用户名: 密码: 验证码:
中国蜂胶和巴西蜂胶改善糖尿病大鼠的效果及对糖尿病肾病的作用机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病是一种慢性、全身性、代谢性疾病,主要是由于体内胰岛素分泌绝对或相对不足引起,表现为血糖升高,伴以脂肪、蛋白质、水、电解质代谢紊乱。糖尿病发病机制复杂,能引发多种血管并发症。目前市场上的药物不能完全有效地达到治疗目的,且治疗费用昂贵,存在一定的副作用。研究人员试图寻找有效的天然产物以改善糖尿病症状,同时达到减少副作用,降低治疗费用的目的。
     蜂胶是蜜蜂采集的一种树脂类混合物,其成分复杂,目前已知蜂胶所含成分超过300种,主要包括黄酮类、酚类、芳香族类、有机酸类、酯类、醛类、醇类、烯烃类、萜类和挥发性成分等。蜂胶具有免疫调节、抗氧化、抗炎、护肝、抗肿瘤、抑制病原微生物等多种生物学活性。我们先前的研究也证明蜂胶能有效降低糖尿病模型大鼠血糖,改善氧化应激。
     蜂胶的生物学活性受植物来源、采集地点、采集蜂种和提取方法等多种因素影响,但是化学成分的差异是造成蜂胶活性变化的主要原因。巴西蜂胶(绿蜂胶)主要胶源植物是Baccharis dracunculifolia DC,其主要的活性成分是异戊二烯-对-香豆酸及其衍生物,而中国蜂胶(杨树型蜂胶)的主要活性成分为黄酮类化合物。巴西蜂胶和中国蜂胶成分的差异可能导致两种蜂胶对糖尿病症状的改善效果存在差异。
     在本研究中,我们利用链脲霉素构建1型糖尿病(T1DM)大鼠模型,链脲霉素+高脂饲料构建2型糖尿病(T2DM)大鼠模型,通过研究大鼠尿液、血液和肝肾生化指标及肝肾组织病理变化,比较中国蜂胶和巴西蜂胶改善糖尿病大鼠糖代谢、脂质代谢、蛋白质代谢、氧化应激和肝肾功能的效果。同时测定T2DM大鼠肾组织内促炎细胞因子IL-2、IL-6、TNF-α及MCP-1 mRNA表达,测定PKCmRNA表达以及TGF-β1表达,测定大鼠肾脏血流动力学指标,探讨蜂胶改善糖尿病肾病可能的作用机理。实验结果如下:
     1.蜂胶改善T1DM大鼠的效果
     以拜糖平为阳性药(1mg/100g,每天两次),观察中国蜂胶和巴西蜂胶(设定高、低剂量组,分别为10mg/100g和5mg/100g,每天两次)改善T1DM模型大鼠的效果。正常组和模型组大鼠给予生理盐水(1mg/100g,每天两次)。实验持续8周。
     1)体重和糖代谢:中国蜂胶和巴西蜂胶均能明显减缓T1DM大鼠体重下降以及血糖升高,呈现剂量效应。在相同剂量下,中国蜂胶效果略优于巴西蜂胶;中国蜂胶能显著降低T1DM大鼠血清HbAlc水平,呈现剂量效应,巴西蜂胶效果不明显;2)脂质代谢:与正常组大鼠相比,模型组大鼠血清TG和TC含量显著增加。高剂量中国蜂胶能明显降低T1DM大鼠血清TC水平;3)血液氧化应激:与正常组大鼠相比,模型组大鼠血清MDA、NO和NOS含量明显增加,而SOD和CAT含量明显下降。中国蜂胶和巴西蜂胶能改善T1DM大鼠氧化损伤。与模型组相比,高剂量中国蜂胶能显著降低大鼠血清MDA含量,低剂量中国蜂胶能有效提升血清SOD含量;巴西蜂胶能明显增加血清SOD含量,且低剂量巴西蜂胶能显著降低血清MDA含量。巴西蜂胶还能有效降低血清NOS含量;4)肝功能和氧化应激:与正常组相比,模型组大鼠血清ALT和AST含量显著增加,并出现氧化应激现象。中国蜂胶和巴西蜂胶能显著降低血清ALT和AST含量,而阳性药效果不显著。中国蜂胶显著提升肝脏GSH-px,但对肝脏MDA含量影响不显著,而巴西蜂胶能全面恢复肝脏各类抗氧化酶含量,抑制MDA产生。肝脏组织切片HE染色结果表明,与正常组大鼠相比,模型组大鼠肝脏病变程度并不严重,而各给药组大鼠肝组织形态基本维持正常;5)肾功能和氧化应激:与正常组相比,模型组大鼠BUN、尿液总蛋白、尿液白蛋白含量显著增加,而肾脏病理组织HE染色结果显示模型组大鼠肾脏肾小管上皮细胞空泡化,出现肾小管上皮管型,这表示糖尿病大鼠开始出现肾病症状。中国蜂胶和巴西蜂胶均能降低尿液中白蛋白含量,同时巴西蜂胶能抑制BUN和尿液总蛋白升高。观察蜂胶组大鼠肾脏组织切片发现,蜂胶能减少肾小管上皮细胞空泡化现象。对肾脏组织氧化应激水平检测发现,两种蜂胶均能有效提升肾脏CAT,抑制肾脏脂质过氧化并降低GSH-px含量。
     2.蜂胶改善T2DM大鼠的效果
     以卡司平为阳性药(1mg/100g,每天两次),观察中国蜂胶和巴西蜂胶(单剂量,5mg/100g大鼠体重,每天两次)改善T2DM模型大鼠的效果。正常组和模型组大鼠给予生理盐水(1mg/100g,每天两次)。实验维持8周。
     1)体重:中国蜂胶和巴西蜂胶均能减缓T2DM大鼠体重下降,但效果不显著,中国蜂胶在实验第8周能明显抑制实验大鼠体重下降;2)糖代谢和胰岛素:巴西蜂胶能降低糖尿病大鼠血糖含量,但效果不明显;中国蜂胶在实验前4周能显著降低血糖含量,而在实验后4周则不能显著降低血糖含量:阳性药卡司平在第2周能显著降低血糖含量,但在第8周却促进血糖升高。尿糖检测结果发现,蜂胶和阳性药在整个实验周期能有效降低尿糖含量。从HbAlc分析发现,阳性药能降低糖尿病大鼠HbAlc含量,但效果不明显:A组大鼠(饲喂中国蜂胶)和B组大鼠(饲喂巴西蜂胶)HbAlc含量在第4周比模型组大鼠分别低8.6%和10.2%,效果显著;实验第8周A组大鼠(饲喂中国蜂胶)HbAlc含量比模型组大鼠低5.3%,差异显著。T2DM大鼠空腹胰岛素含量与正常组大鼠相比无显著差异,中国蜂胶和巴西蜂胶对T2DM大鼠胰岛素含量无显著影响;3)蛋白质代谢:T2DM大鼠出现蛋白质代谢紊乱现象,中国蜂胶和巴西蜂胶均能改善T2DM大鼠蛋白质代谢紊乱现象,其中中国蜂胶能显著抑制糖尿病大鼠血清总蛋白和白蛋白下降,巴西蜂胶能显著抑制血清总蛋白下降:4)脂质代谢:与正常组大鼠相比,模型组大鼠HDL-C含量变化不显著,但是TC、TG和LDL-C含量则显著增加。中国蜂胶和阳性药对TC和HDL-C含量影响不明显,但在实验前期能有效降低LDL-C和TG含量,而在实验后期效果下降:5)血液氧化应激:中国蜂胶和巴西蜂胶对T2DM大鼠血清NO和NOS含量均无显著影响,但能明显降低MDA含量;中国蜂胶能显著提升CAT含量,巴西蜂胶则能显著提升GSH-px含量;6)肝功能:与正常组大鼠相比,模型组大鼠血清ALT含量显著高于正常大鼠,而AST含量在实验中期明显偏低,中国蜂胶和巴西蜂胶能有效降低糖尿病大鼠血清ALT含量,但对AST含量影响不显著。肝脏病理观察发现,模型组大鼠肝细胞浊肿,且大泡状脂滴空泡化,已有脂肪肝产生,但尚未产生肝纤维化,蜂胶和阳性药能减少糖尿病大鼠肝脏脂肪化程度,且蜂胶效果优于阳性药;7)肾功能和氧化应激:T2DM大鼠BUN、CCR及尿白蛋白排泄率明显高于正常大鼠,观察其肾脏病理发现,模型组大鼠肾脏肾小球体积增大,系膜细胞增生,肾小球基底膜增生严重,部分肾小管上皮细胞空泡化,出现肾小管上皮管型,大量PAS阳性物质染成红色。蜂胶和阳性药能显著降低BUN和尿液白蛋白含量,阳性药卡司平还能明显降低肾脏CCR值。蜂胶和阳性药可减轻T2DM引起的大鼠肾损伤。中国蜂胶能降低肾组织MDA含量并提升CAT含量,巴西蜂胶能降低MDA含量而提升GSH-px含量。此外,蜂胶和阳性药均能显著减少肾脏NO和NOS含量的增加。
     3.蜂胶保护T2DM大鼠肾脏的作用机理
     在实验第8周用激光多普勒血流仪测定T2DM模型大鼠肾脏血流动力学指标,实验结束后取T2DM模型大鼠肾脏组织,测定相关指标。
     1)炎症反应:中国蜂胶和巴西蜂胶均能降低T2DM大鼠血清CRP含量,巴西蜂胶效果显著,这表明蜂胶能改善T2DM大鼠炎症现象;中国蜂胶和巴西蜂胶均能减轻T2DM大鼠肾脏炎症程度,其中中国蜂胶能有效降低糖尿病大鼠肾脏中IL-2、IL-6和TNF-α含量,巴西蜂胶能有效抑制糖尿病大鼠肾脏中TNF-α含量的增加及MCP-1 mRNA表达;2)肾脏血流动力学:中国蜂胶能明显改善T2DM大鼠肾脏血流动力学异常现象,升高肾脏血流量,并降低肾脏血管阻力值和过滤分数,巴西蜂胶则效果不明显;3)PKC表达:与正常组相比,T2DM大鼠肾脏PKC mRNA表达明显增加。中国蜂胶和巴西蜂胶能明显抑制T2DM大鼠肾脏PKC mRNA表达;4)TGF-β1表达:免疫组化染色和图像分析结果显示,模型组大鼠肾脏TGF-β1表达明显高于正常组。蜂胶和阳性药能降低大鼠肾脏TGF-β1表达的总光密度、平均光密度和阳性指数,其中巴西蜂胶和阳性药效果显著,而中国蜂胶效果不显著,巴西蜂胶效果优于中国蜂胶而与与阳性药相当。
     综上所述,中国蜂胶和巴西蜂胶能有效改善T1DM和T2DM对大鼠造成的损伤。两种蜂胶均能抑制糖尿病大鼠体重下降,改善大鼠血液糖代谢、脂质代谢、蛋白代谢以及血液、肝、肾氧化应激。通过测定肝肾功能相关指标及组织切片观察结果表明,蜂胶能改善糖尿病大鼠肝肾功能。比较中国蜂胶和巴西蜂胶的效果发现,中国蜂胶对血糖的控制效果和肝脏的保护效果略优于巴西蜂胶,而巴西蜂胶改善氧化应激的效果要略优于中国蜂胶。同时,通过测定肾脏组织炎症反应、血流动力学、PKC和TGF-β1,初步探明了蜂胶改善糖尿病肾病的作用机理。
Diabetes is a chronic disease that occurs when the pancreas does not produce enough insulin, or alternatively, when the body cannot effectively use the insulin it produces. Hyperglycaemia is a common effect of uncontrolled diabetes and over time leads to serious damage to many of the body's systems, which results in various vascular complications such as retinopathy, neuropathy, kidney failure, heart disease and stroke. Due to the huge medical expenditure and complicated pathobiology of diabetes, also adverse effect of diabetes drug, the research has directed to herb medicine to improve glucose control and lower the risk of its complications.
     Propolis, a resinous substance collected from the buds of certain trees by bees, is a traditional herb medicine in many countries. More than 300 components have been found in propolis, mainly composed of phenolic compounds, terpenes and essential oil. Propolis has been proved various bioactivities of antibacterial, antivirus, antifungal, immunoloregulatory, anti-oxidative, anti-inflammatory,hepatoprotective and anti-tumor, Our previous studies have shown that Chinese propolis helps to reduce fast blood glucose, improve oxidative stress and lipid metablisom in alloxan-induced diabetic rats. In addition, propolis intake by diabetic patients are proved to reduce blood glucose and glycosylated hemoglobin (HbAlc) level.
     Some reports suggested the chemistry of propolis varied with botonical source, geographical origins and collecting bees. The botanical difference is a key factor for chemical variability. Chinese propolis contains many kinds of flavonoids and phenolic acid esters.The major components in of Brazilian green propolis are terpenoids and prenylated derivatives of pcoumaric.
     To guarantees the quality, safety and efficacy of propolis, we compared the antidiabetic effect of Chinese propolis and Brazilian green propolis in this experiment. We induced type 1 diabetes mellitus (T1DM) rat model by injection of streptozotcin, and type 2 diabetes mellitus (T2DM) rat model by injection of streptozotcin plus high lipid diet feeding. By determination of urine, blood and hepatorenal biochemical indicators and biopsy, we analyzed the effect of propolis on glycometabolism, lipid metabolism, protein metabolism, oxidative stress and hepatorenal function in T1DM and T2DM rats. To reveal the possible protection mechanism of propolis on diabetic kidney injury in T2DM rats, we measured the expression of pro inflammatory cytokines IL-2, IL-6 and TNF-a protein by ELISA. The TGF-β1 expressions were measured using immunohistochemical staining and the MCP-1 mRNA and protein kinase C (PKC) mRNA was measured using RT-PCR. The results are as follows:
     1. Effects of propolis on TIDM rats
     Grouping and Administration:TIDM rats were randomly divided into groups of model, A1, A2, B1, B2 and positive groups, eight rats each group. Additional 8 rats without STZ induction were selected as normal group. Each rat of Al group was received a dose of 10 mg Chinese propolis per 100 g body weight; Each rat of A2 group was received a dose of 5 mg Chinese propolis per 100 g body weight; Each rat of B1 group was received a dose of 10 mg Brazilian propolis per 100 g body; Each rat of B2 group was received a dose of 5 mg Brazilian propolis per 100 g body; Each rat of positive group was received a dose of 1 mg glucobay perl00 g body weight; Each rat of model group and normal group was received a dose of 1 ml physiological saline per100 g body weight. Administration last continuously eight weeks intragastrically twice daily.
     Results:1) Body weight and glycometabolism:Chinese propolis and Brazilian green propolis obviously inhibited weight loss and blood glucose increment in TIDM rats in a dose-dependent effect, and Chinese propolis had a slightly better effect than Brazilian green propolis; China Propolis can significantly lower HbAlc levels in a dose-dependent effect; 2) Lipid metabolism:Compared with normal rats, model rats had an obviously elevated serum TC and TG level. High dose Chinese propolis obviously reduced serum TC levels in T1DM rats; 3) Serum oxidative stress: Compared with normal rats, model rats had an obviously elevated MDA, NO and NOS level and reduced SOD and CAT level. Chinese propolis and Brazilian green propolis improved serum oxidative damage in TIDM rats by a dose-independent effect. High dose Chinese propolis significantly reduced serum MDA level, whereas low dose Chinese propolis markedly raise serum SOD level. Brazilian propolis increased serum SOD level significantly. In addition, Brazilian green propolis can apparently reduce serum NOS level; 4) Hepatic function and histological injury: The content of AST and ALT in model rats increased significantly compared with normal rats. Chinese propolis and Brazilian green propolis can significantly reduced AST and ALT level. As to hepatic oxidative damage, Chinese propolis suppressed the hepatic MDA level and showed no effect on antioxidant enzyme, whereas Brazilian green propolis inhibited lipid peroxidation and improve the activity of antioxidant enzyme. By histological observation, model rats showed mild hepatic injury, and both Propolis and glucobay helped to recover hepatic injury.5) Renal function and
     histological injury:The level of BUN, urine albumin and urine protein in model group were significantly higher than those in normal group. Treated with Chinese propolis and Brazilian propolis reduced urine albumin. Brazilian green propolis also reduced serum BUN and urine protein level significantly. As to renal oxidative stress, propolis can reduce renal MDA and GSH-px level and raise CAT markedly. By histological observation, model rats showed moderate renal injury, and both Propolis and acarbose helped to recover hepatic injury.
     2. Effects of propolis on T2DM rats
     Grouping and Administration:T2DM rats were randomly divided into groups of model, A, B and positive groups, eight rats each group. Additional 8 rats without STZ induction were selected as normal group. Each rat of A group was received a dose of 5 mg Chinese propolis per 100 g body weight; Each rat of B group was received a dose of 5 mg Brazilian propolis per 100 g body; Each rat of positive was received a dose of 1 mg pioglitazonehcl per100 g body weight; Each rat of model group and normal group was received a dose of 1 ml physiological saline per100 g body weight. Administration last continuously eight weeks intragastrically twice daily.
     Results:1) Body weight:Chinese propolis and Brazilian green propolis had an indistinctive inhibition on weight loss of T2DM rats. A group rats (treated with Chinese propolis) is obviously heavier than model rats at Week 8; 2)
     Glycometabolism:Chinese propolis lowered FBG of T2DM significantly during the previous four weeks and showed no marked effect during the following four weeks, whereas Brazilian green propolis had no obvious effect. China Propolis can significantly lower HbAlc levels at Week 4 and Week 8, whereas Brazilian green propolis reduced HbAlc levels at Week 4; 3) Lipid metabolism:Compared with normal rats, model rats had an obviously elevated serum TC, LDL-C and TG level, Chinese propolis obviously reduced serum TG and LDL-C levels in early phase of T2DM rats; 4) Serum oxidative stress:Compared with normal rats, model rats had an obviously elevated serum MDA level and reduced GSH-px level. Chinese propolis increased serum GSH-px level and reduced serum MDA level significantly, whereas Brazilian green propolis improved serum CAT level and reduced serum MDA level significantly; 5) Insulin and protein metabolism:Compared with normal rats, T2DM rats had a normal insulin level and reduced serum protein and albumin level. Propolis showed no effect on insulin. Chinese propolis can raise serum protein and albumin level, whereas Brazilian propolis can raise serum albumin level; 6)Hepatic
     function and histological injury:Obviously reduced serum AST level and increased ALT level of model rats meant damaged hepatic function, propolis-treated rats had a significantly reduced ALT level. By histological observation, model rats liver showed severe adipose infiltration. Propolis and positive drug helped to recover hepatic injury.
     7) Renal function and histological injury:The level of serum BUN, CCR and urine albumin in model group were significantly higher than those in normal group. Propolis treating can reduce serum BUN and urine albumin. As to renal oxidative stress, Chinese propolis can reduce renal MDA and increase CAT level significantly, whereas Brazilian propolis can reduce renal MDA and increase GSH-px level. By histological observation, model rats showed moderate renal injury and propolis and acarbose helped to recover hepatic injury.
     3. Protection mechanism of propolis on T2DM rat kidney
     At Week 8 we measured kidney hemodynamics of T2DM rats by laser Doppler flowmetery. Once rats were sacrificed, kidney was removed to determine relevant indicators.
     1) Inflammation:Compared with normal rats, model rats had an obviously increased serum CRP level and renal proinflammatory cytokines. Brazilian green propolis can reduce serum CRP levels significantly. As to renal inflammation, Chinese propolis can markedly reduce renal IL-2, IL-6 and TNF-a levels, whereas the Brazilian green propolis can effectively inhibit the expression of TNF-a protein and MCP-1 mRNA; 2) Renal hemodynamics:Diabetes/high glucose can change rats renal hemodynamics. Chinese propolis can significantly improve the abnormal renal hemodynamics in T2DM rats by increasing renal blood flow and reducing renal vascular resistance and filtration fraction, whereas Brazilian propolis showed little effect; 3) Expression of renal PKC mRNA:Both Chinese propolis and Brazilian green propolis inhibit the PKC mRNA expression in T2DM rat kidney; 4) Expression of renal TGF-β1:Immunohistochemical staining and image analysis showed that model rats had a significantly higher renal TGF-β1 expression compared with normal group. Brazilian green propolis and positive drug can improve total optical density, taverage optical density and positive index in rat kidneys, whereas Chinese propolis showed an inapparent improvement.
     In summary, Chinese propolis and Brazilian green propolis can effectively alleviate the diabetes-induced metabolism disorders in rats. Propolis can improve weight loss, glycometabolism, lipid metabolism, protein metabolism and serum, liver and kidney oxidative stress in diabetic rats. Determination of relevant indicators and histological observation suggested the protection effect of propolis on hepatorenal function in diabetic rats. In comparison, Chinese propolis showed a better hypoglycemic and hepatic-protection effect than Brazilian propolis, whereas Brazilian green propolis had a more comprehensive antioxidant effect. By measuring the renal proinflammatory cytokines, hemodynamics, PKC mRNA, and TGF-β1 protein, we analyzed a possible protection mechanism of propolis on diabetic nephropathy.
引文
Antunez K., Harriet J., Gende L., et al. Efficacy of natural propolis extract in the control of American Foulbrood[J]. Vet Microbiol,2008,131(3-4):324-331.
    Bankova V. Chemical diversity of propolis and the problem of standardization[J]. J Ethnopharmacol,2005,100(1-2):114-117.
    Bankova V. S., De Castro S. L., Marcucci M. C. Propolis:recent advances in research on chemistry and plant origin[J]. Apidologie,2000,31:3-15.
    Banskota A. H., Tezuka Y., Kadota S. Recent progress in pharmacological research of propolis[J]. Phytother Res,2001,15(7):561-571.
    Bastos E. M., Simone M., Jorge D. M., et al. In vitro study of the antimicrobial activity of Brazilian propolis against Paenibacillus larvae[J]. J Invertebr Pathol,2008,97(3):273-281.
    Boyanova L., Kolarov R., Gergova G., et al. In vitro activity of Bulgarian propolis against 94 clinical isolates of anaerobic bacteria[J]. Anaerobe,2006,12(4): 173-177.
    Crane E. The world history of beekeeping and honey hunting[M]. London:Gerald Duckworth& Co. Ltd.,1999:549-553.
    Cushnie T. P., Hamilton V. E., Chapman D. G., et al. Aggregation of Staphylococcus aureus following treatment with the antibacterial flavonol galangin[J]. J Appl Microbiol,2007,103(5):1562-1567.
    Cushnie T. P., Lamb A. J. Antimicrobial activity of flavonoids[J]. Int J Antimicrob Agents,2005a,26(5):343-356.
    Cushnie T. P., Lamb A. J. Detection of galangin-induced cytoplasmic membrane damage in Staphylococcus aureus by measuring potassium loss[J]. J Ethnopharmacol,2005b,101(1-3):243-248.
    da Silva Filho A. A., de Sousa J. P., Soares S., et al. Antimicrobial activity of the extract and isolated compounds from Baccharis dracunculifolia D. C. (Asteraceae)[J]. Z Naturforsch [C],2008,63(1-2):40-46.
    Dixon R. A. Natural products and plant disease resistance[J]. Nature,2001,411(6839): 843-847.
    Duarte S., Rosalen P. L., Hayacibara M. F., et al. The influence of a novel propolis on mutans streptococci biofilms and caries development in rats[J]. Arch Oral Biol, 2006,51(1):15-22.
    Garedew A., Schmolz E., Lamprecht I. Microbiological and calorimetric investigations on the antimicrobial actions of different propolis extracts:an in vitro approach[J]. Thermochimica Acta,2004,422(1-2):115-124.
    Ghasem Y. B., Ownagh A., Hasanloei M. Antibacterial and antifungal activity of Iranian propolis against Staphylococcus aureus and Candida albicans[J]. Pak J Biol Sci,2007,10(8):1343-1345.
    Ghisalberti E. L. Propolis-Review[J]. Bee World,1979,60(2):59-84.
    Kismet K., Kilicoglu B., Koru O., et al. Evaluation on scolicidal efficacy of propolis[J]. Eur Surg Res,2006,38(5):476-481.
    Koo H., Rosalen P. L., Cury J. A., et al. Effects of compounds found in propolis on Streptococcus mutans growth and on glucosyltransferase activity [J]. Antimicrob Agents Chemother,2002,46(5):1302-1309.
    Koru O., Toksoy F., Acikel C. H., et al. In vitro antimicrobial activity of propolis samples from different geographical origins against certain oral pathogens[J]. Anaerobe,2007,13(3-4):140-145.
    Kosalec I., Pepeljnjak S., Bakmaz M., et al. Flavonoid analysis and antimicrobial activity of commercially available propolis products[J]. Acta Pharm,2005, 55(4):423-430.
    Krell R. Value-added Products from Beekeeping, FAO Agricultural Sevices Bulletin No.124[M]. Rome:Food and Agriculture Organization of the United Nations, 1996:157-194.
    Kumazawa S., Hayashi K., Kajiya K., et al. Studies of the Constituents of Uruguayan Propolis[J]. J. Agric. Food Chem,2002,50(17):4777-4782.
    Leitao D. P., Filho A. A., Polizello A. C., et al. Comparative evaluation of in-vitro effects of Brazilian green propolis and Baccharis dracunculifolia extracts on cariogenic factors of Streptococcus mutans[J]. Biol Pharm Bull,2004,27(11): 1834-1839.
    Lu L. C., Chen Y. W., Chou C. C. Antibacterial activity of propolis against Staphylococcus aureus[J]. Int J Food Microbiol,2005,102(2):213-220.
    Marcucci M. C. Propolis:Chemical Composition, Biological Properties and Therapeutic Activity[J]. Apidologie,1995,26(2):83-99.
    Marcucci M. C., Ferreres F., Garcia-Viguera C., et al. Phenolic compounds from Brazilian propolis with pharmacological activities[J]. J Ethnopharmacol,2001, 74(2):105-112.
    Mirzoeva O. K., Grishanin R. N., Calder P. C. Antimicrobial action of propolis and some of its components:the effects on growth, membrane potential and motility of bacteria[J]. Microbiol Res,1997,152(3):239-246.
    Nostro A., Cellini L., Di Bartolomeo S., et al. Effects of combining extracts (from propolis or Zingiber officinale) with clarithromycin on Helicobacter pylori[J]. Phytother Res,2006,20(3):187-190.
    Onlen Y., Duran N., Atik E., et al. Antibacterial activity of propolis against MRSA and synergism with topical mupirocin[J]. J Altern Complement Med,2007, 13(7):713-718.
    Pepeljnjak S., Kosalec I. Galangin expresses bactericidal activity against multiple-resistant bacteria:MRSA, Enterococcus spp. and Pseudomonas aeruginosa[J]. FEMS Microbiol Lett,2004,240(1):111-116.
    Popova M., Silici S., Kaftanoglu O., et al. Antibacterial activity of Turkish propolis and its qualitative and quantitative chemical composition[J]. Phytomedicine, 2005,12(3):221-228.
    Santos F. A., Bastos E. M., Maia A. B., et al. Brazilian propolis:physicochemical properties, plant origin and antibacterial activity on periodontopathogens[J]. Phytother Res,2003,17(3):285-289.
    Sawaya A., Palma A., Caetano F., et al. Comparative study of in vitro methods used to analyse the activity of propolis extracts with different compositions against species of Candida[J]. Lett Appl Microbiol,2002,35(3):203-207.
    Sawaya A., Souza K., Marcucci M., et al. Analysis of the composition of Brazilian propolis extracts by chromatography and evalutiom of their in vitro activity against Gram-positive bacteria[J]. Braz J Microbiol,2004,35:104-109.
    Scazzocchio F., D'Auria F. D., Alessandrini D., et al. Multifactorial aspects of antimicrobial activity of propolis[J]. Microbiol Res,2006,161(4):327-333.
    Seidel V., Peyfoon E., Watson D. G., et al. Comparative study of the antibacterial activity of propolis from different geographical and climatic zones[J]. Phytother Res,2008,22(9):1256-1263.
    Sforcin J. M. Propolis and the immune system:a review[J]. J Ethnopharmacol,2007, 113(1):1-14.
    Silici S., Kutluca S. Chemical composition and antibacterial activity of propolis collected by three different races of honeybees in the same region[J]. J Ethnopharmacol,2005,99(1):69-73.
    Sonmez S., Kirilmaz L., Yucesoy M., et al. The effect of bee propolis on oral pathogens and human gingival fibroblasts[J]. J Ethnopharmacol,2005,102(3): 371-376.
    Stepanovic S., Antic N., Dakic I., et al. In vitro antimicrobial activity of propolis and synergism between propolis and antimicrobial drugs[J]. Microbiol Res,2003, 158(4):353-357.
    Takaisi-Kikuni N. B., Schilcher H. Electron microscopic and microcalorimetric investigations of the possible mechanism of the antibacterial action of a defined propolis provenance[J]. Planta Med,1994,60(3):222-227.
    Ugur A., Arslan T. An in vitro study on antimicrobial activity of propolis from Mugla province of Turkey[J]. J Med Food,2004,7(1):90-94.
    Uzel A., Sorkun K., Oncag O., et al. Chemical compositions and antimicrobial activities of four different Anatolian propolis samples[J]. Microbiol Res,2005, 160(2):189-195.
    Velazquez C., Navarro M., Acosta A., et al. Antibacterial and free-radical scavenging activities of Sonoran propolis[J]. JAppl Microbiol,2007,103(5):1747-1756.
    Velikova M., Bankova V., Tsvetkova I., et al. Antibacterial ent-kaurene from Brazilian propolis of native stingless bees[J]. Fitoterapia,2000,71(6):693-696.
    李琳.露蜂房的研究和应用[J].中草药,1998,29(4):277-280.
    Abd El-Hady F. K., Hegazi A. G., Wollenweber E. Effect of Egyptian propolis on the susceptibility of LDL to oxidative modification and its antiviral activity with special emphasis on chemical composition[J]. Z Naturforsch [CJ,2007, 62(9-10):645-655.
    Ahn M. R., Kumazawa S., Usui Y., et al. Antioxidant activity and constituents of propolis collected in various areas of China[J]. Food Chemistry,2007,101(4): 1383-1392.
    Ahn M. R., Kunimasa K., Kumazawa S., et al. Correlation between antiangiogenic activity and antioxidant activity of various components from propolis[J]. Mol Nutr Food Res,2009,53(5):643-651.
    Albukhari A. A., Gashlan H. M., El-Beshbishy H. A., et al. Caffeic acid phenethyl ester protects against tamoxifen-induced hepatotoxicity in rats[J]. Food Chem Toxicol,2009.
    Alyane M., Kebsa L. B., Boussenane H. N., et al. Cardioprotective effects and mechanism of action of polyphenols extracted from propolis against doxorubicin toxicity[J]. Pak J Pharm Sci,2008,21(3):201-209.
    Ates B., Dogru M. I., Gul M., et al. Protective role of caffeic acid phenethyl ester in the liver of rats exposed to cold stress[J]. Fundam Clin Pharmacol,2006, 20(3):283-289.
    Banskota A. H., Tezuka Y., Kadota S. Recent progress in pharmacological research of propolis[J]. Phytother Res,2001,15(7):561-571.
    Benguedouar L., Boussenane H. N., Wided K., et al. Efficiency of propolis extract against mitochondrial stress induced by antineoplasic agents (doxorubicin and vinblastin) in rats[J]. Indian J Exp Biol,2008,46(2):112-119.
    Bhadauria M., Nirala S. K., Shukla S. Multiple treatment of propolis extract ameliorates carbon tetrachloride induced liver injury in rats[J]. Food Chem Toxicol,2008,46(8):2703-2712.
    Chen C. N., Weng M. S., Wu C. L., et al. Comparison of Radical Scavenging Activity,
    Cytotoxic Effects and Apoptosis Induction in Human Melanoma Cells by Taiwanese Propolis from Different Sources[J]. Evid Based Complement Alternat Med,2004,1(2):175-185.
    Jasprica I., Bojic M., Mornar A., et al. Evaluation of antioxidative activity of Croatian propolis samples using DPPH· and ABTS·+ stable free radical assays[J]. Molecules,2007a,12(5):1006-1021.
    Jasprica I., Mornar A., Debeljak Z., et al. In vivo study of propolis supplementation effects on antioxidative status and red blood cells[J]. J Ethnopharmacol, 2007b,110(3):548-554.
    Kanbur M., Eraslan G., Silici S. Antioxidant effect of propolis against exposure to propetamphos in rats[J]. Ecotoxicol Environ Saf,2009,72(3):909-915.
    Khalil M. L. Biological activity of bee propolis in health and disease[J]. Asian Pac J Cancer Prev,2006,7(1):22-31.
    Kruidenier L., Verspaget H. W. Review article:oxidative stress as a pathogenic factor in inflammatory bowel disease--radicals or ridiculous?[J]. Aliment Pharmacol Ther,2002,16(12):1997-2015.
    Lee K. J., Choi J. H., Hwang Y. P., et al. Protective effect of caffeic acid phenethyl ester on tert-butyl hydroperoxide-induced oxidative hepatotoxicity and DNA damage[J]. Food Chem Toxicol,2008,46(7):2445-2450.
    Lee S., Kim K. S., Park Y., et al. In vivo anti-oxidant activities of tectochrysin[J]. Arch Pharm Res,2003,26(1):43-46.
    Majiene D., Trumbeckaite S., Savickas A., et al. Influence of propolis water solution on heart mitochondrial function[J]. J Pharm Pharmacol,2006,58(5): 709-713.
    Nakanishi I., Uto Y., Ohkubo K., et al. Efficient radical scavenging ability of artepillin C, a major component of Brazilian propolis, and the mechanism[J]. Org Biomol Chem,2003,1(9):1452-1454.
    Newairy A. S., Salama A. F., Hussien H. M., et al. Propolis alleviates aluminium-induced lipid peroxidation and biochemical parameters in male rats[J]. Food Chem Toxicol,2009,47(6):1093-1098.
    Nirala S. K., Bhadauria M. Synergistic effects of ferritin and propolis in modulation of beryllium induced toxicogenic alterations[J]. Food Chem Toxicol,2008a, 46(9):3069-3079.
    Nirala S. K., Bhadauria M., Shukla S., et al. Pharmacological intervention of tiferron and propolis to alleviate beryllium-induced hepatorenal toxicity[J]. Fundam Clin Pharmacol,2008b,22(4):403-415.
    Ogeturk M., Kus I., Colakoglu N., et al. Caffeic acid phenethyl ester protects kidneys against carbon tetrachloride toxicity in rats[J]. J Ethnopharmacol,2005,97(2): 273-280.
    Oktem F., Ozguner F., Sulak O., et al. Lithium-induced renal toxicity in rats: protection by a novel antioxidant caffeic acid phenethyl ester[J]. Mol Cell Biochem,2005,277(1-2):109-115.
    Ozguner F., Altinbas A., Ozaydin M., et al. Mobile phone-induced myocardial oxidative stress:protection by a novel antioxidant agent caffeic acid phenethyl ester[J]. Toxicol Ind Health,2005a,21(9):223-230.
    Ozguner F., Bardak Y., Comlekci S. Protective effects of melatonin and caffeic acid phenethyl ester against retinal oxidative stress in long-term use of mobile phone:a comparative study[J]. Mol Cell Biochem,2006,282(1-2):83-88.
    Ozguner F., Oktem F., Ayata A., et al. A novel antioxidant agent caffeic acid phenethyl ester prevents long-term mobile phone exposure-induced renal impairment in rat. Prognostic value of malondialdehyde, N-acetyl-beta-D-glucosaminidase and nitric oxide determination[J]. Mol Cell Biochem,2005b,277(1-2):73-80.
    Russo A., Cardile V., Sanchez F., et al. Chilean propolis:antioxidant activity and antiproliferative action in human tumor cell lines[J]. Life Sci,2004,76(5): 545-558.
    Russo A., Longo R., Vanella A. Antioxidant activity of propolis:role of caffeic acid phenethyl ester and galangin[J]. Fitoterapia,2002,73 Suppl 1:S21-29.
    Russo A., Troncoso N., Sanchez F., et al. Propolis protects human spermatozoa from DNA damage caused by benzo[a]pyrene and exogenous reactive oxygen species[J]. Life Sci,2006,78(13):1401-1406.
    Simoes L. M., Gregorio L. E., Da Silva Filho A. A., et al. Effect of Brazilian green propolis on the production of reactive oxygen species by stimulated neutrophils[J]. J Ethnopharmacol,2004,94(1):59-65.
    Valko M., Leibfritz D., Moncol J., et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. Int J Biochem Cell Biol,2007, 39(1):44-84.
    Wang T., Chen L., Wu W., et al. Potential cytoprotection:antioxidant defence by caffeic acid phenethyl ester against free radical-induced damage of lipids, DNA, and proteins[J]. Can J Physiol Pharmacol,2008,86(5):279-287.
    Zhao J. Q., Wen Y. F., Bhadauria M., et al. Protective effects of propolis on inorganic mercury induced oxidative stress in mice[J]. Indian J Exp Biol,2009,47(4): 264-269.
    Abdel-Latif M. M., Windle H. J., Homasany B. S., et al. Caffeic acid phenethyl ester modulates Helicobacter pylori-induced nuclear factor-kappa B and activator protein-1 expression in gastric epithelial cells[J]. Br J Pharmacol,2005, 146(8):1139-1147.
    Ansorge S., Reinhold D., Lendeckel U. Propolis and some of its constituents down-regulate DNA synthesis and inflammatory cytokine production but induce TGF-betal production of human immune cells[J]. Z Naturforsch [C], 2003,58(7-8):580-589.
    Aslan A., Temiz M., Atik E., et al. Effectiveness of mesalamine and propolis in experimental colitis[J].Adv Ther,2007,24(5):1085-1097.
    Awale S., Shrestha S. P., Tezuka Y, et al. Neoflavonoids and related constituents from Nepalese propolis and their nitric oxide production inhibitory activity[J]. J Nat Prod,2005,68(6):858-864.
    Banskota A. H., Tezuka Y., Kadota S. Recent progress in pharmacological research of propolis[J]. Phytother Res,2001,15(7):561-571.
    Blonska M., Bronikowska J., Pietsz G., et al. Effects of ethanol extract of propolis (EEP) and its flavones on inducible gene expression in J774A.1 macrophages[J]. J Ethnopharmacol,2004,91(1):25-30.
    Borrelli F., Maffia P., Pinto L., et al. Phytochemical compounds involved in the anti-inflammatory effect of propolis extract[J]. Fitoterapia,2002,73 Suppl1: 53-63.
    Bose J. S., Gangan V., Jain S. K., et al. Downregulation of inflammatory responses by novel caffeic acid ester derivative by inhibiting NF-kappa B[J]. J Clin Immunol,2009,29(1):90-98.
    Choi K., Choi C. Differential regulation of c-Jun N-terminal kinase and NF-kappaB pathway by caffeic acid phenethyl ester in astroglial and monocytic cells[J]. J Neurochem,2008,105(2):557-564.
    Chu W. H. Adjuvant effect of propolis on immunisation by inactivated Aeromonas hydrophila in carp (Carassius auratus gibelio)[J]. Fish Shellfish Immunol,2006, 21(1):113-117.
    Cirino G., Distrutti E., Wallace J. L. Nitric oxide and inflammation[J]. Inflamm Allergy Drug Targets,2006,5(2):115-119.
    Dantas A. P., Olivieri B. P., Gomes F. H., et al. Treatment of Trypanosoma cruzi-infected mice with propolis promotes changes in the immune response[J]. JEthnopharmacol,2006,103(2):187-193.
    Duran N., Koc A., Oksuz H., et al. The protective role of topical propolis on experimental keratitis via nitric oxide levels in rabbits[J]. Mol Cell Biochem, 2006,281(1-2):153-161.
    Fischer G., Cleff M. B., Dummer L. A., et al. Adjuvant effect of green propolis on humoral immune response of bovines immunized with bovine herpesvirus type 5[J]. Vet Immunol Immunopathol,2007a,116(1-2):79-84.
    Fischer G., Conceicao F. R., Leite F. P., et al. Immunomodulation produced by a green propolis extract on humoral and cellular responses of mice immunized with SuHV-1[J]. Vaccine,2007b,25(7):1250-1256.
    Fitzpatrick L. R., Wang J., Le T. Caffeic acid phenethyl ester, an inhibitor of nuclear factor-kappaB, attenuates bacterial peptidoglycan polysaccharide-induced colitis in rats[J]. J Pharmacol Exp Ther,2001,299(3):915-920.
    Girgin G., Baydar T., Ledochowski M., et al. Immunomodulatory effects of Turkish propolis:changes in neopterin release and tryptophan degradation [J]. Immunobiology,2009,214(2):129-134.
    Han S., Sung K. H., Yim D., et al. Activation of murine macrophage cell line RAW 264.7 by Korean propolis[J]. Arch Pharm Res,2002,25(6):895-902.
    Hu F., Hepburn H. R., Li Y., et al. Effects of ethanol and water extracts of propolis (bee glue) on acute inflammatory animal models[J]. J Ethnopharmacol,2005, 100(3):276-283.
    Jung W. K., Lee D. Y., Choi Y. H., et al. Caffeic acid phenethyl ester attenuates allergic airway inflammation and hyperresponsiveness in murine model of ovalbumin-induced asthma[J]. Life Sci,2008,82(13-14):797-805.
    Khayyal M. T., el-Ghazaly M. A., el-Khatib A. S., et al. A clinical pharmacological study of the potential beneficial effects of a propolis food product as an
    adjuvant in asthmatic patients[J]. Fundam Clin Pharmacol,2003,17(1): 93-102.
    Liu Y., Shepherd E. G., Nelin L. D. MAPK phosphatases--regulating the immune response[J]. Nat Rev Immunol,2007,7(3):202-212.
    Marcucci M. C. Propolis:Chemical Composition, Biological Properties and Therapeutic Activity[J]. Apidologie,1995,26(2):83-99.
    Missima F., Sforcin J. M. Green brazilian propolis action on macrophages and lymphoid organs of chronically stressed mice[J]. Evid Based Complement Alternat Med,2008,5(1):71-75.
    Montpied P., de Bock F., Rondouin G., et al. Caffeic acid phenethyl ester (CAPE) prevents inflammatory stress in organotypic hippocampal slice cultures[J]. Brain Res Mol Brain Res,2003,115(2):111-120.
    Nagaoka T., Banskota A. H., Tezuka Y., et al. Caffeic acid phenethyl ester (CAPE) analogues:potent nitric oxide inhibitors from the Netherlands propolis[J]. Biol Pharm Bull,2003,26(4):487-491.
    Naito Y., Yasumuro M., Kondou K., et al. Anti inflammatory effect of topically applied propolis extract in carrageenan-induced rat hind paw edema[J]. Phytother Res, 2007,21(5):452-456.
    Oksuz H., Duran N., Tamer C., et al. Effect of propolis in the treatment of experimental Staphylococcus aureus keratitis in rabbits[J]. Ophthalmic Res, 2005,37(6):328-334.
    Orsi R., Funari S., Soares A., et al. Immunomodulatory action of propolis on macrophage activation[J]. Journal of Venomous Animals and Toxins,2000,6: 205-219.
    Orsi R. O., Sforcin J. M., Funari S. R., et al. Effects of Brazilian and Bulgarian propolis on bactericidal activity of macrophages against Salmonella Typhimurium[J]. Int Immunopharmacol,2005,5(2):359-368.
    Park J. H., Lee J. K., Kim H. S., et al. Immunomodulatory effect of caffeic acid phenethyl ester in Balb/c mice[J]. Int Immunopharmacol,2004,4(3):429-436.
    Paulino N., Abreu S. R., Uto Y, et al. Anti-inflammatory effects of a bioavailable compound, Artepillin C, in Brazilian propolis[J]. Eur J Pharmacol,2008, 587(1-3):296-301.
    Paulino N., Dantas A. P., Bankova V., et al. Bulgarian propolis induces analgesic and anti-inflammatory effects in mice and inhibits in vitro contraction of airway smooth muscle[J]. JPharmacol Sci,2003,93(3):307-313.
    Paulino N., Teixeira C., Martins R., et al. Evaluation of the analgesic and anti-inflammatory effects of a Brazilian green propolis[J]. Planta Med,2006, 72(10):899-906.
    Sa-Nunes A., Faccioli L. H., Sforcin J. M. Propolis:lymphocyte proliferation and IFN-gamma production[J]. J Ethnopharmacol,2003,87(1):93-97.
    Sabir A., Tabbu C. R., Agustiono P., et al. Histological analysis of rat dental pulp tissue capped with propolis[J]. J Oral Sci,2005,47(3):135-138.
    Santos V. R., Gomes R. T., de Mesquita R. A., et al. Efficacy of Brazilian propolis gel for the management of denture stomatitis:a pilot study[J]. Phytother Res, 2008,22(11):1544-1547.
    Sforcin J., Kaneno R., Funari S. Absence of seasonal effect on the immunomodulatory action of Brazilian propolis on natural killer activity[J]. Journal of Venomous Animals and Toxins,2002,8(1):19-29.
    Sforcin J. M., Orsi R. O., Bankova V. Effect of propolis, some isolated compounds and its source plant on antibody production[J]. J Ethnopharmacol,2005,98(3): 301-305.
    Shin E. K., Kwon H. S., Kim Y. H., et al. Chrysin, a natural flavone, improves murine inflammatory bowel diseases[J]. Biochem Biophys Res Commun,2009,381(4): 502-507.
    Song J. J., Cho J. G., Hwang S. J., et al. Inhibitory effect of caffeic acid phenethyl ester (CAPE) on LPS-induced inflammation of human middle ear epithelial cells[J].Acta Otolaryngol,2008,128(12):1303-1307.
    Song Y. S., Park E. H., Hur G. M., et al. Ethanol extract of propolis inhibits nitric oxide synthase gene expression and enzyme activity[J]. J Ethnopharmacol, 2002,80(2-3):155-161.
    Sosa S., Bornancin A., Tubaro A., et al. Topical antiinflammatory activity of an innovative aqueous formulation of actichelated propolis vs two commercial
    propolis formulations[J]. Phytother Res,2007,21(9):823-826.
    Sy L. B., Wu Y. L., Chiang B. L., et al. Propolis extracts exhibit an immunoregulatory activity in an OVA-sensitized airway inflammatory animal model [J]. Int Immunopharmacol,2006,6(7):1053-1060.
    Tak P. P., Firestein G S. NF-kappaB:a key role in inflammatory diseases[J]. J Clin Invest,2001,107(1):7-11.
    Tan-No K., Nakajima T., Shoji T., et al. Anti-inflammatory effect of propolis through inhibition of nitric oxide production on carrageenin-induced mouse paw edema[J]. Biol Pharm Bull,2006,29(1):96-99.
    Valko M., Leibfritz D., Moncol J., et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. Int J Biochem Cell Biol,2007, 39(1):44-84.
    van Rijt L. S., Lambrecht B. N. Dendritic cells in asthma:a function beyond sensitization[J]. Clin Exp Allergy,2005,35(9):1125-1134.
    Wang D., Li X., Xu L., et al. Immunologic synergism with IL-2 and effects of cCHMIs on mRNA expression of IL-2 and IFN-gamma in chicken peripheral T lymphocyte[J]. Vaccine,2006,24(49-50):7109-7114.
    Wang L. C., Lin Y. L., Liang Y. C., et al. The effect of caffeic acid phenethyl ester on the functions of human monocyte-derived dendritic cells[J]. BMC Immunol, 2009,10:39.
    Woo K. J., Jeong Y. J., Inoue H., et al. Chrysin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression through the inhibition of nuclear factor for IL-6 (NF-IL6) DNA-binding activity[J]. FEBS Lett,2005,579(3):705-711.
    Zhang G., Gong S., Yu D., et al. Propolis and Herba Epimedii extracts enhance the non-specific immune response and disease resistance of Chinese sucker, Myxocyprinus asiaticus[J]. Fish Shellfish Immunol,2009,26(3):467-472.
    关怀敏,王显,韩跃刚.炎症与冠心病[M].上海:上海中医药大学出版社,1999.
    陈灏珠.实用内科学[M].第11版.北京:人民卫生出版社,2001:67-73.
    Ahn M. R., Kunimasa K., Ohta T., et al. Suppression of tumor-induced angiogenesis by Brazilian propolis:major component artepillin C inhibits in vitro tube formation and endothelial cell proliferation[J]. Cancer Lett,2007,252(2): 235-243.
    Allen R. T., Cluck M. W., Agrawal D. K. Mechanisms controlling cellular suicide: role of Bcl-2 and caspases[J]. Cell Mol Life Sci,1998,54(5):427-445.
    Amin A. R., Kucuk 0., Khuri F. R., et al. Perspectives for cancer prevention with natural compounds[J]. JClin Oncol,2009,27(16):2712-2725.
    Bai L., Zhu W. p53:structure, function and therapeutic applications[J]. Journal of Cancer Molecules,2006,2(4):141-153.
    Banskota A. H., Tezuka Y., Kadota S. Recent progress in pharmacological research of propolis[J]. Phytother Res,2001,15(7):561-571.
    Bestwick C. S., Milne L. Influence of galangin on HL-60 cell proliferation and survival[J]. Cancer Lett,2006,243(1):80-89.
    Chen C. N., Wu C. L., Lin J. K. Apoptosis of human melanoma cells induced by the novel compounds propolin A and propolin B from Taiwenese propolis[J]. Cancer Lett,2007,245(1-2):218-231.
    Chen Y. J., Liao H. F., Tsai T. H., et al. Caffeic acid phenethyl ester preferentially sensitizes CT26 colorectal adenocarcinoma to ionizing radiation without affecting bone marrow radioresponse[J]. Int J Radiat Oncol Biol Phys,2005, 63(4):1252-1261.
    De Clercq A., Inze D. Cyclin-dependent kinase inhibitors in yeast, animals, and plants: a functional comparison[J]. Crit Rev Biochem Mol Biol,2006,41(5):293-313.
    Deryugina E. I., Quigley J. P. Pleiotropic Roles of Matrix Metalloproteinases in Tumor Angiogenesis:Contrasting, Overlapping and Compensatory Functions[J]. Biochim Biophys Acta,2010,1803(1):103-20.
    Diaz-Carballo D., Freista Hler M., Malak S., et al. Mucronulatol from Caribbean propolis exerts cytotoxic effects on human tumor cell lines[J]. Int J Clin Pharmacol Ther,2008a,46(5):226-235.
    Diaz-Carballo D., Malak S., Bardenheuer W., et al. The contribution of plukenetione A to the anti-tumoral activity of Cuban propolis[J]. Bioorg Med Chem,2008b, 16(22):9635-9643.
    Fesik S. W., Shi Y. Structural biology. Controlling the caspases[J]. Science,2001, 294(5546):1477-1478.
    Gao M., Zhang W. C., Liu Q. S., et al. Pinocembrin prevents glutamate-induced apoptosis in SH-SY5Y neuronal cells via decrease of bax/bcl-2 ratio[J]. Eur J Pharmacol,2008,591(1-3):73-79.
    Huang W. J., Huang C. H., Wu C. L., et al. Propolin G, a prenylflavanone, isolated from Taiwanese propolis, induces caspase-dependent apoptosis in brain cancer cells[J]. J Agric Food Chem,2007,55(18):7366-7376.
    Hwang H. J., Park H.J., Chung H. J., et al. Inhibitory effects of caffeic acid phenethyl ester on cancer cell metastasis mediated by the down-regulation of matrix metalloproteinase expression in human HT1080 fibrosarcoma cells[J]. J Nutr Biochem,2006,17(5):356-362.
    Inoue K., Saito M., Kanai T., et al. Anti-tumor effects of water-soluble propolis on a mouse sarcoma cell line in vivo and in vitro[J]. Am J Chin Med,2008,36(3): 625-634.
    Jin U. H., Chung T. W., Kang S. K., et al. Caffeic acid phenyl ester in propolis is a strong inhibitor of matrix metalloproteinase-9 and invasion inhibitor:isolation and identification[J]. Clin Chim Acta,2005,362(1-2):57-64.
    Jin U. H., Song K. H., Motomura M., et al. Caffeic acid phenethyl ester induces mitochondria-mediated apoptosis in human myeloid leukemia U937 cells[J]. Mol Cell Biochem,2008,310(1-2):43-48.
    Kunimasa K., Ahn M. R., Kobayashi T., et al. Brazilian Propolis Suppresses Angiogenesis by Inducing Apoptosis in Tube-forming Endothelial Cells through Inactivation of Survival Signal ERK1/2[J]. Evid Based Complement Alternat Med,2009.
    Kuo H. C., Kuo W. H., Lee Y. J., et al. Inhibitory effect of caffeic acid phenethyl ester
    on the growth of C6 glioma cells in vitro and in vivo[J]. Cancer Lett,2006, 234(2):199-208.
    Lee Y. J., Kuo H. C., Chu C. Y., et al. Involvement of tumor suppressor protein p53 and p38 MAPK in caffeic acid phenethyl ester-induced apoptosis of C6 glioma cells[J]. Biochem Pharmacol,2003,66(12):2281-2289.
    Lee Y. Y, Kao C. L., Tsai P. H., et al. Caffeic acid phenethyl ester preferentially enhanced radiosensitizing and increased oxidative stress in medulloblastoma cell line[J]. Childs Nerv Syst,2008,24(9):987-994.
    Li P., Nijhawan D., Wang X. Mitochondrial activation of apoptosis[J]. Cell,2004, 116(2 Suppl):57-59.
    Liao H. F., Chen Y. Y., Liu J. J., et al. Inhibitory effect of caffeic acid phenethyl ester on angiogenesis, tumor invasion, and metastasis[J]. J Agric Food Chem,2003, 51(27):7907-7912.
    Marcucci M. C. Propolis:Chemical Composition, Biological Properties and Therapeutic Activity [J]. Apidologie,1995,26(2):83-99.
    Mattson M. P., Chan S. L. Calcium orchestrates apoptosis[J]. Nat Cell Biol,2003, 5(12):1041-1043.
    Najafi M. F., Vahedy F., Seyyedin M., et al. Effect of the water extracts of propolis on stimulation and inhibition of different cells[J]. Cytotechnology,2007,54(1): 49-56.
    Nigg E. A. Cyclin-dependent protein kinases:key regulators of the eukaryotic cell cycle[J]. Bioessays,1995,17(6):471-480.
    Ohta T., Kunimasa K:, Kobayashi T., et al. Propolis suppresses tumor angiogenesis by inducing apoptosis in tube-forming endothelial cells[J]. Biosci Biotechnol Biochem,2008,72(9):2436-2440.
    Orsolic N., Terzic S., Mihaljevic Z., et al. Effects of local administration of propolis and its polyphenolic compounds on tumor formation and growth[J]. Biol Pharm Bull,2005,28(10):1928-1933.
    Padmavathi R., Senthilnathan P., Chodon D., et al. Therapeutic effect of paclitaxel and propolis on lipid peroxidation and antioxidant system in 7,12 dimethyl benz(a)anthracene-induced breast cancer in female Sprague Dawley rats[J]. Life Sci,2006,78(24):2820-2825.
    Ribeiro L. R., Mantovani M. S., Ribeiro D. A., et al. Brazilian natural dietary components (annatto, propolis and mushrooms) protecting against mutation and cancer[J]. Hum Exp Toxicol,2006,25(5):267-272.
    Shimizu K., Das S. K., Hashimoto T., et al. Artepillin C in Brazilian propolis induces G(0)/G(1) arrest via stimulation of Cipl/p21 expression in human colon cancer cells[J]. Mol Carcinog,2005,44(4):293-299.
    Valko M., Leibfritz D., Moncol J., et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. Int J Biochem Cell Biol,2007, 39(1):44-84.
    Wagner E. F., Nebreda A. R. Signal integration by JNK and p38 MAPK pathways in cancer development[J]. Nat Rev Cancer,2009,9(8):537-549.
    Wang T., Chen L., Wu W., et al. Potential cytoprotection:antioxidant defence by caffeic acid phenethyl ester against free radical-induced damage of lipids, DNA, and proteins[J]. Can JPhysiol Pharmacol,2008,86(5):279-287.
    Weng M. S., Ho Y. S., Lin J. K. Chrysin induces G1 phase cell cycle arrest in C6 glioma cells through inducing p21Waf1/Cipl expression:involvement of p38 mitogen-activated protein kinase[J]. Biochem Pharmacol,2005,69(12): 1815-1827.
    Weng M. S., Liao C. H., Chen C. N., et al. Propolin H from Taiwanese propolis induces G1 arrest in human lung carcinoma cells[J]. JAgric Food Chem,2007, 55(13):5289-5298.
    陈灏珠.实用内科学[M].第11版.北京:人民卫生出版社,2001:191-216.
    Abo-Salem 0. M., El-Edel R. H., Harisa G. E., et al. Experimental diabetic nephropathy can be prevented by propolis:Effect on metabolic disturbances and renal oxidative parameters[J]. Pak J Pharm Sci,2009,22(2):205-210.
    Bankova V. Chemical diversity of propolis and the problem of standardization[J]. J Ethnopharmacol,2005,100(1-2):114-117.
    Berl T. Review:renal protection by inhibition of the renin-angiotensin-aldosterone system[J]. J Renin Angiotensin Aldosterone Syst,2009,10(1):1-8.
    Brownlee M. The pathobiology of diabetic complications:a unifying mechanism[J]. Diabetes,2005,54(6):1615-1625.
    Budhiraja S., Singh J. Protein kinase C beta inhibitors:a new therapeutic target for diabetic nephropathy and vascular complications [J]. Fundam Clin Pharmacol, 2008a,22(3):231-240.
    Budhiraja S., Singh J. Protein kinase C beta inhibitors:a new therapeutic target for diabetic nephropathy and vascular complications. Fundam Clin Pharmacol. 2008b,22:231-240.
    Charles M. A., Selam J. L. Cyclic relationships between diabetic nephropathy and cardiovascular risk factors[J]. Metab Syndr Relat Disord,2005,3(3):203-212.
    Coskun O., Kanter M., Korkmaz A., et al. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas[J]. Pharmacol Res,2005,51(2):117-123.
    Das Evcimen N., King G. L. The role of protein kinase C activation and the vascular complications of diabetes[J]. Pharmacol Res,2007,55(6):498-510.
    El-Sayed el S. M., Abo-Salem O. M., Aly H. A., et al. Potential antidiabetic and hypolipidemic effects of propolis extract in streptozotocin-induced diabetic rats[J]. Pak J Pharm Sci,2009,22(2):168-174.
    Fuliang H. U., Hepburn H. R., Xuan H., et al. Effects of propolis on blood glucose, blood lipid and free radicals in rats with diabetes mellitus[J]. Pharmacol Res, 2005,51(2):147-152.
    Goh S. Y., Cooper M. E. Clinical review:The role of advanced glycation end products in progression and complications of diabetes[J]. J Clin Endocrinol Metab, 2008,93(4):1143-1152.
    Hoffman B. B., Sharma K., Ziyadeh F. N. Potential role of TGF-beta in diabetic nephropathy[J]. Miner Electrolyte Metab,1998,24(2-3):190-196.
    Hostetter T. H. Hyperfiltration and glomerulosclerosis[J]. Semin Nephrol,2003,23(2): 194-199.
    Kanwar Y. S., Wada J., Sun L., et al. Diabetic nephropathy:mechanisms of renal disease progression[J]. Exp Biol Med (Maywood),2008,233(1):4-11.
    Li J., Gobe G. Protein kinase C activation and its role in kidney disease[J]. Nephrology (Carlton, Vic.),2006,11(5):428.
    Liu W., Liu P., Tao S., et al. Berberine inhibits aldose reductase and oxidative stress in rat mesangial cells cultured under high glucose[J]. Arch Biochem Biophys, 2008,475(2):128-134.
    Lu Q., Yin X. X., Wang J. Y., et al. Effects of Ginkgo biloba on prevention of development of experimental diabetic nephropathy in rats[J]. Acta Pharmacol Sin,2007,28(6):818-828.
    Matsui T., Ebuchi S., Fujise T., et al. Strong antihyperglycemic effects of water-soluble fraction of Brazilian propolis and its bioactive constituent, 3,4,5-tri-O-caffeoylquinic acid[J]. Biol Pharm Bull,2004,27(11):1797-1803.
    McLennan S. V., Bonner J., Milne S., et al. The anti-inflammatory agent Propolis improves wound healing in a rodent model of experimental diabetes [J]. Wound Repair Regen,2008,16(5):706-713.
    Mora C., Navarro J. F. Inflammation and diabetic nephropathy [J]. Curr Diab Rep, 2006,6(6):463-468.
    Murata K., Yatsunami K., Fukuda E., et al. Antihyperglycemic effects of propolis mixed with mulberry leaf extract on patients with type 2 diabetes[J]. Altern Ther Health Med,2004,10(3):78-79.
    Okutan H., Ozcelik N., Yilmaz H. R., et al. Effects of caffeic acid phenethyl ester on lipid peroxidation and antioxidant enzymes in diabetic rat heart[J]. Clin Biochem,2005,38(2):191-196.
    Rees D. A., Alcolado J. C. Animal models of diabetes mellitus[J]. Diabet Med,2005, 22(4):359-370.
    Ruggenenti P., Schieppati A., Remuzzi G. Progression, remission, regression of chronic renal diseases[J]. Lancet,2001,357(9268):1601.
    Ruster C., Wolf G The role of chemokines and chemokine receptors in diabetic nephropathy[J]. Front Biosci,2008,13:944-955.
    Sato T., Iwaki M., Shimogaito N., et al. TAGE (toxic AGEs) theory in diabetic complications[J]. Curr Mol Med,2006,6(3):351-358.
    Schaeffner E., Kurth T., Curhan G., et al. Cholesterol and the risk of renal dysfunction in apparently healthy men[J]. J Am Soc Nephrol,2003,14(8):2084.
    Schnedl W. J., Ferber S., Johnson J. H., et al. STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells[J]. Diabetes,1994,43(11): 1326-1333.
    Sharma K., Ziyadeh F. N. Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator[J]. Diabetes,1995,44(10): 1139-1146.
    Sharma K., Ziyadeh F. N. Biochemical events and cytokine interactions linking glucose metabolism to the development of diabetic nephropathy[J]. Semin Nephrol,1997,17(2):80-92.
    Smulders Y., Rakic M., Stehouwer C., et al. Determinants of progression of microalbuminuria in patients with NIDDM. A prospective study[J]. Diabetes Care,1997,20(6):999.
    Suzen S., Buyukbingol E. Recent studies of aldose reductase enzyme inhibition for diabetic complications[J]. Curr Med Chem,2003,10(15):1329-1352.
    Tesch G. H., Allen T. J. Rodent models of streptozotocin-induced diabetic nephropathy[J]. Nephrology (Carlton),2007,12(3):261-266.
    The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. [J]. N Engl J
    Med,1993,329(14):977-986.
    The UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33)[J]. Lancet,1998,352(9131):837-853.
    WHO. Fact sheet N°312, Diabetes.2008. from http://www.who.int/mediacentre/factsheets/fs312/en/index.html.
    Williams M. D., Nadler J. L. Inflammatory mechanisms of diabetic complications[J]. Curr Diab Rep,2007,7(3):242-248.
    Williams M. E. Clinical studies of advanced glycation end product inhibitors and diabetic kidney disease[J]. Curr Diab Rep,2004,4(6):441-446.
    Wolf G. New insights into the pathophysiology of diabetic nephropathy:from haemodynamics to molecular pathology[J]. Eur J Clin Invest,2004,34(12): 785-796.
    Wolf G., Butzmann U., Wenzel U. O. The renin-angiotensin system and progression of renal disease:from hemodynamics to cell biology[J]. Nephron Physiol,2003, 93(1):P3-13.
    Zamami Y., Takatori S., Koyama T., et al. Effect of propolis on insulin resistance in fructose-drinking rats[J]. Yakugaku Zasshi,2007,127(12):2065-2073.
    Zhang M., Lv X. Y, Li J., et al. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model[J]. Exp Diabetes Res,2008,2008:704045.
    Zhang Y. W., Wu C. Y, Cheng J. T. Merit of Astragalus polysaccharide in the improvement of early diabetic nephropathy with an effect on mRNA expressions of NF-kappaB and IkappaB in renal cortex of streptozotoxin-induced diabetic rats[J]. J Ethnopharmacol,2007,114(3): 387-392.
    Ziyadeh F. N. Mediators of diabetic renal disease:the case for tgf-Beta as the major mediator[J]. J Am Soc Nephrol,2004,15 Suppl 1:S55-57.
    Ziyadeh F. N., Mogyorosi A., Kalluri R. Early and advanced non-enzymatic glycation products in the pathogenesis of diabetic kidney disease[J]. Exp Nephrol,1997, 5(1):2-9.
    Ziyadeh F. N., Sharma K. Role of transforming growth factor-beta in diabetic glomerulosclerosis and renal hypertrophy[J]. Kidney Int Suppl,1995,51: S34-36.
    楚勤英,唐志雄,王进伟,等.蜂胶治疗2型糖尿病Ⅰ Ⅱ级糖尿病足的临床观察[J].河北医学,2008,14(3):263-265.
    叶山东.肾小球血流动力学改变和糖尿病肾病[J].国外医学:内科学分册,1995,22(7):299-301.
    陈灏珠.实用内科学[M].第11版.北京:人民卫生出版社,2001:944-979.
    黄晓青,陈璐璐.醛糖还原酶在糖尿病肾病发生中的作用研究进展[J].国外医学:内科学分册,2004,31(4):160-162.
    Abd El-Hady F. K., Hegazi A. G, Wollenweber E. Effect of Egyptian propolis on the susceptibility of LDL to oxidative modification and its antiviral activity with special emphasis on chemical composition[J]. Z Naturforsch [C],2007, 62(9-10):645-655.
    Alyane M., Kebsa L. B., Boussenane H. N., et al. Cardioprotective effects and mechanism of action of polyphenols extracted from propolis against doxorubicin toxicity[J]. PakJPharm Sci,2008,21(3):201-209.
    Ates B., Dogru M. I., Gul M., et al. Protective role of caffeic acid phenethyl ester in the liver of rats exposed to cold stress[J]. Fundam Clin Pharmacol,2006, 20(3):283-289.
    Bankova V. Chemical diversity of propolis and the problem of standardization[J]. J Ethnopharmacol,2005,100(1-2):114-117.
    Bankova V. S., De Castro S. L., Marcucci M. C. Propolis:recent advances in research on chemistry and plant origin[J]. Apidologie,2000,31:3-15.
    Banskota A. H., Tezuka Y., Kadota S. Recent progress in pharmacological research of propolis[J]. Phytother Res,2001,15(7):561-571.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications[J]. Nature,2001,414(6865):813-820.
    Brownlee M. The pathobiology of diabetic complications:a unifying mechanism [J]. Diabetes,2005,54(6):1615-1625.
    Coskun O., Kanter M., Korkmaz A., et al. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas [J]. Pharmacol Res,2005,51(2):117-123.
    El-Sayed E.-S. M., Abo-Salem O. M., Aly H. A., et al. Potential antidiabetic and hypolipidemic effects of propolis extract in streptozotocin-induced diabetic rats[J]. Pak J Pharm Sci,2009,22(2):168-174.
    Fuliang H. U., Hepburn H. R., Xuan H., et al. Effects of propolis on blood glucose, blood lipid and free radicals in rats with diabetes mellitus[J]. Pharmacol Res, 2005,51(2):147-152.
    Girach A., Manner D., Porta M. Diabetic microvascular complications:can patients at risk be identified? A review[J]. Int J Clin Pract,2006,60(11):1471-1483.
    Graves P. M., Eisenbarth G. S. Pathogenesis, prediction and trials for the prevention of insulin-dependent (type 1) diabetes mellitus[J]. Adv Drug Deliv Rev,1999, 35(2-3):143-156.
    Ha H., Lee H. B. Oxidative stress in diabetic nephropathy:basic and clinical information[J]. Curr Diab Rep,2001,1(3):282-287.
    Hishikawa K., Nakaki T., Fujita T. Oral flavonoid supplementation attenuates atherosclerosis development in apolipoprotein E-deficient mice[J]. Arterioscler Thromb Vasc Biol,2005,25(2):442-446.
    Hosnuter M., Gurel A., Babuccu O., et al. The effect of CAPE on lipid peroxidation and nitric oxide levels in the plasma of rats following thermal injury[J]. Burns, 2004,30(2):121-125.
    Ilhan A., Akyol O., Gurel A., et al. Protective effects of caffeic acid phenethyl ester against experimental allergic encephalomyelitis-induced oxidative stress in rats[J]. Free Radic Biol Med,2004,37(3):386-394.
    Jain K. S., Kathiravan M. K., Somani R. S., et al. The biology and chemistry of hyperlipidemia[J]. Bioorg Med Chem,2007,15(14):4674-4699.
    Jasprica I., Mornar A., Debeljak Z., et al. In vivo study of propolis supplementation effects on antioxidative status and red blood cells[J]. J Ethnopharmacol,2007, 110(3):548-554.
    Juntti-Berggren L., Pigon J., Hellstrom P., et al. Influence of acarbose on post-prandial insulin requirements in patients with Type 1 diabetes[J]. Diabetes Nutr Metab,2000,13(1):7-12.
    Khalil M. L. Biological activity of bee propolis in health and disease[J]. Asian Pac J Cancer Prev,2006,7(1):22-31.
    Larsen M. L., Horder M., Mogensen E. F. Effect of long-term monitoring of glycosylated hemoglobin levels in insulin-dependent diabetes mellitus[J]. N Engl J Med,1990,323(15):1021-1025.
    Liu C. F., Lin C. H., Lin C. C., et al. Antioxidative natural product protect against
    econazole-induced liver injuries[J]. Toxicology,2004,196(1-2):87-93.
    Marcucci M. C. Propolis:Chemical Composition, Biological Properties and Therapeutic Activity[J]. Apidologie,1995,26(2):83-99.
    Matsui T., Ebuchi S., Fujise T., et al. Strong antihyperglycemic effects of water-soluble fraction of Brazilian propolis and its bioactive constituent, 3,4,5-tri-O-caffeoylquinic acid[J]. Biol Pharm Bull,2004,27(11):1797-1803.
    Matsuura E., Hughes G. R., Khamashta M.A. Oxidation of LDL and its clinical implication[J]. Autoimmun Rev,2008,7(7):558-566.
    Murata K., Yatsunami K., Fukuda E., et al. Antihyperglycemic effects of propolis mixed with mulberry leaf extract on patients with type 2 diabetes[J]. Altern Ther Health Med,2004,10(3):78-79.
    Neuser D., Benson A., Bruckner A., et al. Safety and tolerability of acarbose in the treatment of type 1 and type 2 diabetes mellitus[J]. Clin Drug Investig,2005, 25(9):579-587.
    Novo E., Parola M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis[J]. Fibrogenesis Tissue Repair,2008,1(1):5.
    O'Brien T., Nguyen T. T., Zimmerman B. R. Hyperlipidemia and diabetes mellitus[J]. Mayo Clin Proc,1998,73(10):969-976.
    (?)stergaard J., Hansen T. K., Thiel S., et al. Complement activation and diabetic vascular complications [J]. Clin Chim Acta,2005,361(1-2):10-19.
    Rahimi R., Nikfar S., Larijani B., et al. A review on the role of antioxidants in the management of diabetes and its complications[J]. Biomed Pharmacother,2005, 59(7):365-373.
    Roden M., Bernroider E. Hepatic glucose metabolism in humans--its role in health and disease[J]. Best Pract Res Clin Endocrinol Metab,2003,17(3):365-383.
    Schnedl W. J., Ferber S., Johnson J. H., et al. STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells[J]. Diabetes,1994,43(11): 1326-1333.
    Seo K. W., Park M., Song Y. J., et al. The protective effects of Propolis on hepatic injury and its mechanism[J]. Phytother Res,2003,17(3):250-253.
    Sforcin J. M. Propolis and the immune system:a review[J]. J Ethnopharmacol,2007, 113(1):1-14.
    Song Y. S., Park E. H., Hur G. M., et al. Ethanol extract of propolis inhibits nitric oxide synthase gene expression and enzyme activity[J]. J Ethnopharmacol, 2002,80(2-3):155-161.
    Sugimoto R., Enjoji M., Kohjima M., et al. High glucose stimulates hepatic stellate cells to proliferate and to produce collagen through free radical production and activation of mitogen-activated protein kinase[J]. Liver Int,2005,25(5): 1018-1026.
    The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. [J]. N Engl J Med,1993,329(14):977-986.
    Valko M., Leibfritz D., Moncol J., et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. Int J Biochem Cell Biol,2007, 39(1):44-84.
    WHO. Diabetes Action Now Booklet.2004. from http://www.who.int/diabetes/BOOKLET_HTML/en/.
    WHO. Fact sheet N°312, Diabetes.2008. from http://www.who.int/mediacentre/factsheets/fs312/en/index.html.
    Wolf G. New insights into the pathophysiology of diabetic nephropathy:from haemodynamics to molecular pathology[J]. Eur J Clin Invest,2004,34(12): 785-796.
    Zhao J. Q., Wen Y. F., Bhadauria M., et al. Protective effects of propolis on inorganic mercury induced oxidative stress in mice[J]. Indian J Exp Biol,2009,47(4): 264-269.
    高海琳,刘富海.蜂胶在糖尿病综合治疗中的作用[J].北京医学,2000,22(2):115-116.
    陈灏珠.实用内科学[M].第11版.北京:人民卫生出版社,2001:944-979.
    Abd El-Hady F. K., Hegazi A. G., Wollenweber E. Effect of Egyptian propolis on the susceptibility of LDL to oxidative modification and its antiviral activity with special emphasis on chemical composition[J]. Z Naturforsch [C],2007, 62(9-10):645-655.
    Bankova V. Chemical diversity of propolis and the problem of standardization[J]. J Ethnopharmacol,2005,100(1-2):114-117.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications[J]. Nature,2001,414(6865):813-820.
    Brownlee M. The pathobiology of diabetic complications:a unifying mechanism[J]. Diabetes,2005,54(6):1615-1625.
    Coskun O., Kanter M., Korkmaz A., et al. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas [J]. Pharmacol Res,2005,51(2):117-123.
    El-Sayed E.-S. M., Abo-Salem O. M., Aly H. A., et al. Potential antidiabetic and hypolipidemic effects of propolis extract in streptozotocin-induced diabetic rats[J]. Pak J Pharm Sci,2009,22(2):168-174.
    Erdmann E. Diabetes and cardiovascular risk markers[J]. Curr Med Res Opin,2005, 21 Suppl 1:21-28.
    Fenercioglu A. K., Saler T., Genc E., et al. The effects of polyphenol containing antioxidants on oxidative stress and lipid peroxidation in type 2 diabetes mellitus without complications[J]. JEndocrinol Invest,2009.
    Fuliang H. U., Hepburn H. R., Xuan H., et al. Effects of propolis on blood glucose, blood lipid and free radicals in rats with diabetes mellitus[J]. Pharmacol Res, 2005,51(2):147-152.
    Garcia-Compean D., Jaquez-Quintana J., Gonzalez-Gonzalez J., et al. Liver cirrhosis and diabetes:Risk factors, pathophysiology, clinical implications and management[J]. World J Gastroenterol,2009,15:280.
    Ginsberg H. N. REVIEW:Efficacy and mechanisms of action of statins in the
    treatment of diabetic dyslipidemia[J]. J Clin Endocrinol Metab,2006,91(2): 383-392.
    Hishikawa K., Nakaki T., Fujita T. Oral flavonoid supplementation attenuates atherosclerosis development in apolipoprotein E-deficient mice[J]. Arterioscler Thromb Vasc Biol,2005,25(2):442-446.
    Johansen J. S., Harris A. K., Rychly D. J., et al. Oxidative stress and the use of antioxidants in diabetes:linking basic science to clinical practice[J]. Cardiovasc Diabetol,2005,4(1):5.
    Leahy J. L. Pathogenesis of type 2 diabetes mellitus[J]. Arch Med Res,2005,36(3): 197-209.
    Marcucci M. C. Propolis:Chemical Composition, Biological Properties and Therapeutic Activity[J].Apidologie,1995,26(2):83-99.
    Matsui T., Ebuchi S., Fujise T., et al. Strong antihyperglycemic effects of water-soluble fraction of Brazilian propolis and its bioactive constituent, 3,4,5-tri-O-caffeoylquinic acid[J]. Biol Pharm Bull,2004,27(11):1797-1803.
    Matsuura E., Hughes G R., Khamashta M. A. Oxidation of LDL and its clinical implication[J]. Autoimmun Rev,2008,7(7):558-566.
    McGarry J. D. Banting lecture 2001:dysregulation of fatty acid metabolism in the etiology of type 2 diabetes[J]. Diabetes,2002,51(1):7-18.
    Murata K., Yatsunami K., Fukuda E., et al. Antihyperglycemic effects of propolis mixed with mulberry leaf extract on patients with type 2 diabetes[J]. Altern Ther Health Med,2004,10(3):78-79.
    Newairy A. S., Salama A. F., Hussien H. M., et al. Propolis alleviates aluminium-induced lipid peroxidation and biochemical parameters in male rats[J]. Food Chem Toxicol,2009,47(6):1093-1098.
    Parving H. H. Diabetic nephropathy:prevention and treatment[J]. Kidney Int,2001, 60(5):2041-2055.
    Prabhakar S. S. Role of nitric oxide in diabetic nephropathy [J]. Semin Nephrol,2004, 24(4):333-344.
    Ramos A., Miranda J. Propolis:a review of its anti-inflammatory and healing actions[J]. J. venom. anim. toxins incl. trop. dis,2007,13(4):697-710.
    Rees D. A., Alcolado J. C. Animal models of diabetes mellitus[J]. Diabet Med,2005, 22(4):359-370.
    Schnedl W. J., Ferber S., Johnson J. H., et al. STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells[J]. Diabetes,1994,43(11): 1326-1333.
    The ADVANCE Collaborative Group., Patel A., MacMahon S., et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes[J]. N Engl J Med,2008,358(24):2560-2572.
    The UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33)[J]. Lancet,1998,352(9131):837-853.
    Wolf G. New insights into the pathophysiology of diabetic nephropathy:from haemodynamics to molecular pathology[J]. Eur J Clin Invest,2004,34(12): 785-796.
    Zamami Y., Takatori S., Koyama T., et al. Effect of propolis on insulin resistance in fructose-drinking rats[J]. Yakugaku Zasshi,2007,127(12):2065-2073.
    Zhang M., Lv X. Y, Li J., et al. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model [J]. Exp Diabetes Res,2008,2008:704045.
    何运胜.调查表明:我国已经成为全球糖尿病第一大国[J].家庭医学:新健康2009:4.
    楚勤英,唐志雄,王进伟,等.蜂胶治疗2型糖尿病Ⅰ Ⅱ级糖尿病足的临床观察[J].河北医学,2008,14(3):263-265.
    陈兴宝,唐玲,陈慧云,等.2型糖尿病并发症对患者治疗费用的影响评估[J].中国糖尿病杂志,2003,11(004):238-241.
    陈灏珠.实用内科学[M].第11版.北京:人民卫生出版社,2001:944-979.
    Abdel-Latif M. M., Windle H. J., Homasany B. S., et al. Caffeic acid phenethyl ester modulates Helicobacter pylori-induced nuclear factor-kappa B and activator protein-1 expression in gastric epithelial cells[J]. Br J Pharmacol,2005, 146(8):1139-1147.
    Anderson S., Vora J. P. Current concepts of renal hemodynamics in diabetes[J].J Diabetes Complications,1995,9(4):304-307.
    Ansorge S., Reinhold D., Lendeckel U. Propolis and some of its constituents down-regulate DNA synthesis and inflammatory cytokine production but induce TGF-betal production of human immune cells[J]. Z Naturforsch [C], 2003,58(7-8):580-589.
    Aslan A., Temiz M., Atik E., et al. Effectiveness of mesalamine and propolis in experimental colitis[J]. Adv Ther,2007,24(5):1085-1097.
    Bankova V. S., De Castro S. L., Marcucci M. C. Propolis:recent advances in research on chemistry and plant origin[J]. Apidologie,2000,31:3-15.
    Burt D. J., Gruden G., Thomas S. M., et al. P38 mitogen-activated protein kinase mediates hexosamine-induced TGFbetal mRNA expression in human mesangial cells[J]. Diabetologia,2003,46(4):531-537.
    Charles M. A., Selam J. L. Cyclic relationships between diabetic nephropathy and cardiovascular risk factors[J]. Metab Syndr Relat Disord,2005,3(3):203-212.
    Choudhary N., Ahlawat R. S. Interleukin-6 and C-reactive protein in pathogenesis of diabetic nephropathy:new evidence linking inflammation, glycemic control, and microalbuminuria[J]. Iran J Kidney Dis,2008,2(2):72-79.
    Cirino G., Distrutti E., Wallace J. L. Nitric oxide and inflammation[J]. Inflamm Allergy Drug Targets,2006,5(2):115-119.
    Dalla Vestra M., Mussap M., Gallina P., et al. Acute-phase markers of inflammation and glomerular structure in patients with type 2 diabetes[J]. JAm Soc Nephrol, 2005,16 Suppl 1:78-82.
    Estacio R. O. Renin-angiotensin-aldosterone system blockade in diabetes:role of
    direct renin inhibitors[J]. Postgrad Med,2009,121(3):33-44.
    Forbes J. M., Fukami K., Cooper M. E. Diabetic nephropathy:where hemodynamics meets metabolism[J]. Exp Clin Endocrinol Diabetes,2007,115(2):69-84.
    Gilbert R. E., Kim S. A., Tuttle K. R., et al. Effect of ruboxistaurin on urinary transforming growth factor-beta in patients with diabetic nephropathy and type 2 diabetes[J]. Diabetes Care,2007,30(4):995-996.
    Ha H., Hwang I. A., Park J. H., et al. Role of reactive oxygen species in the pathogenesis of diabetic nephropathy[J]. Diabetes Res Clin Pract,2008,82 Suppl 1:42-45.
    Ha H., Yu M. R., Choi Y. J., et al. Role of high glucose-induced nuclear factor-kappaB activation in monocyte chemoattractant protein-1 expression by mesangial cells[J]. J Am Soc Nephrol,2002,13(4):894-902.
    Hostetter T. H. Hyperfiltration and glomerulosclerosis[J]. Semin Nephrol,2003,23(2): 194-199.
    Iglesias-De La Cruz M. C., Ruiz-Torres P., Alcami J., et al. Hydrogen peroxide increases extracellular matrix mRNA through TGF-beta in human mesangial cells[J]. Kidney Int,2001,59(1):87-95.
    Johansen J. S., Harris A. K., Rychly D. J., et al. Oxidative stress and the use of antioxidants in diabetes:linking basic science to clinical practice[J]. Cardiovasc Diabetol,2005,4(1):5.
    Jung W. K., Lee D. Y., Choi Y. H., et al. Caffeic acid phenethyl ester attenuates allergic airway inflammation and hyperresponsiveness in murine model of ovalbumin-induced asthma[J]. Life Sci,2008,82(13-14):797-805.
    Kang S., Adler S., Lapage J., et al. p38 MAPK and MAPK kinase 3/6 mRNA and activities are increased in early diabetic glomeruli[J]. Kidney international, 2001,60(2):543.
    Kanwar Y. S., Wada J., Sun L., et al. Diabetic nephropathy:mechanisms of renal disease progression[J]. Exp Biol Med (Maywood),2008,233(1):4-11.
    Kelly D. J., Zhang Y., Hepper C., et al. Protein kinase C beta inhibition attenuates the progression of experimental diabetic nephropathy in the presence of continued
    hypertension[J]. Diabetes,2003,52(2):512-518.
    Khayyal M. T., el-Ghazaly M. A., el-Khatib A. S., et al. A clinical pharmacological study of the potential beneficial effects of a propolis food product as an adjuvant in asthmatic patients[J]. Fundam Clin Pharmacol,2003,17(1): 93-102.
    Kim Y., Xu Z., Reddy M., et al. Novel interactions between TGF-{beta} 1 actions and the 12/15-lipoxygenase pathway in mesangial cells[J]. Journal of the American Society of Nephrology:JASN,2005,16(2):352.
    Koya D., Haneda M., Nakagawa H., et al. Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes[J]. FASEB J,2000,14(3):439-447.
    Lee E. A., Seo J. Y., Jiang Z., et al. Reactive oxygen species mediate high glucose-induced plasminogen activator inhibitor-1 up-regulation in mesangial cells and in diabetic kidney[J]. Kidney Int,2005,67(5):1762-1771.
    Leehey D. J., Singh A. K., Alavi N., et al. Role of angiotensin Ⅱ in diabetic nephropathy[J]. Kidney Int Suppl,2000,77:S93-98.
    Maric C. Vasoactive hormones and the diabetic kidney[J]. Scientific WorldJournal, 2008,8:470-485.
    Maruyama H., Sumitou Y., Sakamoto T., et al. Antihypertensive effects of flavonoids isolated from brazilian green propolis in spontaneously hypertensive rats[J]. Biol Pharm Bull,2009,32(7):1244-1250.
    Matavelli L. C., Huang J., Siragy H. M. (Pro)renin Receptor Contributes to Diabetic Nephropathy Through Enhancing Renal Inflammation[J]. Clin Exp Pharmacol Physiol,2009.
    Meier M., Menne J., Haller H. Targeting the protein kinase C family in the diabetic kidney:lessons from analysis of mutant mice[J]. Diabetologia,2009,52(5): 765-775.
    Mezzano S., Aros C., Droguett A., et al. NF-kappaB activation and overexpression of regulated genes in human diabetic nephropathy[J]. Nephrol Dial Transplant, 2004,19(10):2505-2512.
    Mezzano S., Droguett A., Burgos M. E., et al. Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy[J]. Kidney Int Suppl,2003, (86):S64-70.
    Mishima S., Yoshida C., Akino S., et al. Antihypertensive effects of Brazilian propolis:identification of caffeoylquinic acids as constituents involved in the hypotension in spontaneously hypertensive rats[J]. Biol Pharm Bull,2005, 28(10):1909-1914.
    Mora C., Navarro J. F. Inflammation and diabetic nephropathy[J]. Curr Diab Rep, 2006,6(6):463-468.
    Morii T., Fujita H., Narita T., et al. Increased urinary excretion of monocyte chemoattractant protein-1 in proteinuric renal diseases[J]. Ren Fail,2003, 25(3):439-444.
    Navarro J. F., Milena F. J., Mora C., et al. Renal pro-inflammatory cytokine gene expression in diabetic nephropathy:effect of angiotensin-converting enzyme inhibition and pentoxifylline administration[J]. Am J Nephrol,2006a,26(6): 562-570.
    Navarro J. F., Mora-Fernandez C. The role of TNF-alpha in diabetic nephropathy: pathogenic and therapeutic implications[J]. Cytokine Growth Factor Rev, 2006b,17(6):441-450.
    Noronha I., Fujihara C., Zatz R. The inflammatory component in progressive renal disease--are interventions possible?[J]. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association-European Renal Association,2002,17(3):363.
    Okada S., Shikata K., Matsuda M., et al. Intercellular adhesion molecule-1-deficient mice are resistant against renal injury after induction of diabetes [J]. Diabetes, 2003,52(10):2586-2593.
    Paulino N., Teixeira C., Martins R., et al. Evaluation of the analgesic and anti-inflammatory effects of a Brazilian green propolis[J]. Planta Med,2006, 72(10):899-906.
    Prabhakar S. S. Role of nitric oxide in diabetic nephropathy[J]. Semin Nephrol,2004,
    24(4):333-344.
    Ruggenenti P., Schieppati A., Remuzzi G. Progression, remission, regression of chronic renal diseases[J]. Lancet,2001,357(9268):1601.
    Ruster C., Wolf G. The role of chemokines and chemokine receptors in diabetic nephropathy[J]. Front Biosci,2008,13:944-955.
    Shin E. K., Kwon H. S., Kim Y. H., et al. Chrysin, a natural flavone, improves murine inflammatory bowel diseases[J]. Biochem Biophys Res Commun,2009,381(4): 502-507.
    Sugimoto H., Shikata K., Wada J., et al. Advanced glycation end products-cytokine-nitric oxide sequence pathway in the development of diabetic nephropathy:aminoguanidine ameliorates the overexpression of tumour necrosis factor-alpha and inducible nitric oxide synthase in diabetic rat glomeruli[J]. Diabetologia,1999,42(7):878.
    Suzen S., Buyukbingol E. Recent studies of aldose reductase enzyme inhibition for diabetic complications [J]. Curr Med Chem,2003,10(15):1329-1352.
    Tak P. P., Firestein G. S. NF-kappaB:a key role in inflammatory diseases[J]. J Clin Invest,2001,107(1):7-11.
    Toyoda M., Suzuki D., Honma M., et al. High expression of PKC-MAPK pathway mRNAs correlates with glomerular lesions in human diabetic nephropathy [J]. Kidney international,2004,66(3):1107.
    Tuttle K. R., Bakris G. L., Toto R. D., et al. The effect of ruboxistaurin on nephropathy in type 2 diabetes[J]. Diabetes Care,2005,28(11):2686-2690.
    UKPDS Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes:UKPDS 38. UK Prospective Diabetes Study Group[J]. BMJ,1998,317(7160):703-713.
    Wilmer W. A., Dixon C. L., Hebert C. Chronic exposure of human mesangial cells to high glucose environments activates the p38 MAPK pathway[J]. Kidney Int, 2001,60(3):858-871.
    Wolf G. New insights into the pathophysiology of diabetic nephropathy:from haemodynamics to molecular pathology[J]. Eur J Clin Invest,2004,34(12):
    785-796.
    Wolf G., Butzmann U., Wenzel U.O. The renin-angiotensin system and progression of renal disease:from hemodynamics to cell biology[J]. Nephron Physiol, 2003,93(1):P3-13.
    Woo K. J., Jeong Y. J., Inoue H., et al. Chrysin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression through the inhibition of nuclear factor for IL-6 (NF-IL6) DNA-binding activity[J]. FEBS Lett,2005,579(3): 705-711.
    Ziyadeh F. N. Mediators of diabetic renal disease:the case for tgf-Beta as the major mediator[J]. J Am Soc Nephrol,2004,15 Suppl 1:S55-57.
    金光香,宫海民,段文卓,等.蜂贝化瘀胶囊对糖尿病大鼠糖脂代谢的调整及微血管并发症的防治[J].中国临床康复,2005,9(027):96-98.
    刘英华,薛长勇,欧阳红,等.茶多酚对大鼠晶状体醛糖还原酶的抑制作用[J].实用预防医学,2006,13(5):1162-1164.
    闫泉香.黄酮类醛糖还原酶抑制剂的活性研究[J].中药药理与临床,2004,20(2):9-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700