用户名: 密码: 验证码:
粒度理论下的多尺度遥感影像分割
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高空间分辨率遥感技术的发展在给遥感应用带来机遇的同时也带来了挑战,传统基于像素的影像分析方法局限性日益凸显。面向对象遥感影像分析技术在消除椒盐噪声、处理空间关系方面具有极大的优势,已成为当前发展趋势。在面向对象的遥感影像分析技术中,一个非常关键的技术就是影像分割。高分辨率遥感影像上,地物种类众多,且呈现层次性、结构化特征。为从多角度、多层次分析与理解地学现象,需要利用不同尺度的分割结果进行分析。但是,目前已有的大部分多尺度分割算法对高分辨率遥感影像的针对性不够,并且各层信息难以传递。鉴于此,论文将粒度理论里的粒度合成及粒度分层技术引入到高分辨率遥感影像分割过程中来,力图探索一条高分辨率遥感影像多尺度分割的有效途径。
     论文从遥感影像所反映地物的多尺度特性出发,结合粒度合成及粒度分层技术,对粒度概念下的高空间分辨率遥感影像多尺度分割做出了一些理论探讨、算法设计和实验分析工作,主要内容如下:
     (1)提出了一种嵌入边缘信息区域自适应的标记分水岭高分辨率遥感影像分割方法。该方法通过阈值分割方法从梯度影像上提取标记影像,且阈值通过区域自适应方法进行确定。对于每一像素,阈值由局部区域梯度分布及影像直方图的分位数共同决定。区域自适应的阈值生成方法保证了纹理丰富区域阈值高,而光谱变化平缓的区域阈值低。此方法生成的标记影像更符合实际情况。嵌入置信度的边缘提取方法一定程度上可提取弱边缘,且边缘定位精度高。利用其修改梯度影像,使得边缘上点最后被浸没到,成为对象边界。
     (2)提出了两种标记分水岭多尺度影像分割方法:基于尺度空间和基于Mumford-Shah模型的多尺度影像分割方法。基于尺度空间的方法利用标记分水岭方法分割尺度空间中多个尺度的影像,从而获得多尺度的分割结果。同时以尺度空间为基础,建立多尺度分割与多尺度边缘提取间的尺度联系,将同一尺度影像上提取的边缘引入到标记分水岭分割过程中。基于Mumford-Shah模型的标记分水岭尺度化方法以标记分水岭方法所得同质斑块为基元,通过不断合并合并代价最低的相邻斑块来实现Mumford-Shah函数的最小化。以区域拟合误差与相邻斑块公共边长度的比值来定义合并代价,其间边缘信息的引入,使得公共边与边缘重叠度高的相邻斑块被合并概率降低。
     (3)提出了基于分割结果评价的尺度选择方法。以分类样本为参考数据,利用分割结果评价方法评价各尺度分割结果的吻合程度,以选择各类地物的最佳分割尺度。分类样本反映了分类目的,因此,由此方法选择的尺度更能符合分类目。另外,遥感影像地物种类众多且固有尺度不尽相同,这也决定了需要选择出多个最合适分割尺度。考虑到同一地表覆盖类型内地物尺度相似,因此可以为每一种地表覆盖类型选择出一个最合适的分割尺度。对于某一地表覆盖类型,尺度选择时以该地表覆盖类型的样本数据为参考数据。
     (4)提出了两种尺度综合理论与方法:基于粒度分层技术和基于粒度合成技术。基于粒度分层技术的尺度综合方法将影像分割过程分为两个层次:粗分割与细分割。粗分割将影像按地表覆盖类型划分为多个大的影像斑块,细分割则将每个大的斑块细分,细分所用尺度依据斑块所属地表覆盖类型确定。基于粒度合成的尺度综合方法利用尺度选择技术为每一地表覆盖类型选择一个最佳尺度的分割结果,形成中间粒度空间,并利用拓扑结构合成技术完成粒度空间的合成,最终实现尺度综合。
     论文的主要创新点在于:
     (1)提出了两种标记分水岭多尺度分割方法:基于尺度空间的以及基于Mumford-Shah式的。基于尺度空间的标记分水岭多尺度分割方法以尺度空间为基础,建立了多尺度边缘提取与多尺度影像分割间的尺度联系,每个尺度影像分割时引入对应尺度的边缘信息。基于Mumford-Shah式的标记分水岭多尺度分割方法,以标记分水岭方法所得同质斑块为基元并引入边缘信息,可消除大量小面积斑块及提高边界定位精度。
     (2)提出了基于分割结果评价的尺度选择技术。以分割评价结果为标准进行尺度选择,而分割质量体现了分割结果与样本数据的符合程度,因此该尺度选择方法所得尺度能更好的符合应用目的。
     (3)提出了两种尺度综合理论和方法:基于粒度分层理论及基于粒度合成理论。基于粒度分层的尺度综合方法利用分层方法来分割遥感影像,利用上一层获得的信息指导下一层分割尺度的选择,实现了信息在不同层之间的传递,同时实现了多个尺度分割结果的综合。基于粒度合成的尺度综合方法将不同尺度的分割结果综合,最终分割结果中综合了多个尺度的影像斑块。该方法将多维任务分解为多个一维任务然后进行综合,提高分割效率和减小分割难度。
     本文将粒度概念引入到高空间分辨率遥感影像分割过程中,实验与分析表明,本文所提方法能自适应的为包含不同类型地物的影像、不同分类目的提供满足分类要求的分割结果,具有良好的可行性与有效性。
     尚需进一步研究的问题:
     (1)研究能依据地表覆盖类型自动确定尺度选择中的分割结果度量标准与方法,增强尺度选择技术的自适应性。
     (2)研究不同地物类型对应分割尺度之间的差异,将地物划分为更多地表覆盖类型,使得同一地表覆盖类型中的地物分割尺度更为接近。
     (3)在基于粒度分层技术的尺度综合里,充分利用上一层分割中获得信息(如斑块的破碎度)进行尺度选择,提高分割效率。
     (4)研究每种地表覆盖类型最佳分割特征与分割方法,并利用不同特征与方法来获取每种地表覆盖类型的最适合的分割结果。
High spatial resolution remote sensing image (HSRI) provides both the opportunity and challenge for remote sensing application. With the spatial resolution refinement, the limitation of the traditional pixel-based image analysis method becomes obvious. Object-based image analysis technique can eliminate the'salt and pepper' effect and is quite efficient in using spatial or contextual information. It thus becomes the first choice for HSRI application recently. As a fundamental process, HSRI segmentation partitions the images into un-overlapping homogenous regions or objects. The segmentation quality has a direct influence on the latter image analysis. In HSRI, the various landscapes patterns exhibit multi-scale hierarchical and structural characteristics, which change depending on the scale of observation. Consequently, there often does not exist a single scale of segmentation that could be deemed appropriate for analysis of the entire image. Clearly, a multi-scale analysis of the image is necessary which naturally entails a segmentation technique that is capable of generating a multi-scale representation of the image data. Till now, a lot of multi-scale segmentation algorithms have been developed. However, most of them are not aiming at HSRI segmentation and have difficulty in multi-scale information transferring. In view of these limitations, this dissertation introduces the granularity synthesis and granularity stratification techniques into the segmentation process to explore an effective multi-scale segmentation approach for HSRI based on the granular theory.
     The dissertation starts from the multi-scale characteristics of gournd objects on HSRI, proposes a new approach for multi-scale image segmentation based on the gradular theory. Both the granularity stratification and granularity synthesis techniques are implemented in the synthesization process of multi-scale segmentation results. The involved key theories, processing algorithms and applications are researched and the major works are listed as follows:
     1. A regional-adaptive marker-based watershed algorithm integrating edge information is developed. The marker image is firstly extracted by a regional-adaptive threshold segmentation of the gradient image to solve the over-segmentation problem. Instead of using a fixed single threshold, a threshold image is firstly estimated. For each pixel, the threshold value is determined by the gradient distribution of the local region and the fractile value of the image histogram. As a result, the threshold values of the textured regions are relatively high and the threshold values of the spectral homogenous regions are relatively low. The extracted markers are more coincide with the inner regions of the ground objects. Then, to retain the weak object boundaries and improve the boundary location accuracy, the edge detected by the confidence-embedded method is integrated into the proposed algorithm. Both the marker image and the gradient image are rectified according to the edge information to ensure the edge pixels are labeled lastly as the object boundary pixels.
     2. Two multi-scale segmentation methods are developed based on the scale space theory and the Mumford-Shah model respectively. In the first method, the image is transformed into multi-scale images by nonlinear filters to construct a scale space firstly. Then, the multi-scale images are segmented by the proposed marker-based watershed algorithm to achieve multi-scale segmentation results. Based on the scale space theory, image segmentation and edge detection can be connected naturally. For each image scale, the detected edge is integrated into the segmentation process to achieve the corresponding scale of segmentation result. In the Mumford-Shah model method, the initial homogenous elements are extracted by the proposed watershed algorithm at the beginning. Then the neighboring homogenous elements with the lowest merging prices are merged with the Mumford-Shah function value minimized. Each merging operation generates a single scale of segmentation. After many times of object merging, a series of multi-scale image segmentation results can be achieved. Here, the merging price is defined as the ratio of the region fitting error and the neighboring objects' common boundary length. In this method, the edge information can be integrated by reducing the merging probability of the common boundary that has high overlapping rate with the edge information.
     3. Scale selection based on supervised segmentation quality evaluation is studied. Classification samples are used as the reference data for segmentation quality assessment to find the optimal segmentation scale. Considering that the samples reflect the classification target, the selected scale will better fit the application requirements. Furthermore, because the objects appear with different inherent scale, it is necessary to select multiple optimal segmentation scales for different objects. With consideration that objects belonging to the same land cover class are usually with the same optimal scale, an optimal segmentation scale can be determined for each land cover class using the corresponding samples.
     4. The scale synthesis theory and methods are studied under the concept of granular theory. Both the granularity stratification and granularity synthesis techniques are researched and implemented for scale synthesis. In the granularity stratification method, the image segmentation is divided into two levels:coarse segmentation and fine-grained segmentation. The coarse segmentation partitions the image into multiple large regions according to the land cover types in advance. Then, each region is segmented with the optimal segmentation scale determined by the land cover type in the fine-grained segmentation. In the granularity synthesis method, the optimal segmentation result for each land cover type is selected as the medium granular space, then these granularity spaces are combined to realize the scale synthesis.
     The main innovative points are as follows:
     1. A regional adaptive marker-based watershed segmentation method integrating edge information is proposed. Based on the scale space theory and the Mumford-Shah model, two multi-scale image segmentation algorithms are proposed. With the corresponding edge information integrated, these methods are capable in eliminating the small undesired objects and retaining the weak object boundaries in the final segmentation result. Moreover, the proposed methods are of high efficiency for large image data.
     2. The scale selection technique based on the supervised segmentation evaluation is proposed. The classification samples are used as reference data, and the discrepancy measures are used to evaluate the segmentation result. Because the segmentation assessment result reflects the similarity between segmentation result and the classification samples, the selected scale can fit the application requirement well.
     3. The granularity theory is studied and two kinds of scale synthesis methods are developed using the granularity stratification and granularity synthesis techniques. The granularity stratification method can transfer the information of the coarse level segmentation to the fine-grained level of segmentations. The information of the coarse leve segmentation is used to direct the selection of the finer segmentation scales. The optimal scales of segmentation results are synthesized to achieve the final segmentation result. The granularity synthesis method combines different scale of segmentation results to achieve the segmentation result. It can simplify the image segmentation multi-dimensional tasks into multiple single dimensional tasks and get the final result by synthesis methods.
     This dissertation introduces the granular theory into the segmentation of HSRI. Experiments show the proposed methods can adaptively produce good segmentation results for images with different land cover types and meet the segmentation requirements of different classification purposes.
     Further research is needed on the following issues:
     1. To enhance the self-adaptiveness of the scale selection techniques, segmentation assessment measures should be further studied to standardize the segmentation assessment procedures.
     2. The difference of segmentation scales among different gound objects should be further studied. The image can be divided into more land cover types to ensure that the optimal segmentation scale of each land cover type is nearly the same.
     3. In the granularity stratification method, further research on how to use the different information of the coarser level (such as the degree of fragmentation) is needed.
     4. The optimal features and methods to be used for segmentation of different ground objects should be further studied.
引文
[1]陈忠,高分辨率遥感图像分类技术研究[D],2006,北京:中国科学院遥感应用研究所.
    [2]陈秋晓,高分辨率遥感影像分割方法研究[D],2006,北京:中国科学院遥感应用研究所.
    [3]陈云浩,冯通,史培军,王今飞,基于面向对象和规则的遥感影像分类研究[J],武汉大学学报(信息科学版),2006,Vol.31,No.4,pp:316-320.
    [4]程昌秀,严泰来,朱德海,张玮,GIS与RS集成的高分辨率遥感影像分类技术在地类识别中的应用[J],中国农业大学学报,2001,Vol.6,No.3,pp:50-54.
    [5]程杰,一种基于直方图的分割方法[J],华中理工大学学报,1999,Vol.27,No.1,pp:84-86.
    [6]宫鹏,黎夏,徐冰,高分辨率影像解译理论与应用方法中的一些研究问题[J],遥感学报,2006,Vol.10,No.1,PP:1-5.
    [7]关泽群,商空间下的遥感图像分析理论探讨[D],1995,武汉:武汉大学.
    [8]顾丹丹,汪西莉,结合区域生长和水平集的遥感影像道路提取[J],计算机应用,2010,Vol.30,No.2,pp:433-436
    [9]高贵,计科峰,匡纲要,李德仁,基于各向异性热扩散方程的SAR图像分割方法,信号处理,2006.Vol.22,No.1,pp:105-109.
    [10]黄慧萍,面向对象影像分析中的尺度问题研究[D],2003,北京:中国科学院遥感应用研究所.
    [11]何英华,模式分类与视觉导航中的分层数据处理研究[D],北京:清华大学.
    [12]贾永红,计算机图像处理与分析[M],2001,武汉大学出版社,武汉,pp:129-133.
    [13]孔刚,张启衡,复杂背景下扩展目标多尺度小波分割策略[J],光电子.激光,2004,Vol.15.No.2,216-220.
    [14]李德仁,王树良,李德毅,空间数据挖掘理论与应用[M],2006,北京:科学出版社.
    [15]李德仁,关泽群,将GIS数据直接纳入图像处理.武汉测绘科技大学学报[J],1999,24(1):1-5
    [16]李德仁,论自动化和智能化空间对地观测系统的建立,环境遥感[J],1993,9(1):1-9
    [17]李德仁,对地观测与地理信息系统,地球科学进展[J],2001,16(5):689-703
    [18]李德仁,世纪遥感与GIS展望,中国测绘[J],2002,6:28-29
    [19]李德仁,地球空间信息学及在陆地科学中的应用,自然杂志[J],2005,27(6):316-322
    [20]李道国,苗夺谦,杜伟林,粒度计算在人工神经网络中的应用[J],同济大学学报(自然科学版),2006,Vol.34,No.7,PP:960-964.
    [21]李佐勇,刘传才,程勇等,红外图像阈值分割方法,计算机科学,2010,vol.15.No.1,pp:282-286
    [22]李利伟,马建文,欧阳赟,温奇,基于时刻独立脉冲耦合神经网络的高空间分辨率遥感影像分割[J],遥感学报,2008,Vol.12,No.1,pp:64-69.
    [23]刘仁金,基于商空间的纹理图像分割研究[D],2005,安徽:安徽大学.
    [24]林辉,莫登奎,熊育久,孙华,高分辨率遥感影像均值调整法分割技术研究[J],中南林学院学报,2006,Vol.32,No.2,pp:146-151.
    [25]梅天灿,李德仁,秦前清,分水岭变换在遥感影像现状特征提取中的应用[J],武汉大学学报(信息科学版),2004,Vol.29,No.4,pp:338-341.
    [26]梅天灿,李德仁,秦前清,基于直线和区域特征的遥感影像线状目标检测[J],武汉大学学报(信息科学版),2005,Vol.30,No.8,pp:689-693.
    [27]明冬萍,骆剑承,沈占锋,汪闽,盛昊,高分辨率遥感影像信息提取与目标识别技术研究[J],测绘科学,2005,Vol.30,No.3,pp:18-21.
    [28]莫登奎,林辉,李际平,孙华,熊育久,基于均值漂移的高分辨率影像多尺度分割算法[J].广西师范大学学报:自然科学版,2006,Vol.24,No.4,pp:247-250.
    [29]孙开敏,基于对象的地面目标变化检测[D],2008,武汉:武汉大学.
    [30]孙开敏,李德仁,眭海刚,基于多尺度分割的对象级影像平滑算法[J],武汉大学学报(信息科学版),2009,Vol.34,No.4,pp:423-426.
    [31]佟彪,基于土地利用图斑的遥感影像变化检测与更新[硕士学位论文],2005,武汉:武汉大学.
    [32]王义敏,秦永元,基于区域生长的SAR图像的目标检测方法[J],计算机应用,2009,Vol.29,No.1,pp:45-46
    [33]巫兆聪,粗集理论在遥感影像分类中的应用[D],2004,武汉:武汉大学.
    [34]王建梅,面向对象的高分辨率遥感图像分类与变化监测[D],2007,武汉:武汉大学.
    [35]王爱萍,高分辨率遥感影像分割技术研究[D],2008,武汉:武汉大学.
    [36]王培珍,杜培明,陈维南,一种用于多阈值图象自动分割的混合遗传算法[J],中国图象图形学报,2000,Vol.5,No.1,pp:44-47.
    [37]王占宏,杜道生,利用马尔可夫信源原理计算遥感影像信息量[J],遥感信息,2008,No.3,PP:26-30.
    [38]邬建国,景观生态学-概念与理论[J],生态学杂志,2000,Vol.19,No.1,pp:42-52.
    [39]肖鹏峰,高分辨率遥感图像频域特征提取与图像分割研究[D],2007,南京:南京大学.
    [40]徐涵秋,利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究,遥感学报,2005,Vol.9.No.5.
    [41]徐怡,基于粗糙熵和K-均值聚类算法的图像分割[J],华东理工大学学报(自然科学版),2007,Vol.33,No.2,PP:.255-258.
    [42]薛景浩,章毓晋,林行刚,基于最大类间后验交叉熵的阈值化分割算法[J],中国图象图形学报,1999,Vol.4,No.2,pp:110-114.
    [43]杨耘,马洪超,林颖,邬建伟,2008.多水平集演化的高分辨率遥感影像分割[J].武汉大学学报(信息科学版),30(6):588-591.
    [44]严学强,刘济林,顾伟康,顺序形态学在图像边缘检测中的应用[J],信号处理,1997,Vol.13,No.4.PP:357-362.
    [45]俞勇,施鹏飞,赵立初,基于最小能量的图像分割方法[J],红外激光与工程,1999,Vol.28,No.4.PP:21-24.
    [46]赵立军,基于MODIS数据的北京地区土壤含水量遥感信息模型研究[D],2004,中国农业大学.
    [47]赵英时,遥感应用分析原理与方法[M],2006,科学出版社,北京,pp:222-227.
    [48]张娜,生态学中的尺度问题:内涵与分析方法[J],生态学报,2006,Vol.26,No.7,pp:2340-2355.
    [49]张铃,张钹,模糊商空间理论(模糊粒度计算方法)[J],软件学报,2003,Vol.14,No.4,pp:770-776.
    [50]张柳,梅雪,林锦国,饶斐,小波多尺度C-V模型的红外图像分割[J],机床与液压,2008,Vol.36,No.7,pp:137-139.
    [51]张骥祥,戴居丰,郑宏兴,基于小波域马尔可夫模型多尺度图像分割[J],天津大学学报,2008,Vol.41,No.5,pp:611-615.
    [52]张燕平,基于商空间的构造性数据挖掘方法及应用[D],2003,安徽:安徽大学.
    [53]郑丽萍,李光耀,姜华,基于粒群算法的灰度图像阈值分割的改进,多媒体技术,2010,Vol.31,No.3,pp:559-563
    [54]Aplin, P., Atkinson, P., Curran, P., Per-field classification of landuse using the forthcoming very fine resolution satellite sensors:problems and potential solutions, Advances in Remote Sensing and GIS Analysis [M], Wiley, Chichester,1999, pp:219-239.
    [55]Ardeshir, G., Design and Recovery of 2-D and 3-D Shapes Using Rational Gaussian Curves and Surfaces [J], International Journal of Computer Vision,1993, Vol.10, No.3, pp:233-256.
    [56]Aubrecht, C., Steinnocher, K., Hollaus, M., Wagner, W., Integrating earth observation and GIScience for high resolution spatial and functional modeling of urban land use [J], Computers, Environment and Urban Systems,2008, Vol.33, No.1, pp:15-25.
    [57]Auethavekiat, Supatana, A two-stage segmentation algorithm using robust anisotropic region growing [J], Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers,2003, Vol.57,No. 1,pp:117-125.
    [58]Baatz, M., A. Schape,2000, Multiresolution segmentation:An optimization approach for high spatial multi-scale image segmentation [M], J. Strobl et al. (eds.):Angewandte geographische infor-mations verarbeitung xii, Wichmann, Heidelberg, pp:12-23.
    [59]Blaschke, T., Measurement of structural diversity with GIS-not a problem of technology [C], In: JEC Joint European conference on Geographical Information proceedings,1995, vol.1. IOS press, The Hague, NL, pp:334-340.
    [60]Blaschke, T., Strobl, J., What's wrong with pixels? Some recent developments interfacing remote sensing and GIS [J], Geo-informations system,2001, No.6, pp:12-17.
    [61]Blaschke, T., Object-based contextural image classification built on image segmentation [C], IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data,2003, pp:113-119.
    [62]Blaschke, T., Burnett, C., Pekkarinen, A., New contextual approaches using image segmentation for object-based classification [M], In:De Meer, F., de Jong, S. (Eds.), Remote Sensing Image Analysis: Including the spatial domain,2004, Kluver Academic Publishers, Dordrecht, pp:211-236.
    [63]Bock, M., Xofis, P., Mitchley, J., Rossner, G, Wissen, M., Object-oriented methods for habitat mapping at multiple scales-Case studies from Northern Germany and Wye Downs, UK [J]; Journal for Nature Conservation,2005, Vol.13, NO.2-3, pp:75-89.
    [64]Burnett, C., Blaschke, T., A multi-scale segmentation/object relationship modeling methodology for landscape analysis [J], Ecological Modelling,2003, Vol.168, No.3, pp:312-314.
    [65]Canny, J., A computational approach to edge detection [J], IEEE Transactions on Pattern Analysis and Machine Intelligence,1986, Vol. PAMI-8, No.6, pp:679-698.
    [66]Cao, C. Y., Lam, N. S. N., Understanding the scale and resolution effects in remote sensing and GIS [M],1997, Scale in Remote Sensing and GIS, Quanttrochi and Goodchild, M. F. (eds.), CRC Press, pp:57-73.
    [67]Carleer, A.P., Debeir, O., Wolff, E., Assessment of very high spatial resolution satellite image segmentations [J], Photogrammtric Engineering & Remote Sensing,2005, Vol.71, No.11, pp: 1285-1294.
    [68]Chan, T., Vese, L., A multiphase level set framework for image segmentation using the mumford and shah model [J], International Journal of Computer Vision,2002, Vol.50, No.3, pp:271-293.
    [69]Chen, Q. X., Luo, J. C., Zhou, C., Pei, T., A hybrid multi-scale segmentation approach for remotely sensed imagery [C], IEEE International Geosience and Remote Sensing Symposium,2003, IGARSS'03.
    [70]Chen, Y., Shi, P., Fung, T., Wang, J., Li, Y, Object-oriented classification for urban land covermappingwith ASTER imagery [J], International Journal of Remote Sensing,2007, Vol.28, No. 29, pp:4645-4651.
    [71]Chen, Z., Zhao, Z., Gong, P., Zeng, B., A new process for the segmentation of high resolution remote sensing imagery [J], International journal of remote sensing,2006, Vol.27, No.21-22, pp: 4991-5001.
    [72]Cheng, H.D., Chen, J. R. and Li, J. G, Threshold selection based on Fuzzy c-Partition entropy approach [J], Pattern Recognition,1998, Vol.31, No.7, pp:857-870.
    [73]Cohen, L. D., On active contours and balloons [J], GVGIP:Imag. Under.,1991, Vol.53, No.2, pp: 211-218.
    [74]Comaniciu, D., Meer, P., Mean shift:A robust approach toward feature spaces analysis [J], IEEE Transaction on Pattern analysis and Machine Intelligence,2002, Vol.24, No.5, pp:603-619.
    [75]Corbane, C., Raclot, D., Jacob, F., Albergel, J., Andrieux, P., Remote sensing of soil surface characteristics from a multiscale classification approach [J],2008, Vol.75, No.3, pp:308-318.
    [76]Daida, J., Samadani, R., Vesecky, J. F., Object-oriented feature-tracking algorithms for SAR image of the marginal ice zone, IEEE Transactions on Geoscience and Remote Sensing,1990, Vol.28, No. 4, pp:573-589.
    [77]Desclee, B., Bogaert, P., Defourny, P., Forest change detection by statistical object-based method [J], Remote Sensing of Environment,2006, Vol.102, No.1-2, pp:1-11.
    [78]Devereux, B.J., Amable, G.S., Costa Posada, C., An efficient image segmentation algorithm for landscape analysis [J], International Journal of Applied Earth Observation and Geoinformation,2004, Vol.6, No. 1,pp:47-61.
    [79]Diaz-Varela, R.A., Ramil Rego, P., Iglesias, S.C., Munoz Sobrino, C., Automatic habitat classificationmethods based on satellite images:A practical assessment in the NWIberia coastalmountains [J], Environmental Monitoring and Assessment,2008, Vol.144, No.1-3, pp: 229-250.
    [80]Durieux, L., Lagabrielle, E., Nelson, A., A method for monitoring building construction in urban sprawl areas using object-based analysis of Spot 5 images and existing GIS data [J], ISPRS Journal of Photogrammetry and Remote Sensing,2008, Vol.-63, No.4, pp:399-408.
    [81]Duveiller, G, Defourny, P., Desclee, B., Mayaux, P., Deforestation in Central Africa:Estimates at regional, national and landscape levels by advanced processing of systematically-distributed Landsat extracts [J], Remote Sensing of Environment,2008, Vol. 112, No.5, pp:1969-1981.
    [82]Dzung L.P., Xu, C. Y., Jerry L.P., A Survey of Current Methods in Medical Image Segmentation [M],. Technical Report JHU/ECE 99-01,1998, Johns Hopkins Univ.
    [83]Ehlers, M., Gahler, M., Janowsky, R., Automated analysis of ultra high-resolution remote sensing data for biotope type mapping:New possibilities and challenges [J], ISPRS Journal of Photogrammetry and Remote Sensing,2003, Vol.57, No.5-6, pp:315-326.
    [84]Evans, C., Jones, R., Svalbe, I., Berman, M., Segmentation multispectral Landsat TM images into field units, IEEE Transactions on Geoscience and Remote sensing,2003, Vol.57, No.5-6, pp: 315-326.
    [85]Forshaw, M. R. B., Haskell, A., Miller, P. F., Stanley, D. J., Townshend, J. R. G., Spatial resolution of remotely sensed imagery [J],1983, International Journal of Remote Sensing, Vol.4, pp:497-520.
    [86]Frauman, E., Wolff, E., Segmentation of very high spatial resolution satellite images in urban areas for segments-based classification [C], In:Proc. International Symposium Remote Sensing and Data Fusion Over Urban Areas and 5th International Symposium Remote Sensing of Urban Areas, Tempe, USA,14-16 March 2005.
    [87]Gigandet, X., Cuadra, M. B., Pointet, A., Cammoun, L., Caloz, R., Thiran, J. P., Region-based satellite image classification:Method and validation [C], IEEE International Conference on Image processing,2005 (ICIP2005), Vol.3, pp:III-832-5.
    [88]Goetz, S. J., Wright, R. K., Smith, A. J., et al., IKONOS imagery for resource management:tree cover, imperious surfaces, and riparian buffer analyses in the Mid-Atlantic region [J], Remote sensing of Environment,2003, Vol.88, pp:195-208.
    [89]Haralick, R. M., Decision making in context [J], IEEE Transactions on Pattern.Analysis and Machine Intelligence,1983, Vol.5, No.4, pp:417-428.
    [90]Haralick, R. M., Digital Step Edges from Zero Crossing of Second Directional Derivatives [J], IEEE Transactions on Pattern Analysis and Machine Intelligence,1984, Vol.6, No.l, pp:58-68.
    [91]Haralick, R. M., Shapiro, L., Survey:Image segmentation techniques [J], Computer Vision, Graphics, and Image Processing,1985, Vol.29, pp:100-132.
    [92]Hay, G. J., Marceau, D. J., Dub, P., Bouchard, A., A multiscale framework for landscape analysis: Object-specific analysis and upscaling [J], Landscape Ecology,2001, Springer, Vol.16, pp:471-490.
    [93]Hay, G. J., Blaschke, T., Marceau, D. J., Bouchard, A., A comparison of three image-object methods for the multiscale analysis of landscape structure [J], ISPRS Journal of Photogrammetry and Remote Sensing,2003, Vol.57, No.5-6, pp:327-345.
    [94]Hay, G J., Castilla, G., Wulder, M.A., Ruiz, J.R., An automated object-based approach for the multiscale image segmentation of forest scenes [J], International Journal of Applied Earth Observation and Geoinformation,2005, Vol.7, No.4, pp:339-359.
    [95]Herold, M., Goldstein, N.C., Clarke, K.C., The spatiotemporal form of urban growth:measurement, analysis and modelling [J], Remote Sensing of Environment,2003, Vol.86, No.3, pp: 286-302.
    [96]ofmann, P.; Strobl, J., Blaschke, T., Kux, H.J., Detecting informal settlements from QuickBird data in Rio de Janeiro using an object-based approach [M], In:Blaschke, T., Lang, S., Hay, G.J. (Eds.), Object Based Image Analysis,2008, Springer, Heidelberg, Berlin, New York, pp:531-554.
    [97]Huang, L. K., Wang, J., Image Thresholding by Minimizing the measure of Fuzziness [J], Pattern Recognition,1995, Vol.28, No.1, pp:41-51.
    [98]Hurtt, G, Xiao, X.M., Keller, M. et al., IKONOS imagery for the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) [J] , Remote Sensing of Environment,2003, Vol.88,No.1-2, pp:111-127.
    [99]Hu, X., Tao, C. V, Prenzel, B., Automatic segmentation of high-resolution satellite imagery by integrating texture, intensity and color features [J], Photogrammetric'Engineering and Remote Sensing,2005, Vol.71, No.12, pp:1399-1406.
    [100]Ivits, E., Koch, B., Object-oriented remote sensing tools for biodiversity assessment:A European approach [C], In:Proceedings 22nd EARSeL Symposium, Prague,4-6 June.2002. Millpress Science Publishers, Rotterdam.
    [101]Ivits, E., Koch, B., Blaschke, T., Jochum, M., Adler, P., Landscape structure assessment with image grey-values and object-based classification at three spatial resolutions [J], International Journal of Remote Sensing,2005, Vol.26, No.4, pp:2975-2993.
    [102]Johansen, K., Coops, N.C., Gergel, S.E., Stange, J., Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification [J], Remote Sensing of Environment,2007, Vol.110, No. 1,pp:29-44.
    [103]Kanda, F., Kubo, M., Muramoto, K., Watershed segmentation and classification of tree species using high resolution forest imagery [C], IEEE International Proceedings Geoscience and Remote sensing Symposium,2004, No.6, pp:3822-3825.'
    [104]Karlsson, A., Classification of high resolution satellite images [Master Dissertation],2003, Sweden: Chalmers University of Technology.
    [105]Kartikeyan, B., Sarkar, A., Majumder, K.L., A segmentation approach to classification of remote sensing imagery [J], International Journal of Remote Sensing,1998, Vol.19, No.9, pp:1695-1709.
    [106]Kass, M., Witkin, A. P. and Terzopoulos, D., Snakes:Active contour models [J], Int. J. Comput. Vis., 1988, Vol. 1,pp:321-331.
    [107]Ketting, R. L., Landgrebe, D. A.,1976, Classification of multispectral image data by extraction and classification of homogeneous objects [J], IEEE Transactions on Geosience Electronics, Vol.14, No. 1, pp:19-26.
    [108]Kovacs, J. M., Flores-Verdugo, F., Wang, J. F. et al., Estimating leaf area index of a degraded mangrove forest using high spatial resolution satellite data [J], AQUATIC BOTANY,2004, Vol.80, No. 1,pp:13-22.
    [109]Krause, G, Bock, M.,Weiers, S., Braun, G, Mapping land-cover and mangrove structures with remote sensing techniques:A contribution to a synoptic GIS in support of coastalmanagement in North Brazil [J], EnvironmentalManagement,2004, Vol.34, No.3, pp:429-440.
    [110]Kressler, F., Steinnocher, K., Object-oriented analysis of image and LiDAR data and its potential for dasymetric mapping applications [M], In:Blaschke, T., Lang, S., Hay, G.J. (Eds.), Object Based Image Analysis,2008, Springer, Heidelberg, Berlin, New York, pp:611-624.
    [111]Kux, H.J., Araujo, E.H.G, Object-based image analysis using QuickBird satellite images and GIS data, case study Belo Horizonte (Brazil) [M], In:Blaschke, T., Lang, S., Hay, GJ. (Eds.), Object Based Image Analysis,2008, Springer, Heidelberg, Berlin, New York, pp:571-588.
    [112]Lackner, M., Conway, T. M., Determining land-use information fromland cover through an object-oriented classification of IKONOS imagery [J], Canadian Journal of Remote Sensing,2008, Vol.34,No.2,pp:77-92.
    [113]Laliberte, A.S., Rango, A., Havstad, K.M., Paris, J.F., Beck, R.F., McNeely, R., Gonzalez, A.L. Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico [J], Remote Sensing of Environment,2004, Vol.93, No.1-2, pp:198-210.
    [114]Laliberte, A.S., Fredrickson, E.L., Rango, A., Combining decision trees with hierarchical object-oriented image analysis for mapping arid rangelands [J], Photogrammetric Engineering & Remote Sensing,2007, Vol.73, No.2, pp:197-207.
    [115]Lam, N. S. N., Quattrochi, D. A., On the issues of scale, resolution, and fractal analysis in the mapping sciences [J], The Professional Geographer,1992, Vol,44, No.1, pp:88-98.
    [116]Lang, S., Langanke, T., Object-based mapping and object-relationship modeling for land use classes and habitats [J], Photogrammetrie, Fernerkundung, Geoinformation,2006, Vol.10, No.1, pp:5-18.
    [117]Langanke, T., Burnett, C., Lang, S., Assessing the mire conservation status of a raised bog site in Salzburg using object-based monitoring and structural analysis [J], Landscape and Urban Planning, 2007, Vol.79, No.2, pp:160-169.
    [118]Lathrop, R.G, Montesano, P., Haag, S., Amulti-scale segmentation approach to mapping seagrass habitats using airborne digital camera imagery [J], Photogrammetric Engineering & Remote Sensing, 2006, Vol.72, No.5, pp:665-675.
    [119]Lemp, D., Weidner, U., Segment-Based characterization of roof surfaces using hyperspectral and laser scanning data [C]. In:Proceedings IGARSS 2005 Symposium, Seoul, Korea,25-29 July 2005.
    [120]Levin, S. A., The problem of pattern and scale in ecology [J], Ecology,1992, Vol.73, pp:1943-1967.
    [121]Liu, Z.J., Wang, J., Liu, W.P., Building extraction from high resolution imagery based on multi-scale object oriented classification and probabilistic Hough transform [C]. In:Proc. IGARSS 2005
    Symposium, Seoul, Korea,25-29 July 2005. pp.2250-2253.
    [122]Luscier, J.D., Thompson, W.L., Wilson, J.M., Gorham, B.E., Dragut, L.D., Using digital photographs and object-based image analysis to estimate percent ground cover in vegetation plots [J], Frontiers in Ecology and the Environment,2006, Vol.4, No.8, pp:408-413.
    [123]Mallinis, G., Koutsias, N., Tsakiri-Strati, M., Karteris, M., Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site [J], ISPRS Journal of Photogrammetry and Remote Sensing,2008, Vol.63, No.2, pp:237-250.
    [124]Mansouri, A. R., Mitiche, A., Va'zquez, C., Multiregion eompetition:A level set extension of region competition to multiple region image partitioning [J], Computer Vision and Image Understanding, 2006, Vol.101, pp:137-150.
    [125]Mangin, J. F., Frouin, V., Bloch, J., Regis, J., Lopez-Krahe, J., From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations [J], J. Math. Imag. Vis.,1995, Vol.5, pp:297-318.
    [126]Marceau, D. J., Hay, G. J., Contributions of remote sensing to the scale issues, Canadian Journal of Remote Sensing,1999, Vol.25, No.4, pp:357-366.
    [127]Marceau, D. J., Howarth, T. J., Gratton, D. J., Remote sensing and the measurement of geographical entities in a forested environment [J], Remote sensing of Environment,1994, Vol.49, No.2, pp: 93-104.
    [128]Marignani, M., Rocchini, D., Torri, D., Chiarucci, A., Maccherini, S., Planning restoration in a cultural landscape in Italy using an object-based approach and historical analysis [J], Landscape and Urban Planning,2008, Vol.84, No.1, pp:28-37.
    [129]Mathieu, R., Freeman, C., Aryal, J., Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery [J], Landscape and Urban Planning,2007, Vol. 81, No.3, pp:179-192.
    [130]Meer, P., Edge Detection with Embedded Confidence [J], IEEE Transactions on Pattern analysis and Machine Intelligence,2001, Vol.23, No.12, pp:1351-1365.
    [131]Meetemeyer, V., Geographical perspective of space, time and scale [J], Landscape ecology,1989, Vol.3, pp:163-173.
    [132]Ming, D., Luo, J., Shen, Z., Li, J., Features based parcel unit extraction from high resolution image [C]. Proceedings of the IGARSS 2005 Symposium,2005, Seoul, Korea, July 25-29.
    [133]Nalwa, V. S. and Binford, T. O., On Detecting Edges [J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, Vol.8, No.6, pp:699-711.
    [134]Nammalwar, P., Ghita, O., Whelan, P. F., Integration of feature distributions for colour texture segmentation [C],17th International Conference on Pattern Recognition (ICPR 2004), Cambridge, UK, Vol. 1,pp:716-719.
    [135]Neubert, M., Herold, H., Meinel, G., Assessing image'segmentation quality-Concepts, methods and application [M], In: Blaschke, T., Lang, S., Hay, G.J. (Eds.), Object Based Image Analysis,2008, Springer, Heidelberg, Berlin, New York, pp.760-784.
    [136]Nobrega, R.A.,.o'Hara, C.G., Quintanilha, J.A., An object-based approach to detect road features for informal settlements near Sao Paulo [M], Brazil. In:Blaschke, T., Lang, S., Hay, G.J. (Eds.), Object Based Image Analysis,2008, Springer, Heidelberg, Berlin, New York, pp:589-607.
    [137]O'Neill, R.V., King, A.W., Homage to St. Michael; or, why are there so many books on scale? [M], In:Peterson, D.L., Parker, V.T. (Eds.), Ecological Scale Theory and Applications. (Complexity in Ecological Systems Series),1997, Columbia Univ. Press, New York, NY, pp:3-15.
    [138]Osher, S., Sethian, J. A., Fronts Propagating with Curvature Dependent Speed:Algorithms Based on Hamilton-Jacobi Formulation [J], Journal of Computational Physics,1988, Vol.79, pp:12-49.
    [139]Pal, R., Pal, K., A review on image segmentation techniques [J], Pattern Recognition,1993, Vol.26, No.9, pp:1277-1294.
    [140]Perona, P., Malik, J., Scale-space and edge detection using anisotropic disfusion [J], IEEE Transactions on PAMI,1990, Vol.12, No.7, pp:629-639.
    [141]Pesaresi, M., Benediktsson, J. A., A new approach for the morphological segmentation of high-resolution satellite imagery [J], IEEE Transactions on Geosience and Remote Sensing,2001, Vol.39, No.2, pp:309-320.
    [142]Platt, R.V., Rapoza, L., An evaluation of an object-oriented paradigm for land use/land cover classification [J], The Professional Geographer,2008, Vol.60, No.1, pp:87-100.
    [143]Radoux, J., Defourny, P., A quantitative assessment of boundaries in automated forest stand delineation using very high resolution imagery [J], Remote Sensing of Environment,2007, Vol.110, No.4, pp:468-475.
    [144]Radoux, J., Defourny, P., Quality assessment of segmentation results devoted to object-based classification [M], In:Blaschke, T., Lang, S., Hay, G.J. (Eds.), Object Based Image Analysis,2008, Springer, Heidelberg, Berlin, New York, pp:257-271.
    [145]Robinson, D. J., Redding, N. J., Crisp, D. J., Implementation of a fast algorithm for segmentation SAR imagery [M], DSTO Electronics and Surveillance Research Laboratory,2002, PO Box 1500, Edinburgh, South Australia, Australia 5111.
    [146]Roerdink, J. B. T. M. and Meijster, A., The Watershed Transform:Definitions, Algorithms and Parallelization Strategies [J], Fundamenta Informaticae,2001, Vol.41, pp:187-228.
    [147]Sarkar, S., Boyer, K. L., Quantitative measures of change based on feature organization:Eigenvalues and eigenvectors [C], Proc. IEEE Conference of Computer Vision and Pattern Recognition,1996.
    [148]Schiewe, J., Ehlers, M., A novel method for generating 3D city models from high resolution and multi-sensor remote sensing data [J], International Journal of Remote Sensing,2005, Vol.26, No.4, pp:683-698.
    [149]Schneider, D. C., Quantitative ecology:Spatial and temporal scaling [M], San Diego, Academic Press,1994.
    [150]Shiba, M., Itaya, A., Using eCognition for improved forest management and monitoring systems in precision forestry [C], In:Ackerman, P. A., Langin, D.W., Antonides, M.C. (Eds.), Precision Forestry in plantations, semi-natural and natural forests. Proceedings International Precision Forestry Symposium, Stellenbosch University, South Africa, March 2006, Stellenbosch.
    [151]Sonka, M., Vaclav, H., Boyle, R., Image Processing, Analysis, and Machine Vision [M], Beijing: People's Posts & Telecommunications Publishing House,2002, pp:123-216.
    [152]Staib, L.H. and Duncan, J. S., Boundary Finding with Parametrically Deformable Models [J], IEEE Transactions on Pattern Analysis and Machine Intelligence,1992, Vol.14, No.11, pp:1061-1075.
    [153]Stow, D., Lopez, A., Lippitt, C., Hinton, S., Weeks, J., Object-based classification of residential land use within Accra, Ghana based on QuickBird satellite data [J], International Journal of Remote Sensing,2007, Vol.28, No.22, pp:5167-5173.
    [154]Stow, D., Hamada, Y, Coulter, L., Anguelova, Z., Monitoring shrubland habitat changes through object-based change identification with airborne multispectral imagery [J], Remote Sensing of Environment,2008, Vol.112, No.3, pp:1051-1061.
    [155]Sugumaran, R., Zerr, D., Prato, T., Improved urban land cover mapping using multi-temporal IKONOS images for local government planning [J], Canadian journal of remote sensing,2002, Vol. 28, No. 1,pp:90-95.
    [156]Sun, W. X., Heidt, V., Gong, P., Xu, G., Information fusion for rural land-use classification with high-resolution satellite imagery [J], IEEE Transactions on Geoscience and Remote Sensing,2003, Vol.41, No.4, pp:883-890.
    [157]Tao, W., Jin, H., Liu, L., A new image thresholding method based on graph cuts [C], ICASSP 2007, IEEE International Conference on Acoustics, speech and signal processing.
    [158]Thomas, N., Hendrix, C., Congalton, R.G, A comparison of urban mapping methods using high-resolution digital imagery [J], Photogrammetric Engineering & Remote Sensing,2003, Vol. 69, No.9, pp:963-972.
    [159]Trias-Sanz, R., Stamon, G., Louchet, J., Using colour, texture, and hierarchical segmentation for high-resolution remote sensing [J], ISPRS Journal of Photogrammetry and Remote Sensing,2008, Vol.63, No.2, pp:156-168.
    [160]Udupa, J. K. and Samarasekera, S., Fuzzy Connectedness and Object Definition:Theory, Algorithms, And Applications in Image Segmentation [J], Graphical Model and Image Processing,1995, Vol.58, No.3, pp:246-261.
    [161]Wang, J. M., Li, D. R., Qin, W. Z., A combined segmentaion and pixel-based classification approach of Quickbird imagery for land cover mapping [C]. MIPPR:Image Analysis Techniques,2005,6044: U1-U9.
    [162]Weidner, U., Contribution to the assessment of segmentation quality for remote sensing applications [M], International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008,37 (Part B7).
    [163]Weiers, S., Bock, M., Wissen, M., Rossner, G, Mapping and indicator approaches for the assessment of habitats at different scales using remote sensing and GIS methods [J], Landscape and Urban Planning,2004, Vol.67, No.1-4, pp:43-65.
    [164]Withers, M. A., Meentemeyer, V., Concepts of scale in landscape ecology [M], Landscape Ecological Analysis:Issues and Applications,1999, NewYork:Springer, pp:205-252.
    [165]Witkin, A. P., Scale Space Filtering [C], Proc of IJCAI, Karlsruhe,1983, pp:205-252.
    [166]Woodcock, C. E., Strahier, A. H., The factor of scale in remote sensing [J], Remote sensing of Environment,1987, Vol.21, pp:311-332.
    [167]Wu, Z., Leahy, R., An optimal graph theoretic approach to data cluatering:Theory and its application to image segmentation [J], IEEE Transactions on Pattern Analyis and Machine Intelligence,1993, Vol.15, No.11, pp:1101-1113.
    [168]Yan, G, Mas, J.-F., Maathuis, B.H.P., Xiangmin, Z., Van Dijk, P.M., Comparison of pixel-based and object-oriented image classification approaches_A case study in a coal fire area [J],2006, International Journal of Remote Sensing, Vol.27, No.18, pp:4039-4055.
    [169]Yu, Q., Gong, P., Chinton, N., Biging, G., Kelly, M., Schirokauer, D., Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery [J], Photogrammetric Engineering & Remote Sensing,2006, Vol.72, No.7, pp:799-811.
    [170]Zhang, Q.F., Pavlic, G., Chen, W.J., Fraser, R., Leblanc, S., Cihlar, J., A semiautomatic segmentation procedure for feature extraction in remotely sensed imagery [J], Computers & Geosciences,2005, Vol.31, No.3, pp:289-296.
    [171]Zhou, W., Troy, A., An object-oriented approach for analysing and characterizing urban landscape at the parcel level [J], International Journal of Remote Sensing,2008, Vol.29, No.11, pp:3119-3135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700