,为后续控制器的设计奠定基础。
     4.针对电机力矩波动和摩擦扰动设计了相应的补偿控制算法,达到减小扰动量对伺服系统的影响,提高速度平稳度的目的。
     针对电机的力矩波动,设计了基于鲁棒自适应控制的扰动力矩补偿算法。该算法采用最小二乘法辨识相关参数,通过数学模型计算补偿量,并在控制量输出中加以体现。仿真结果表明:与超前—滞后+积分控制相比,速度波动由0.5805%(RMS)降低到0.002%(RMS)。同时,通过仿真验证了系统存在白噪声干扰和未建模动态特性时,其误差峰—峰值仍在5%以内,说明该控制算法仍然能够保持原有性能。
     对于摩擦扰动,采用了一种基于滑模自适应控制的补偿算法。该算法在对摩擦扰动进行自适应补偿的同时,还利用滑模控制的强鲁棒性来保证系统对一些建模误差和不确定性的鲁棒性。仿真结果表明:在等速运动时,速度稳态误差由采用超前—滞后校正的30.95%下降到几乎为0;在给定正弦信号时,速度误差由采用超前—滞后校正的35%(RMS)下降到13%(RMS),该算法能够有效抑制摩擦扰动对速度稳定度的影响;当存在系统参数时变以及存在部分未建模信息的情况下,等速运动的速度误差同样在0附近,正弦运动的误差为19%(RMS),说明该控制策略仍然能够保持对摩擦扰动的有效抑制。
     5.在论文的最后部分,从工程应用的角度出发,首先提出了对超前—滞后控制策略的一些改进措施,以提高系统的抗扰性能。实验证明,加入积分控制和采用加速度反馈控制时将速度波动由2.92%分别降低到0.9%和0.47%(RMS),由对实验结果的分析得出了以下结论:力矩波动是影响本实验转台速度稳定度的主要因素。随后,采用对力矩波动的自适应补偿控制做了实验验证,实验结果表明,将速度波动进一步降低到0.39% (RMS)。
The stability of velocity is one of key indexes of servo system, e.g. opti-cal-electrical tracking system, test turntable call for high level of this index. Espe-cially when the servo system working in the low velocity, servo system face to the problems such as limitation of resolution and kinds of disturbance of transmission. So, the rate of velocity stability degrades. This paper mainly focus to improve the stability of velocity. The context and main conclusion are in the below:
     The mathematical model is established based on the dynamic characteristic. Mechanism analysis and experiment result are used to establish mathematical model of disturbance.
     The source of low velocity estimation errors and the shortcomings of the single period difference were analyzed. The state observer and Kalman filter are proposed to estimate the velocity. These methods are based on the dynamic and kinematics char-acteristic of servo system. Experiment results show that, when the input is 1°/s, these methods reduce the estimation error nearly 30%. With the method of Newton predic-tor, the conflict between bandwidth and phase lag are solved.
     The pattern of how friction and force ripple influence the stability of velocity is analyzed. Friction may cause the servo system has steady state error. when the servo system run near Stribeck velocity, the friction may induce limit cycle. Because the friction influences the stability of closed loop system. Force ripple may cause the ve-locity of servo system has some cycle fluctuation. The adaptive robust control strategy is used to design the compensation to the disturbance. As to the force ripple, the RLS method is used to identify the certain parameters of disturbance. The compensation part is calculated based on the parameter and math model. As to the friction, beside compensate friction on line, the sliding model control is used to improve the robust-ness to some unmodeled dynamic and fluctuation of parameter.
     At last, from the aspect of engineering application, some methods are verified in turntable. These methods include: the improved lead-lag with the integrator, the lead-lag control with acceleration and integrator, the adaptive robust control with force ripple compensation. Compared to lead-lag method which velocity fluctuation is 2.92%(RMS), the first method reduce to 0.9%, the second method reduce to 0.47%, the third method reduce to 0.39%.
引文
[1]崔向群. LAMOST项目及进展[J].天文学进展2001, 19(2): 123~129
    [2]王坚,金革,虞孝麒,等. LAMOST望远镜观测控制系统的建模和分析[J].中国科学技术大学学报,2003,33(4):398~409
    [3]王红宣.卫星电视跟踪伺服系统研究[D].中科院研究生院硕士学位论文,2006.
    [4]周旺平,徐欣圻.大型天文光学望远镜超低速跟踪控制[J].光电工程,2007,34(11):1~4
    [5] Dario Mancini, Pietro Schipani. Tracking performance of TNG telescope[J]. Proceedings of SPIE, 2000, 4009:355-365
    [6]王忠山.高精度机械轴承转台摩擦补偿研究[D].哈尔滨工业大学博士学位论文,2007.
    [7]林荣松.转台系统混合灵敏度设计及对象输入端扰动补偿研究[D].哈尔滨工业大学硕士学位论文,2006
    [8]刘雨,曾鸣,苏宝库.改善测试转台速率平稳性的鲁棒重复控制[J].南京航空航天大学学报. 2005,22(2):144-149
    [9]黄令龙,郭阳宽,蒋培军,等.高精密伺服转台控制系统的设计[J].清华大学学报. 2004,44(8):1054-1056
    [10] Chen Juan,Wang Jianli etc,The analysis of the Minimum Stable Speed for Ground Servo System Launching Laser Beam to Interfere an Air Target,SPIE,2000,Vol,4222:166-169
    [11]陈娟,王建立,陈涛等,用于高空动靶饱和损伤的地面激光的最低稳速跟踪分析,光电工程,2001,28(2):37-39
    [12]吴南星,孙庆鸿,冯景华.机床给进伺服系统非线性摩擦特性及控制补偿研究[J].东南大学学报,2004,34(6):771~775
    [13]尹明,张晓锋.数控机床给进系统产生爬行的机理分析[J].机床与液压,2007,35(12):82~83
    [14]陈娟.伺服系统低速特性和抖动补偿研究[D].长春:中国科学院长春光学精密机械与物理研究所,2001
    [15] D.Mancini. VST Project: Drive System Design and strategies for performance optimiza-tion[C]. SPIE, 2003, 4837:389~400
    [16]汪达兴,杜福嘉.大型天文望远镜摩擦传动系统低速特性的研究[J].光学精密工程,2006,14(2):274~278
    [17]毛耀,包启亮,马文礼. 1.2m地平式望远镜驱动系统设计与多电机同步控制策略[J].天文研究与技术,2006,3(3):289~294
    [18]曹振夫. 260M光电轴角编码器结构及原理[J].光学精密工程,1995,3(5):126~130
    [19]赵岩.编码器测速方法的研究[J].长春光机所硕士学位论文,2002
    [20]刘丰文,邓文和. 25位绝对式编码器[J].光电工程,2000,27(6):66-68
    [21]吴凡,刘恩海,方玉廷.GBJ280高精度绝对式光电轴角编码器[J].光电工程,2000,27(6):62-65
    [22] Ronald H.B, Susan C.S, Michael G.M. Analysis of algorithms for velocity estimation form discrete position versus time data[J]. IEEE Transactions on Industrial Electronics, 1992, 39(1):11-19
    [23] Paul S.C, Ronald H.B, James A.Heinen, et al.. On algorithms for velocity estimation using discrete position encoders[J]. Proceeding of the 1995 IEEE Industrial Electronics, Control and Instrumentation 21st International Conference,1995, 2:844-849
    [24]丛玉良.数字信号处理[M].吉林科学技术出版社,2000
    [25]张文海,李家会,徐丽.永磁直流力矩电机力矩波动的实验分析[J].微电机,2004,37(6):64-66.
    [26]刘刚,王志强,房建成.永磁无刷直流电机控制技术与应用[M].机械工业出版社,2009.
    [27]李祝莲,熊耀恒. 1.2m地平式望远镜伺服控制和传动系统的特性研究—单点和多点摩擦传动的力学特性(一) [J].天文研究与技术, 2005, 2 (1):54-59
    [28]李祝莲,熊耀恒. 1.2m地平式望远镜伺服控制和传动系统的特性研究—单点和多点摩擦传动的力学特性(二) [J].天文研究与技术,2005,2(2):130~137
    [29]王国民,姚正秋,马礼胜等.大型天文望远镜高精度摩擦传动的研究[J].光学精密工程,2004,12(6):592~597
    [30]翟百臣.直流PWM伺服系统低速平稳性研究[D].长春:中国科学院长春光学精密机械与物理研究所,2005
    [31]周长义,李清军,葛文奇.双极模式PWM控制在提高大功率伺服系统低速性能中的应用[J].长春理工大学学报,2007,27(4):109~111
    [32] Xinqi Xu, Lingzhe Xu, Gangping Jin. Overview of LAMOST control system[C]. SPIE, 2003, 4837: 484~493
    [33] Jae-Yoo Yoo, Tae-Sik Park, Seong-Hwan Kim, etc.Speed Estimation of an IM using Kalman Filter Algorithm at ultra-low speed region[C]. Eletric Machines and Drives Conference Re-cord,1997
    [34] S. Yang, S. Ke,“Performance evaluation of a velocity observer for accurate velocity estima-tion of servo motor drives,”IEEE Transactions on Industry Applicatons, vol.36, no.1, pp. 98-104, January- February 2000.
    [35]谭惊涛,秦忆.光电码盘的仿真模型及电机瞬时速度估计方法的研究[J].电气传动,2001,2:41~43
    [35] Armstrong B, Dupont P, Canudas de Wit C. A Survey of Models, Analysis Tools and Com-pensation Methods for the Control of Machines with Friction[J]. Automatica, 1994, 30(7): 1083-1138.
    [36] Brian Armstrong, Bimal Amin. PID control in the presence of static friction: a comparison of algebraic and describing function analysis[J]. Automatica, 1996, 32(5):679-692.
    [37]李拥军,杨文淑,范永坤,等.高精度转台摩擦力矩补偿控制器设计与仿真[J].光电工程,2008,35(12):126-130
    [38] Canudas De Wit C. A New Model for Control of Systems with Friction[J]. IEEE Tran. on Automatic Control, 1995, 40(3), 419-425.
    [39] Canudas De Wit C. Comment on A New Model for Control of Systems with Friction[J]. IEEE Trans. on Automatic Control, 1998, 43(8): 1189-1190.
    [40] Canudas De Wit C, Lischinsky P. Adaptive Friction Compensation with Partially Known Dy-namic Friction Model[J]. International Journal of Adaptive Control and Signal Processing, 1997, 11: 65-80
    [41]张文静,赵先章,台宪青.基于粒子群算法的火炮伺服系统摩擦参数辨识[J].清华大学学报,2007,47(S2):1717~1720
    [42]王广雄,何朕.控制系统设计[M].清华大学出版社[J]. 2008
    [43]刘晶红,朱志强,沈宏海,等.加速度在控制系统扰动补偿中的应用[J].光学精密工程. 2009,17(9)
    [43]马娟丽,唐永哲,职晓波.低速摩擦伺服系统的滑模变结构控制研究[J].弹箭与制导学报. 2007,27(3):77-80
    [44]彭书华,李华德,苏中.非线性摩擦干扰下的电动舵机滑模变结构控制[J].信息与控制. 2008,37(5):637-640
    [45]黄进,邵明贤,段宝岩.大射电望远镜舱索伺服系统的自适应滑模控制[J].控制与决策. 2007,22(6):647-651
    [46]霍鑫,姚郁.速率仿真转台波动力矩抑制问题的研究[J].系统仿真学报,2006,18(增刊2):821-824.
    [47]王海峰.无刷直流电动机转矩脉动控制技术的研究[D].西北工业大学博士学位论文,2003
    [48]刘强,尔联洁,刘金琨.摩擦非线性环节的特性、建模与控制补偿综述[J].系统工程与电子技术,2002,24(11):45-52.
    [49]秦继荣,沈安俊.现代直流伺服控制技术及其系统设计[M].机械工业出版社.第1版.1999
    [50]张雪菲.板球系统摩擦特性分析与补偿控制算法的研究[D].长春:吉林大学,2007
    [51] Lorinc Marton. On analysis of limit cycles in positions systems near stribeck velocities[J]. Mechatronics, 2008,18(1):46-52.
    [52]李声晋,芦刚,刘卫国,等.宽调速直流伺服电机低速力矩波动的计算[J].西北工业大学学报,1993,11(2):204-210
    [53]宋新波,姚晓先,林玉光.力矩马达静特性研究[J].战术导弹控制技术,2004,1:39-42
    [54]徐月同,傅建中,陈子辰.永磁直线同步电机推力波动优化及实验研究[J].中国电机工程学报,2005,25(12):122-126
    [55]夏加宽,盛丽君,刘纯江.直接驱动环形永磁力矩电机低速齿槽转矩脉动补偿研究[J].电气技术,2009,3:21-24
    [56]王建立,陈娟,陈涛,等.位置差分数字测速传递函数的推导[J].光学精密工程,2001,9(1):74-76
    [57] Robert D.Lorenz, Keith W. Van Patten. High-Resolution Velocity Estimation for All-Digital, ac Servo Drives[J]. IEEE Transactions on Industry Applicatons, 1991,27(4):701-705
    [58] Lilit Kovudhikulrungsri, Takafumi Koseki. Precise Speed Estimation From a Low-Resolution Encoder by Dual-Sampling-Rate Observer[J]. IEEE/ASME Transactions on Mechatronics,2006,11(6):661-670
    [59] Hiroshi Fujimoto, Yoichi Hori. High Performance Servo Systems Based on Multirate Sampling control[J]. Control Engineering Practice,2002,10(7):773-781
    [60] Jesus M. Corres, Pedro M. Gil. High Performance Feedforward Control of IM Using Speed and Disturbance Torque Observer with Noise Reduction of Shaft Encoder[C]. Proceedings of PESC’02 403-408
    [61] J. Corres, P. Gil. Instantaneous Speed and Disturbance Torque Observer using Nonlinearity Cancellation of Shaft Encoder[C]. Proceedings of PESC’02 540-545
    [62] Stephen M. Phillips, Michael S. Branicky. Velocity estimation using quantized measure-ments[C]. Proceeding of the 42nd IEEE conferenec on decision and control. 2003:4847-4852
    [63]郑大钟.线性系统理论(第二版)[M].清华大学出版社,2002
    [64]宋彦,高慧斌,郭同健,等.经纬仪控制模态切换时的动态分析和脱靶量跃变抑制[J].光学精密工程,2008,16(11):2158-2163
    [65] Yan Song, Huibin Gao, Shumei Zhang, etc. The Analysis and Design of Low Velocity Esti-mation Based on Observer[C]. 2009 IEEE International conference on automation and logistics: 766-771
    [66] Greg Welch, Gray Bishop. An introduction to the Kalman Filter. http://www.cs.unc.edu/~{welch,gb}
    [67] Han J D, He Y Q, Xu W L. Angular acceleration estimation and feedback control: an experi-mental investigation [J]. Mechatronics, 2007,17(9): 524-532
    [68] Ovaska SJ, Vainio O. Recursive linear smoothed Newton Predictors for polynomial extrapo-lation. IEEE Trans Instrum Measure 1992:41(4):510-516
    [69] Henrik Olsson, K.J.Astrom. Friction generated limit cycles[C]. //Proceedings of the 1996 IEEE International Conference on Control Appilications, 1996:798-803.
    [70] Henrik Olsson, K.J.Astrom. Friction generated limit cycles[J]. IEEE Transactions on Control Systems Technology, 2001, 9(4):629-636.
    [71] Hassan K.Khalil.非线性系统[M].电子工业出版社,2005.
    [72] L.Chen, K.K.Tan, S.N.Huang. Limit cycles in a class of system under PID-type of relay feedback[C]. //The 33rd Annual Conference of IEEE Industrial Electronics Society, 2007:915-920.
    [73] Sasan G. Jalali, Robert H. Lasseter, Ian Dobson. Dynamic response of a thyristor controlledswiched capacitor[J]. IEEE Transactions on power delivery, 1994,9(3):1609-1615
    [74] Ian A. Hiskens. Stabligy of Hybrid system limit cycles:application to the compass gait biped Robot[J]. Proceeding of 40th IEEE conference,2001:774-779
    [75]杨松,曾鸣,苏宝库.一种新的重复自适应摩擦补偿方法及其在高精度伺服系统中的应用[J] .东南大学学报(自然科学版), 2006,36(增刊1):74-78.
    [76]于志伟,曾鸣.内模原理在转台波动力矩抑制中的应用[J].哈尔滨工业大学学报,2009,41(5):10-14.
    [77]霍鑫,姚郁.速率仿真转台波动力矩抑制问题的研究[J].系统仿真学报,2006,18(增刊2):821-824.
    [78]陈娟,张淑梅,黄艳秋,张袅娜.电机波动力矩的重复学习控制补偿[J].光学精密工程, 2003,11(4):390-393.
    [79] Zhao S, Tan K K. Adaptive feedforward compensation of force ripples in linear motors[J]. Control engineering practice, 2005,13(9): 1081-1092
    [80] Jianhua W, Donglin P, Adaptive robust motion control of SISO nonlinear systems with implementation on linear motor [J]. Mechatronics, 2007,17(4-5): 263-270
    [81] K.K.Tan, S.N.Huang, H.F.Dou et al.. Adaptive robust motion control for precise trajectory tracking application [J]. ISA Transcation, 2001, 40(1):57-71
    [82]张元生,徐国柱.转台速率波动自适应抑制方案的设计[J].光学精密工程,2005,13(1), 81~87
    [83]徐国柱,刘樾,张元生.转台速率波动原因分析及一种自适应抑制方法探讨[J].航空精密制造技术,2004,40(1),31-35
    [84] Bin Yao. High performance adaptive robust control of nonlinear systems: a general frame-work and new schemes[C]. Proceedings of the 36th conference on decision&control, 1997:2489-2494
    [85] Bin Yao, Li Xu. Adaptive robust motion control of linear motors for precision manufactur-ing[J]. Mechatronics, 2002. 12:595-616
    [86] G. Liu, A.A.Goldenberg, Y. Zhang. Precise slow motion control of a direct-drive robot arm with velocity estimation and friction compensation[J]. Mechatrionics, 2004. 14:821-834
    [87] Lennart Ljung. System identification-theory for the user(second edition)[M].清华大学出版社. 2002
    [88] K.J.Astrom, B. Wittenmark.自适应控制[M].科学出版社. 1992
    [89]徐湘元.自适应控制理论[M].电子工业出版社.2007
    [90]刘兴堂.现代辨识工程[M].国防工业出版社.2006
    [91]王璐.船舶导航雷达运动目标跟踪技术研究[D].大连海事大学硕士学位论文. 2009
    [92]马佳光.捕获跟踪与瞄准系统的基本技术问题[J].光学工程.1989,3:1-41
    [93]王红亮,李枫,赵亦工.一种机动目标跟踪的自适应α?β滤波算法[J].雷达科学与技术. 2007,5(4):278-291
    [94] James W.Gilbart, Geogre C.Winston. Adaptive compensation for an Optical tracking tele-scope[J]. Automatica, 1974, 10:125~131
    [95]陈宗雨,王有庆,李从心.基于模型参考自适应滑模控制的直线电机速度环研究[J].电机与控制学报. 2006,10(2):174-178
    [96] K.K.Tan, S.N.Huang, T.H.Lee. Robust adaptive numerical compensation for friction and force ripple in permanent-magnet linear motors[J]. IEEE Transactions on magnetics. 2002, 38(1): 221~228
    [97] S.Zhao, A.S.Putra, K.K.Tan, etc. Intelligent compensation of friction, ripple, and hysteresis via a regulated chatter[J]. ISA Transactions, 2006, 45(3): 419-433
    [98] Lorinc Marton, Bela Lantos. Modeling, Identification, and compensation of stick-slip fric-tion[J]. IEEE transactions on industrial electronics, 2007, 54(1): 511-521
    [99]于爽,付庄,闫维新,等.基于干扰观测器的惯性平台摩擦补偿方法[J].哈尔滨工业大学学报,2008,40(11):1830-1833
    [100]王中华,张勇.运动控制中的鲁棒自适应死区补偿[J].控制理论与应用,2008,25(3):475-479
    [101]王忠山,苏宝库,王毅.基于观测器/滤波器结构的高精度转台自适应摩擦补偿[J].南京航空航天大学学报,2008,25(2):113-120
    [102]王忠山,王毅,苏宝库.精密转台系统非线性动态自适应控制器设计[J].航空精密制造技术,2008,44(2):20-24
    [103]苗中华,刘成良,王旭永,等.大摩擦力矩下电液伺服系统高精度控制与实验分析[J].上海交通大学学报,2008,42(10):1731-1735
    [104]牛建军,付永领,刘和松.高精确度飞行仿真转台内框控制摩擦补偿研究[J].电机与控制学报,2008,12(9):576-579
    [105]黄金柱,段宝岩,黄进. LuGre摩擦模型对伺服系统的影响与补偿[J].控制理论与应用. 2008,25(6):990-994
    [106]李连军,戴金海.反作用轮低速特性观测补偿方法[J].国防科技大学学报. 2005,27(1):39-43
    [107]张羽飞,张建立,冯汝鹏.基于速度估计的成像器稳定装置摩擦补偿[J].红外与激光工程. 2004,33(1):83-89
    [108]刘金琨.滑模变结构控制Matlab仿真[M].清华大学出版社,2005
    [109]闵颖颖,刘允刚. Barbalat引理及其在系统稳定性分析中的应用[J].山东大学学报(工学版),2007,37(1):51-55
    [110]丁策.具有间隙迟滞非线性系统的补偿控制算法研究[D].吉林大学硕士学位论文,2008
    [111]杜璧秀.宽调速范围高精度转台速度稳定度研究[D].长春光机所硕士学位论文,2010
    [112]王建立.光电经纬仪电视跟踪、捕获快速运动目标技术的研究[D].长春光机所博士学位论文,2002
    [113]胡寿松.自动控制原理(第四版)[M].科学出版社. 2001
    [114] George Ellis.控制系统设计指南(第三版)[M].电子工业出版社.2006
    [115]陈伯时.电力拖动自动控制系统(第二版)[M].机械工业出版社.2003
    [116] Seppo J.Ovaska, Sami Valiviita. Angular acceleration measurement: a review[J]. IEEE Transaction on instrument and measurement. 1998,47(5):1211-1217
    [117] R.J.E. Merry, M.J.G. van de Molegraft, M.Steinbuch. Velocity and acceleration estimation for optical incremental encoders[J]. Mechatronics 2009,20(1):20-26
    [118] Sami Valiviita, Seppo J.Ovaska, Olli Vainio. Polynomial predictive filtering in control in-strumentation: a review[J]. IEEE Transaction on industrial electronics.1999, 46(5):876-887
    [119] Sami Valiviita, Olli Vainio. Delayless differentiation algorithm and its efficient implementa-tion for motion control applications[J]. IEEE Transaction on instrument and measurement . 1999,48(5):967-971
    [120]张荣辉.自主引导载运工具导航技术与先进控制策略的研究[D].长春光机所博士学位论文. 2009
    [121]刘立峰.高速机械手非线性自适应逆控制研究[D].长春光机所博士学位论文.2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700