用户名: 密码: 验证码:
WDR5在VISA信号复合物组装及细胞抗病毒反应中的作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,病毒感染是人类健康的一大威胁。近年来,对机体抗病毒免疫反应的研究已经成为生物学领域的热点之一。以往的研究表明,病毒感染细胞后能够被天然免疫的模式识别受体(pattern- recognition receptor, PRR)识别,激活一系列信号通路,最终诱导包括IRF3和NF-κB在内的多个转录因子的激活。活化的转录因子进入细胞核,协同诱导Ⅰ型干扰素、炎症因子等多种细胞因子的表达和分泌。Ⅰ型干扰素通过与细胞膜上的干扰素受体相互作用,诱导一系列抗病毒蛋白的表达,这些抗病毒蛋白协同作用,通过抑制病毒复制或诱导被感染细胞的凋亡,实现细胞的抗病毒反应。炎症因子所引发的炎症反应能够激活天然免疫细胞,并诱导适应性免疫应答的启动。由此可见,Ⅰ型干扰素等细胞因子对机体的抗病毒免疫反应具有至关重要的作用。
     近年来的研究表明,病毒在感染与复制过程中所产生的病毒保守组分,如病毒RNA,能够被细胞内的PRRs,如RIG-I (retinoic acid-inducible geneⅠ)和MDA5 (melanoma differentiation- associated gene 5)所识别并结合。识别病毒RNA后,RIG-I和MDA5通过下游的接头蛋白VISA招募多个信号分子,共同组成一个信号复合物,向下游传递信号。VISA信号复合物的成功组装是病毒诱导Ⅰ型干扰素表达所不可或缺的。目前为止,关于VISA信号复合物中的蛋白组成,以及这些蛋白在复合物的形成及信号转导过程中所发挥的作用还不完全清楚。为了进一步探明VISA信号复合物的潜在成员及其在抗病毒信号通路中的功能,我们用串联亲和纯化的方法筛选了可能与VISA相互作用的蛋白。通过筛选,我们得到了一个与VISA特异性相互作用的蛋白WDR5 (WD repeat 5)。我们的研究结果显示,内源性WDR5与VISA之间的相互作用依赖于病毒感染。病毒感染细胞后,WDR5转移到线粒体上,与线粒体外膜上的VISA相互作用。利用RNAi干扰技术降低细胞内WDR5的表达能够阻碍病毒诱导的VISA信号复合物的装配。同时,降低WDR5的表达量还会抑制病毒诱导的IRF3和NF-κB的激活,以及IFNB1基因的转录。综上所述,这些发现表明WDR5在VISA信号复合物的装配过程中至关重要,同时在病毒诱导Ⅰ型干扰素产生的过程中发挥重要作用。该项研究增加了对抗病毒天然免疫信号转导分子机制的了解。
Viral infection could be detected by the pattern recognition receptors of the innate immune system, leading to activation of signaling transduction, results in activation of the transcription factors NF-κB and IRF3. These transcription factors collaborate to induce typeⅠinterferons (IFNs). TypeⅠinterferons further induce expression of the Anti-Viral Proteins. AVPs inhibit viral replication as well as induce the apoptosis of infected cells, therefore mediate cellular antiviral response. It is well admitted that the typeⅠinterferons play a very important role in antiviral immunity.
     Recent studies have demonstrated that, RIG-I and MDA5, two cytosolic PRRs, specifically detect viral RNAs that are produced during viral replication. Binding of RIG-I/MDA5 to viral RNA leads to recruitment of a downstream adaptor protein VISA. The mitochondrial outer membrane protein VISA acts as a critical adapter for assembling a virus-induced complex that signals NF-κB and IRF3 activation. However, the components of the VISA-associated complex and their roles in antiviral response are not fully understood yet.
     Using a biochemical purification approach, we identified the WD repeat protein WDR5 as a VISA-associated protein. WDR5 was recruited to VISA in a viral infection dependent manner. Viral infection also caused translocation of WDR5 from the nucleus to mitochondria. Knockdown of WDR5 impaired the formation of virus-induced VISA-associated complex. Consistently, knockdown of WDR5 inhibited virus-triggered activation of IRF3 and NF-κB as well as transcription of the IFNB1 gene. These findings suggest that WDR5 is essential in assembling a virus-induced VISA-associated complex and plays an important role in virus-triggered induction of typeⅠIFNs.
引文
Ablasser, A., Bauernfeind, F., Hartmann, G., Latz, E., Fitzgerald, K.A., and Hornung, V. (2009). RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase Ⅲ-transcribed RNA intermediate. Nat Immunol 10,1065-1072.
    Agalioti, T., Lomvardas, S., Parekh, B., Yie, J., Maniatis, T., and Thanos, D. (2000). Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Cell 103,667-678.
    Akira, S., and Takeda, K. (2004). Toll-like receptor signalling. Nature reviews 4,499-511.
    Akira, S., Takeda, K., and Kaisho, T. (2001). Toll-like receptors:critical proteins linking innate and acquired immunity. Nat Immunol 2,675-680.
    Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783-801.
    Alexopoulou, L., Holt, A.C., Medzhitov, R., and Flavell, R.A. (2001). Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413,732-738.
    Alexopoulou, L., Thomas, V., Schnare, M., Lobet, Y., Anguita, J., Schoen, R.T., Medzhitov, R., Fikrig, E., and Flavell, R.A. (2002). Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat Med 8,878-884.
    An, H., Zhao, W., Hou, J., Zhang, Y., Xie, Y., Zheng, Y, Xu, H., Qian, C., Zhou, J., Yu, Y, et al. (2006). SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production. Immunity 25,919-928.
    Andrejeva; J., Childs, K.S., Young, D.F., Carlos, T.S., Stock, N., Goodbourn, S., and Randall, R.E. (2004). The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc Natl Acad Sci U S A 101,17264-17269.
    Ank, N., West, H., and Paludan, S.R. (2006). IFN-lambda:novel antiviral cytokines. J Interferon Cytokine Res 26,373-379.
    Arimoto, K., Takahashi, H., Hishiki, T., Konishi, H., Fujita, T., and Shimotohno, K. (2007). Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proceedings of the National Academy of Sciences of the United States of America 104,7500-7505.
    Balachandran, S., Thomas, E., and Barber, GN. (2004). A FADD-dependent innate immune mechanism in mammalian cells. Nature 432,401-405.
    Baril, M., Racine, M.E., Penin, F., and Lamarre, D. (2009). MAVS dimer is a crucial signaling component of innate immunity and the target of hepatitis C virus NS3/4A protease. J Virol 83, 1299-1311.
    Bauer, S., Muller, T., and Hamm, S. (2009). Pattern recognition by Toll-like receptors. Advances in experimental medicine and biology 653,15-34.
    Bauer, S., Pigisch, S., Hangel, D., Kaufmann, A., and Hamm, S. (2008). Recognition of nucleic acid and nucleic acid analogs by Toll-like receptors 7,8 and 9. Immunobiology 213,315-328.
    Beg, A.A., Ruben, S.M., Scheinman, R.I., Haskill, S., Rosen, C.A., and Baldwin, A.S., Jr. (1992). I kappa B interacts with the nuclear localization sequences of the subunits of NF-kappa B:a mechanism for cytoplasmic retention. Genes Dev 6,1899-1913.
    Beutler, B. (2004). Toll-like receptors and their place in immunology. Where does the immune response to infection begin? Nature reviews 4,498.
    Bhoj, V.G., and Chen, Z.J. (2009). Ubiquitylation in innate and adaptive immunity. Nature 458, 430-437.
    Boone, D.L., Turer, E.E., Lee, E.G., Ahmad, R.C., Wheeler, M.T., Tsui, C., Hurley, P., Chien, M., Chai, S., Hitotsumatsu, O., et al. (2004). The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 5,1052-1060.
    Bowie, A., and O'Neill, L.A. (2000). The interleukin-1 receptor/Toll-like receptor superfamily:signal generators for pro-inflammatory interleukins and microbial products. Journal of leukocyte biology 67, 508-514.
    Bowie, A.G., and Unterholzner, L. (2008). Viral evasion and subversion of pattern-recognition receptor signalling. Nature reviews 8,911-922.
    Brinkmann, M.M., Spooner, E., Hoebe, K., Beutler, B., Ploegh, H.L., and Kim, Y.M. (2007). The interaction between the ER membrane protein UNC93B and TLR3,7, and 9 is crucial for TLR signaling. J Cell Biol 177,265-275.
    Burckstummer, T., Baumann, C., Bluml, S., Dixit, E., Durnberger, G., Jahn, H., Planyavsky, M., Bilban, M., Colinge, J., Bennett, K.L., and Superti-Furga, G. (2009). An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10,266-272.
    Burns, K., Janssens, S., Brissoni, B., Olivos, N., Beyaert, R., and Tschopp, J. (2003). Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. The Journal of experimental medicine 197,263-268.
    Cao, W., Manicassamy, S., Tang, H., Kasturi, S.P., Pirani, A., Murthy, N., and Pulendran, B. (2008). Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nat Immunol 9,1157-1164.
    Cao, Z., Henzel, W.J., and Gao, X. (1996). IRAK:a kinase associated with the interleukin-1 receptor. Science (New York, N.Y 271,1128-1131.
    Casanova, J.L., and Abel, L. (2004). Human Mannose-binding Lectin in Immunity:Friend, Foe, or Both? The Journal of experimental medicine 199,1295-1299.
    Chau, T.L., Gioia, R., Gatot, J.S., Patrascu, F., Carpentier, I., Chapelle, J.P., O'Neill, L., Beyaert, R., Piette, J., and Chariot, A. (2008). Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? Trends Biochem Sci 33,171-180.
    Chiu, Y.H., Macmillan, J.B., and Chen, Z.J. (2009a). RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138,576-591.
    Chiu, Y.H., Zhao, M., and Chen, Z.J. (2009b). Ubiquitin in NF-kappaB signaling. Chem Rev 109, 1549-1560.
    Choe, J., Kelker, M.S., and Wilson, I. A. (2005). Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science 309,581-585.
    Choi, M.K., Wang, Z., Ban, T., Yanai, H., Lu, Y, Koshiba, R., Nakaima, Y., Hangai, S., Savitsky, D., Nakasato, M., et al. (2009). A selective contribution of the RIG-I-like receptor pathway to type I interferon responses activated by cytosolic DNA. Proceedings of the National Academy of Sciences of the United States of America 106,17870-17875.
    Chuang, T.H., and Ulevitch, R.J. (2004). Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol 5,495-502.
    Couture, J.F., Collazo, E., and Trievel, R.C. (2006). Molecular recognition of histone H3 by the WD40 protein WDR5. Nature structural & molecular biology 13,698-703.
    Covert, M.W., Leung, T.H., Gaston, J.E., and Baltimore, D. (2005). Achieving stability of lipopolysaccharide-induced NF-kappaB activation. Science (New York, N.Y 309,1854-1857.
    Cui, S., Eisenacher, K., Kirchhofer, A., Brzozka, K., Lammens, A., Lammens, K., Fujita, T., Conzelmann, K.K., Krug, A., and Hopfner, K.P. (2008). The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I. Molecular cell 29,169-179.
    Dejardin, E., Droin, N.M., Delhase, M., Haas, E., Cao, Y., Makris, C., Li, Z.W., Karin, M., Ware, C.F., and Green, D.R. (2002). The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 17,525-535.
    Diao, F., Li, S., Tian, Y., Zhang, M., Xu, L.G., Zhang, Y., Wang, R.P., Chen, D., Zhai, Z., Zhong, B., et al. (2007). Negative regulation of MDA5- but not RIG-I-mediated innate antiviral signaling by the dihydroxyacetone kinase. Proceedings of the National Academy of Sciences of the United States of America 104,11706-11711.
    Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S., and Reis e Sousa, C. (2004). Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science (New York, N.Y 303, 1529-1531.
    Diehl, G.E., Yue, H.H., Hsieh, K., Kuang, A.A., Ho, M., Morici, L.A., Lenz, L.L., Cado, D., Riley, L.W., and Winoto, A. (2004). TRAIL-R as a negative regulator of innate immune cell responses. Immunity 21,877-889.
    Divanovic, S., Trompette, A., Atabani, S.F., Madan, R., Golenbock, D.T., Visintin, A., Finberg, R.W., Tarakhovsky, A., Vogel, S.N., Belkaid, Y., et al. (2005). Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat Immunol 6,571-578.
    Dommett, R.M., Klein, N., and Turner, M.W. (2006). Mannose-binding lectin in innate immunity:past, present and future. Tissue antigens 68,193-209.
    Durbin, J.E., Fernandez-Sesma, A., Lee, C.K., Rao, T.D., Frey, A.B., Moran, T.M., Vukmanovic, S., Garcia-Sastre, A., and Levy, D.E. (2000). Type I IFN modulates innate and specific antiviral immunity. J Immunol 164,4220-4228.
    Edelmann, K.H., Richardson-Burns, S., Alexopoulou, L., Tyler, K.L., Flavell, R.A., and Oldstone, M.B. (2004). Does Toll-like receptor 3 play a biological role in virus infections? Virology 322,231-238.
    Ermolaeva, M.A., Michallet, M.C., Papadopoulou, N., Utermohlen, O., Kranidioti, K., Kollias, G, Tschopp, J., and Pasparakis, M. (2008). Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat Immunol 9,1037-1046.
    Ewald, S.E., Lee, B.L., Lau, L., Wickliffe, K.E., Shi, G.P., Chapman, H.A., and Barton, G.M. (2008). The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456, 658-662.
    Fernandes-Alnemri, T., Yu, J.W., Datta, P., Wu, J., and Alnemri, E.S. (2009). AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458,509-513.
    Franchi, L., Warner, N., Viani, K., and Nunez, G. (2009). Function of Nod-like receptors in microbial recognition and host defense. Immunological reviews 227,106-128.
    Friedman, C.S., O'Donnell, M.A., Legarda-Addison, D., Ng, A., Cardenas, W.B., Yount, J.S., Moran, T.M., Basler, C.F., Komuro, A., Horvath, C.M., et al. (2008). The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep 9,930-936.
    Fujita, T., Yasuda, S., Kamata, Y., Fujita, K., Ohtani, Y., Kumagai, Y., and Majima, M. (2008). Contribution of down-regulation of intestinal and hepatic cytochrome P450 3 A to increased absorption of cyclosporine A in a rat nephrosis model. J Pharmacol Exp Ther 327,592-599.
    Fukui, R., Saitoh, S., Matsumoto, F., Kozuka-Hata, H., Oyama, M., Tabeta, K., Beutler, B., and Miyake, K. (2009). Unc93B 1 biases Toll-like receptor responses to nucleic acid in dendritic cells toward DNA-but against RNA-sensing. The Journal of experimental medicine 206,1339-1350.
    Gack, M.U., Kirchhofer, A., Shin, Y.C., Inn, K.S., Liang, C., Cui, S., Myong, S., Ha, T., Hopfner, K.P., and Jung, J.U. (2008). Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Proceedings of the National Academy of Sciences of the United States of America 105,16743-16748.
    Gack, M.U., Shin, Y.C., Joo, C.H., Urano, T., Liang, C., Sun, L., Takeuchi, O., Akira, S., Chen, Z., Inoue, S., and Jung, J.U. (2007). TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446,916-920.
    Gao, D., Yang, Y.K., Wang, R.P., Zhou, X., Diao, F.C., Li, M.D., Zhai, Z.H., Jiang, Z.F., and Chen, D.Y. (2009). REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-inducible gene-I. PLoS One 4, e5760.
    Georgel, P., Jiang, Z., Kunz, S., Janssen, E., Mols, J., Hoebe, K., Bahram, S., Oldstone, M.B., and Beutler, B. (2007). Vesicular stomatitis virus glycoprotein G activates a specific antiviral Toll-like receptor 4-dependent pathway. Virology 362,304-313.
    Gilmore, T.D. (2006). Introduction to NF-kappaB:players, pathways, perspectives. Oncogene 25, 6680-6684.
    Gilmore, T.D., and Herscovitch, M. (2006). Inhibitors of NF-kappaB signaling:785 and counting. Oncogene 25,6887-6899.
    Gori, F., Divieti, P., and Demay, M.B. (2001). Cloning and characterization of a novel WD-40 repeat protein that dramatically accelerates osteoblastic differentiation. J Biol Chem 276,46515-46522.
    Gori, F., Friedman, L.G., and Demay, M.B. (2006). Wdr5, a WD-40 protein, regulates osteoblast differentiation during embryonic bone development. Developmental biology 295,498-506.
    Hacker, H., and Karin, M. (2006). Regulation and function of IKK and IKK-related kinases. Sci STKE 2006, re13.
    Han, K.J., Su, X., Xu, L.G., Bin, L.H., Zhang, J., and Shu, H.B. (2004). Mechanisms of the TRIF-induced interferon-stimulated response element and NF-kappaB activation and apoptosis pathways. The Journal of biological chemistry 279,15652-15661.
    Hashimoto, C., Hudson, K.L., and Anderson, K.V. (1988). The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52,269-279.
    Hayden, M.S., and Ghosh, S. (2004). Signaling to NF-kappaB. Genes Dev 18,2195-2224.
    Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H., and Bauer, S. (2004). Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science (New York, N.Y 303,1526-1529.
    Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K., and Akira, S. (2002). Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3,196-200.
    Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., and Akira, S. (2000). A Toll-like receptor recognizes bacterial DNA. Nature 408,740-745.
    Hemmi, H., Takeuchi, O., Sato, S., Yamamoto, M., Kaisho, T., Sanjo, H., Kawai, T., Hoshino, K., Takeda, K., and Akira, S. (2004). The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. The Journal of experimental medicine 199,1641-1650.
    Hibino, T., Loza-Coll, M., Messier, C., Majeske, A.J., Cohen, A.H., Terwilliger, D.P., Buckley, K.M., Brockton, V., Nair, S.V., Berney, K., et al. (2006). The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 300,349-365.
    Higgs, R., Ni Gabhann, J., Ben Larbi, N., Breen, E.P., Fitzgerald, K.A., and Jefferies, C.A. (2008). The E3 ubiquitin ligase Ro52 negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3. J Immunol 181,1780-1786.
    Hiscott, J. (2007a). Convergence of the NF-kappaB and IRF pathways in the regulation of the innate antiviral response. Cytokine Growth Factor Rev 18,483-490.
    Hiscott, J. (2007b). Triggering the innate antiviral response through IRF-3 activation. J Biol Chem 282, 15325-15329.
    Honda, K., Takaoka, A., and Taniguchi, T. (2006). Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25,349-360.
    Honda, K., and Taniguchi, T. (2006). Toll-like receptor signaling and IRF transcription factors. IUBMB life 58,290-295.
    Honda, K., Yanai, H., Takaoka, A., and Taniguchi, T. (2005). Regulation of the type I IFN induction:a current view. Int Immunol 17,1367-1378.
    Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K.K., Schlee, M., et al. (2006).5'-Triphosphate RNA is the ligand for RIG-I. Science 314,994-997.
    Hoshino, K., Sugiyama, T., Matsumoto, M., Tanaka, T., Saito, M., Henimi, H., Ohara, O., Akira, S., and Kaisho, T. (2006). IkappaB kinase-alpha is critical for interferon-alpha production induced by Toll-like receptors 7 and 9. Nature 440,949-953.
    Huang, J., Liu, T., Xu, L.G., Chen, D., Zhai, Z., and Shu, H.B. (2005). SIKE is an IKK epsilon/TBK1-associated suppressor of TLR3- and virus-triggered IRF-3 activation pathways. Embo J 24,4018-4028.
    Ikeda, H., Old, L.J., and Schreiber, R.D. (2002). The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev 13,95-109.
    Ip, W.K., Takahashi, K., Ezekowitz, R.A., and Stuart, L.M. (2009). Mannose-binding lectin and innate immunity. Immunological reviews 230,9-21.
    Isaacs, A., and Lindenmann, J. (1957). Virus interference. I. The interferon. Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character 147,258-267.
    Ishii, K.J., Coban, C., Kato, H., Takahashi, K., Torii, Y., Takeshita, F., Ludwig, H., Sutter, G., Suzuki, K., Hemmi, H., et al. (2006). A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol 7,40-48.
    Ishii, K.J., Kawagoe, T., Koyama, S., Matsui, K., Kumar, H., Kawai, T., Uematsu, S., Takeuchi, O., Takeshita, F., Coban, C., and Akira, S. (2008a). TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451,725-729.
    Ishii, K.J., Koyama, S., Nakagawa, A., Coban, C., and Akira, S. (2008b). Host innate immune receptors and beyond:making sense of microbial infections. Cell Host Microbe 3,352-363.
    Ishikawa, H., and Barber, G.N. (2008). STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455,674-678.
    Janeway, C.A., Jr., and Medzhitov, R. (2002). Innate immune recognition. Annu Rev Immunol 20, 197-216.
    Jia, Y., Song, T., Wei, C., Ni, C., Zheng, Z., Xu, Q., Ma, H., Li, L., Zhang, Y., He, X., et al. (2009). Negative regulation of MAVS-mediated innate immune response by PSMA7. J Immunol 183, 4241-4248.
    Jiang, Z., Mak, T.W., Sen, G, and Li, X. (2004). Toll-like receptor 3-mediated activation of NF-kappaB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-beta. Proceedings of the National Academy of Sciences of the United States of America 101,3533-3538.
    Jin, L., Waterman, P.M., Jonscher, K.R., Short, C.M., Reisdorph, N.A., and Cambier, J.C. (2008). MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Mol Cell Biol 28,5014-5026.
    Jounai, N., Takeshita, F., Kobiyama, K., Sawano, A., Miyawaki, A., Xin, K.Q., Ishii, K.J., Kawai, T., Akira, S., Suzuki, K., and Okuda, K. (2007). The Atg5 Atgl2 conjugate associates with innate antiviral immune responses. Proceedings of the National Academy of Sciences of the United States of America 104,14050-14055.
    Jude, B.A., Pobezinskaya, Y., Bishop, J., Parke, S., Medzhitov, R.M., Chervonsky, A.V., and Golovkina, T.V. (2003). Subversion of the innate immune system by a retrovirus. Nat Immunol 4,573-578.
    Kaisho, T., and Tanaka, T. (2008). Turning NF-kappaB and IRFs on and off in DC. Trends Immunol 29, 329-336.
    Kanayama, A., Seth, R.B., Sun, L., Ea, C.K., Hong, M., Shaito, A., Chiu, Y.H., Deng, L., and Chen, Z.J. (2004). TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Molecular cell 15,535-548.
    Kang, J.Y., Nan, X., Jin, M.S., Youn, S.J., Ryu, Y.H., Mah, S., Han, S.H., Lee, H., Paik, S.G., and Lee, J.O. (2009). Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31,873-884.
    Karin, M., and Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination:the control of NF-[kappa]B activity. Annu Rev Immunol 18,621-663.
    Kato, H., Sato, S., Yoneyama, M., Yamamoto, M., Uematsu, S., Matsui, K., Tsujimura, T., Takeda, K., Fujita, T., Takeuchi, O., and Akira, S. (2005). Cell type-specific involvement of RIG-I in antiviral response. Immunity 23,19-28.
    Kato, H., Takeuchi, O., Mikamo-Satoh, E., Hirai, R., Kawai, T., Matsushita, K., Hiiragi, A., Dermody, T.S., Fujita, T., and Akira, S. (2008). Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. The Journal of experimental medicine 205,1601-1610.
    Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T., Ishii, K.J., et al. (2006). Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441,101-105.
    Kaufmann, S.H. (2007). The contribution of immunology to the rational design of novel antibacterial vaccines. Nature reviews 5,491-504.
    Kawai, T., and Akira, S. (2006). Innate immune recognition of viral infection. Nat Immunol 7,131-137.
    Kawai, T., and Akira, S. (2007). Signaling to NF-kappaB by Toll-like receptors. Trends in molecular medicine 13,460-469.
    Kawai, T., and Akira, S. (2009). The roles of TLRs, RLRs and NLRs in pathogen recognition. International immunology 21,317-337.
    Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K.J., Takeuchi, O., and Akira, S. (2005). IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6,981-988.
    Kayagaki, N., Phung, Q., Chan, S., Chaudhari, R., Quan, C., O'Rourke, K.M., Eby, M., Pietras, E., Cheng, G., Bazan, J.F., et al. (2007). DUBA:a deubiquitinase that regulates type I interferon production. Science (New York, N.Y 318,1628-1632.
    Kenny, E.F., and O'Neill, L.A. (2008). Signalling adaptors used by Toll-like receptors:an update. Cytokine 43,342-349.
    Kielian, M., and Rey, F.A. (2006). Virus membrane-fusion proteins:more than one way to make a hairpin. Nature reviews 4,67-76.
    Kim, M.J., Hwang, S.Y., Imaizumi, T., and Yoo, J.Y. (2008). Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation. J Virol 82,1474-1483.
    Kim, T.K., and Maniatis, T. (1997). The mechanism of transcriptional synergy of an in vitro assembled interferon-beta enhanceosome. Mol Cell 1,119-129.
    Kobayashi, K., Hernandez, L.D., Galan, J.E., Janeway, C.A., Jr., Medzhitov, R., and Flavell, R.A. (2002). IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110,191-202.
    Komuro, A., Bamming, D., and Horvath, C.M. (2008). Negative regulation of cytoplasmic RNA-mediated antiviral signaling. Cytokine 43,350-358.
    Kumagai, Y, Takeuchi, O., Kato, H., Kumar, H., Matsui, K., Morii, E., Aozasa, K., Kawai, T., and Akira, S. (2007). Alveolar macrophages are the primary interferon-alpha producer in pulmonary infection with RNA viruses. Immunity 27,240-252.
    Kumar, H., Kawai, T., and Akira, S. (2009a). Pathogen recognition in the innate immune response. Biochem J 420,1-16.
    Kumar, H., Kawai, T., and Akira, S. (2009b). Toll-like receptors and innate immunity. Biochem Biophys Res Commun 388,621-625.
    Kumar, H., Kawai, T., Kato, H., Sato, S., Takahashi, K., Coban, C., Yamamoto, M., Uematsu, S., Ishii, K.J., Takeuchi, O., and Akira, S. (2006). Essential role of IPS-1 in innate immune responses against RNA viruses. The Journal of experimental medicine 203,1795-1803.
    Kurt-Jones, E.A., Popova, L., Kwinn, L., Haynes, L.M., Jones, L.P., Tripp, R.A., Walsh, E.E., Freeman, M.W., Golenbock, D.T., Anderson, L.J., and Finberg, R.W. (2000). Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1,398-401.
    Le Goffic, R., Balloy, V., Lagranderie, M., Alexopoulou, L., Escriou, N., Flavell, R., Chignard, M., and Si-Tahar, M. (2006). Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS pathogens 2, e53.
    Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., and Hoffmann, J.A. (1996). The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86,973-983.
    Levy, D.E., and Garcia-Sastre, A. (2001). The virus battles:IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine Growth Factor Rev 12,143-156.
    Levy, D.E., and Marie, I.J. (2004). RIGging an antiviral defense—it's in the CARDs. Nat Immunol 5, 699-701.
    Li, S., Strelow, A., Fontana, E.J., and Wesche, H. (2002). IRAK-4:a novel member of the IRAK family with the properties of an IRAK-kinase. Proceedings of the National Academy of Sciences of the United States of America 99,5567-5572.
    Li, S., Zheng, H., Mao, A.P., Zhong, B., Li, Y., Liu, Y., Gao, Y, Ran, Y., Tien, P., and Shu, H.B. Regulation of virus-triggered signaling by OTUB1- and OTUB2-mediated deubiquitination of TRAF3 and TRAF6. The Journal of biological chemistry 285,4291-4297.
    Li, Y., Li, C., Xue, P., Zhong, B., Mao, A.P., Ran, Y., Chen, H., Wang, YY, Yang, F., and Shu, H.B. (2009). ISG56 is a negative-feedback regulator of virus-triggered signaling and cellular antiviral response. Proceedings of the National Academy of Sciences of the United States of America 106, 7945-7950.
    Lin, R., Lacoste, J., Nakhaei, P., Sun, Q., Yang, L., Paz, S., Wilkinson, P., Julkunen, I., Vitour, D., Meurs, E., and Hiscott, J. (2006a). Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKepsilon molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A proteolytic cleavage. J Virol 80,6072-6083.
    Lin, R., Yang, L., Nakhaei, P., Sun, Q., Sharif-Askari, E., Julkunen, I., and Hiscott, J. (2006b). Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20. The Journal of biological chemistry 281,2095-2103.
    Liu, L., Botos, I., Wang, Y., Leonard, J.N., Shiloach, J., Segal, D.M., and Davies, D.R. (2008a). Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science 320,379-381.
    Liu, P., Li, K., Garofalo, R.P., and Brasier, A.R. (2008b). Respiratory syncytial virus induces Re1A release from cytoplasmic 100-kDa NF-kappa B2 complexes via a novel retinoic acid-inducible gene-I{middle dot}NF- kappa B-inducing kinase signaling pathway. The Journal of biological chemistry 283,23169-23178.
    Mansell, A., Smith, R., Doyle, S.L., Gray, P., Fenner, J.E., Crack, P.J., Nicholson, S.E., Hilton, D.J., O'Neill, L.A., and Hertzog, P.J. (2006). Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat Immunol 7,148-155.
    Martinon, F., Mayor, A., and Tschopp, J. (2009). The inflammasomes:guardians of the body. Annu Rev Immunol 27,229-265.
    Mashima, R., Saeki, K., Aki, D., Minoda, Y., Takaki, H., Sanada, T., Kobayashi, T., Aburatani, H., Yamanashi, Y, and Yoshimura, A. (2005). FLN29, a novel interferon- and LPS-inducible gene acting as a negative regulator of toll-like receptor signaling. The Journal of biological chemistry 280, 41289-41297.
    Matsumoto, M., Funami, K., Tanabe, M., Oshiumi, H., Shingai, M., Seto, Y., Yamamoto, A., and Seya, T. (2003). Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol 171, 3154-3162.
    McGettrick, A.F., and O'Neill, L.A. Localisation and trafficking of Toll-like receptors:an important mode of regulation. Current opinion in immunology.
    McGreal, E.P. (2009). Structural basis of pattern recognition by innate immune molecules. Advances in experimental medicine and biology 653,139-161.
    McWhirter, S.M., Fitzgerald, K.A., Rosains, J., Rowe, D.C., Golenbock, D.T., and Maniatis, T. (2004).
    IFN-regulatory factor 3-dependent gene expression is defective in Tbkl-deficient mouse embryonic fibroblasts. Proceedings of the National Academy of Sciences of the United States of America 101, 233-238.
    Meylan, E., Burns, K., Hofmann, K., Blancheteau, V., Martinon, F., Kelliher, M., and Tschopp, J. (2004). RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 5,503-507.
    Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R., and Tschopp, J. (2005). Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437,1167-1172.
    Michallet, M.C., Meylan, E., Ermolaeva, M.A., Vazquez, J., Rebsamen, M., Curran, J., Poeck, H., Bscheider, M., Hartmann, G., Konig, M., et al. (2008). TRADD protein is an essential component of the RIG-like helicase antiviral pathway. Immunity 28,651-661.
    Moore, C.B., Bergstralh, D.T., Duncan, J.A., Lei, Y., Morrison, T.E., Zimmermann, A.G., Accavitti-Loper, M.A., Madden, V.J., Sun, L., Ye, Z., et al. (2008). NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451,573-577.
    Negishi, H., Fujita, Y., Yanai, H., Sakaguchi, S., Ouyang, X., Shinohara, M., Takayanagi, H., Ohba, Y, Taniguchi, T., and Honda, K. (2006). Evidence for licensing of IFN-gamma-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program. Proceedings of the National Academy of Sciences of the United States of America 103,15136-15141.
    O'Neill, L.A., and Bowie, A.G. (2007). The family of five:TIR-domain-containing adaptors in Toll-like receptor signalling. Nature reviews 7,353-364.
    Oganesyan, G., Saha, S.K., Guo, B., He, J.Q., Shahangian, A., Zarnegar, B., Perry, A., and Cheng, G. (2006). Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439,208-211.
    Okumura, A., Pitha, P.M., Yoshimura, A., and Harty, R.N. Interaction between Ebola virus glycoprotein and host toll-like receptor 4 leads to induction of proinflammatory cytokines and SOCS1. J Virol 84, 27-33.
    Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T., and Seya, T. (2003). TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 4, 161-167.
    Oshiumi, H., Matsumoto, M., Hatakeyama, S., and Seya, T. (2009). Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. The Journal of biological chemistry 284,807-817.
    Park, B., Brinkmann, M.M., Spooner, E., Lee, C.C., Kim, Y.M., and Ploegh, H.L. (2008). Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nat Immunol 9,1407-1414.
    Pasare, C., and Medzhitov, R. (2003). Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299,1033-1036.
    Pasare, C., and Medzhitov, R. (2005). Toll-like receptors:linking innate and adaptive immunity. Advances in experimental medicine and biology 560,11-18.
    Perry, A.K., Chow, E.K., Goodnough, J.B., Yeh, W.C., and Cheng, G. (2004). Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection. The Journal of experimental medicine 199,1651-1658.
    Pestka, S., Krause, C.D., and Walter, M.R. (2004). Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202,8-32.
    Picard, C., Puel, A., Bonnet, M., Ku, C.L., Bustamante, J., Yang, K., Soudais, C., Dupuis, S., Feinberg, J., Fieschi, C., et al. (2003). Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science (New York, N.Y 299,2076-2079.
    Pichlmair, A., Schulz, O., Tan, C.P., Naslund, T.I., Liljestrom, P., Weber, F., and Reis e Sousa, C. (2006). RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 314, 997-1001.
    Pippig, D.A., Hellmuth, J.C., Cui, S., Kirchhofer, A., Lammens, K., Lammens, A., Schmidt, A., Rothenfusser, S., and Hopfner, K.P. (2009). The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA. Nucleic Acids Res 37,2014-2025.
    Pobezinskaya, Y.L., Kim, Y.S., Choksi, S., Morgan, M.J., Li, T., Liu, C., and Liu, Z. (2008). The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors. Nat Immunol 9,1047-1054.
    Roberts, T.L., Idris, A., Dunn, J.A., Kelly, G.M., Burnton, C.M., Hodgson, S., Hardy, L.L., Garceau, V., Sweet, M.J., Ross, I.L., et al. (2009). HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science (New York, N.Y 323,1057-1060.
    Rothwarf, D.M., Zandi, E., Natoli, G., and Karin, M. (1998). IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature 395,297-300.
    Ryzhakov, G, and Randow, F. (2007). SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK. Embo J 26,3180-3190.
    Saha, S.K., Pietras, E.M., He, J.Q., Kang, J.R., Liu, S.Y., Oganesyan, G., Shahangian, A., Zarnegar, B., Shiba, T.L., Wang, Y., and Cheng, G. (2006). Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. Embo J 25,3257-3263.
    Saito, T., Hirai, R., Loo, Y.M., Owen, D., Johnson, C.L., Sinha, S.C., Akira, S., Fujita, T., and Gale, M., Jr. (2007). Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci U S A 104,582-587.
    Saito, T., Owen, D.M., Jiang, F., Marcotrigiano, J., and Gale, M., Jr. (2008). Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454,523-527.
    Saitoh, T., Tun-Kyi, A., Ryo, A., Yamamoto, M., Finn, G., Fujita, T., Akira, S., Yamamoto, N., Lu, K.P., and Yamaoka, S. (2006). Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pinl. Nat Immunol 7,598-605.
    Saitoh, T., Yamamoto, M., Miyagishi, M., Taira, K., Nakanishi, M., Fujita, T., Akira, S., Yamamoto, N., and Yamaoka, S. (2005). A20 is a negative regulator of IFN regulatory factor 3 signaling. J Immunol 174,1507-1512.
    Samuel, C.E. (2001). Antiviral actions of interferons. Clinical microbiology reviews 14,778-809, table of contents.
    Sanada, T., Takaesu, G., Mashima, R., Yoshida, R., Kobayashi, T., and Yoshimura, A. (2008). FLN29 deficiency reveals its negative regulatory role in the Toll-like receptor (TLR) and retinoic acid-inducible gene I (RIG-I)-like helicase signaling pathway. The Journal of biological chemistry 283, 33858-33864.
    Sasai, M., Oshiumi, H., Matsumoto, M., Inoue, N., Fujita, F., Nakanishi, M., and Seya, T. (2005). Cutting Edge:NF-kappaB-activating kinase-associated protein 1 participates in TLR3/Toll-IL-1 homology domain-containing adapter molecule-1-mediated IFN regulatory factor 3 activation. J Immunol 174,27-30.
    Sasai, M., Shingai, M., Funami, K., Yoneyama, M., Fujita, T., Matsumoto, M., and Seya, T. (2006). NAK-associated protein 1 participates in both the TLR3 and the cytoplasmic pathways in type I IFN induction. J Immunol 177,8676-8683.
    Schlee, M., Roth, A., Hornung, V., Hagmann, C.A., Wimmenauer, V., Barchet, W., Coch, C., Janke, M., Mihailovic, A., Wardle, G., et al. (2009). Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31, 25-34.
    Seth, R.B., Sun, L., and Chen, Z.J. (2006). Antiviral innate immunity pathways. Cell Res 16,141-147. Seth, R.B., Sun, L., Ea, C.K., and Chen, Z.J. (2005). Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122,669-682.
    Shahnazari, S., and Brumell, J.H. (2009). Eating twice for the sake of immunity:a phagocytic receptor that activates autophagy. Cell host & microbe 6,297-298.
    Shaw, M.H., Reimer, T., Kim, Y.G., and Nunez, G (2008). NOD-like receptors (NLRs):bona fide intracellular microbial sensors. Curr Opin Immunol 20,377-382.
    Shi, M., Deng, W., Bi, E., Mao, K., Ji, Y., Lin, G., Wu, X., Tao, Z., Li, Z., Cai, X., et al. (2008). TRIM30 alpha negatively regulates TLR-mediated NF-kappa B activation by targeting TAB2 and TAB3 for degradation. Nat Immunol 9,369-377.
    Sieczkarski, S.B., and Whittaker, GR. (2005). Viral entry. Curr Top Microbiol Immunol 285,1-23. Song, J.J., and Kingston, R.E. (2008). WDR5 interacts with mixed lineage leukemia (MLL) protein via the histone H3-binding pocket. The Journal of biological chemistry 283,35258-35264.
    Su, X., Li, S., Meng, M., Qian, W., Xie, W., Chen, D., Zhai, Z., and Shu, H.B. (2006). TNF receptor-associated factor-1 (TRAF1) negatively regulates Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-mediated signaling. Eur J Immunol 36,199-206.
    Sun, Q., Sun, L., Liu, H.H., Chen, X., Seth, R.B., Forman, J., and Chen, Z.J. (2006). The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24,633-642.
    Suzuki, N., Suzuki, S., Duncan, G.S., Millar, D.G., Wada, T., Mirtsos, C., Takada, H., Wakeham, A., Itie, A., Li, S., et al. (2002). Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 416,750-756.
    Tabeta, K., Hoebe, K., Janssen, E.M., Du, X., Georgel, P., Crozat, K., Mudd, S., Mann, N., Sovath, S., Goode, J., et al. (2006). The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3,7 and 9. Nat Immunol 7,156-164.
    Takahashi, K., Ip, W.E., Michelow, I.C., and Ezekowitz, R.A. (2006). The mannose-binding lectin:a prototypic pattern recognition molecule. Current opinion in immunology 18,16-23.
    Takahasi, K., Kumeta, H., Tsuduki, N., Narita, R., Shigemoto, T., Hirai, R., Yoneyama, M., Horiuchi, M., Ogura, K., Fujita, T., and Inagaki, F. (2009). Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains:identification of the RNA recognition loop in RIG-I-like receptors. The Journal of biological chemistry 284,17465-17474.
    Takahasi, K., Yoneyama, M., Nishihori, T., Hirai, R., Kumeta, H., Narita, R., Gale, M., Jr., Inagaki, F., and Fujita, T. (2008). Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Molecular cell 29,428-440.
    Takaoka, A., Wang, Z., Choi, M.K., Yanai, H., Negishi, H., Ban, T., Lu, Y., Miyagishi, M., Kodama, T., Honda, K., et al. (2007). DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448,501-505.
    Takeuchi, O., and Akira, S. (2009). Innate immunity to virus infection. Immunological reviews 227, 75-86.
    Tamura, T., Yanai, H., Savitsky, D., and Taniguchi, T. (2008). The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 26,535-584.
    Taniguchi, T., Mantei, N., Schwarzstein, M., Nagata, S., Muramatsu, M., and Weissmann, C. (1980). Human leukocyte and fibroblast interferons are structurally related. Nature 285,547-549.
    Taniguchi, T., Ogasawara, K., Takaoka, A., and Tanaka, N. (2001). IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 19,623-655.
    Thompson, A.J., and Locarnini, S.A. (2007). Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immune response. Immunology and cell biology 85,435-445.
    Tian, Y., Zhang, Y, Zhong, B., Wang, Y.Y., Diao, F.C., Wang, R.P., Zhang, M., Chen, D.Y., Zhai, Z.H., and Shu, H.B. (2007). RBCK1 negatively regulates tumor necrosis factor- and interleukin-1-triggered NF-kappaB activation by targeting TAB2/3 for degradation. The Journal of biological chemistry 282, 16776-16782.
    Triantafilou, K., and Triantafilou, M. (2004). Coxsackievirus B4-induced cytokine production in pancreatic cells is mediated through toll-like receptor 4. J Virol 78,11313-11320.
    Trievel, R.C., and Shilatifard, A. (2009). WDR5, a complexed protein. Nature structural & molecular biology 16,678-680.
    Uematsu, S., and Akira, S. (2007). Toll-like receptors and Type I interferons. The Journal of biological chemistry 282,15319-15323.
    Underhill, D.M., and Gantner, B. (2004). Integration of Toll-like receptor and phagocytic signaling for tailored immunity. Microbes and infection/Institut Pasteur 6,1368-1373.
    Venkataraman, T., Valdes, M., Elsby, R., Kakuta, S., Caceres, G., Saijo, S., Iwakura, Y., and Barber, GN. (2007). Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J Immunol 178,444-6455.
    Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G.,mith, H.O., Yandell, M., Evans, C.A., Holt, R.A., et al. (2001). The sequence of the human genome. Science 291,1304-1351.
    Vercammen, E., Staal, J., and Beyaert, R. (2008). Sensing of viral infection and activation of innate immunity by toll-like receptor 3. Clin Microbiol Rev 21,13-25.
    Wallis, R. (2007). Interactions between mannose-binding lectin and MASPs during complement activation by the lectin pathway. Immunobiology 212,289-299.
    Wang, C.,Chen, T., Zhang, J., Yang, M., Li, N., Xu, X., and Cao, X. (2009). The E3 ubiquitin ligase Nrdp1‘preferentially’promotes TLR-mediated production of type I interferon. Nat Immunol 10, 744-752.
    Wang, T., Town, T., Alexopoulou, L., Anderson, J.F., Fikrig, E., and Flavell, R.A. (2004a). Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10, 1366-1373.
    Wang, Y.Y., Li, L., Han, K.J., Zhai, Z., and Shu, H.B. (2004b). A20 is a potent inhibitor of TLR3- and Sendai virus-induced activation of NF-kappaB and ISRE and IFN-beta promoter. FEBS Lett 576, 86-90.
    Watanabe, T., Kitani, A., Murray, P.J., and Strober, W. (2004). NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol 5,800-808.
    Wathelet, M.G., Lin, C.H., Parekh, B.S., Ronco, L.V., Howley, P.M., and Maniatis, T. (1998). Virus infection induces the assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivo. Mol Cell 1,507-518.
    Werner, S.L., Barken, D., and Hoffmann, A. (2005). Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science (New York, N.Y 309,1857-1861.
    Wysocka, J., Swigut, T., Milne, T.A., Dou, Y., Zhang, X., Burlingame, A.L., Roeder, R.G., Brivanlou, A.H., and Allis, C.D. (2005). WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121,859-872.
    Xu, L., Xiao, N., Liu, F., Ren, H., and Gu, J. (2009). Inhibition of RIG-I and MDA5-dependent antiviral response by gClqR at mitochondria. Proceedings of the National Academy of Sciences of the United States of America 106,1530-1535.
    Xu, L.G., Wang, Y.Y., Han, K.J., Li, L.Y., Zhai, Z., and Shu, H.B. (2005). VISA is an adapter protein required for virus-triggered IFN-beta signaling. Molecular cell 19,727-740.
    Yamamoto, M., Sato, S., Mori, K., Hoshino, K., Takeuchi, O., Takeda, K., and Akira, S. (2002). Cutting edge:a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 169,6668-6672.
    Yokoyama, A., Wang, Z., Wysocka, J., Sanyal, M., Aufiero, D.J., Kitabayashi, I., Herr, W., and Cleary, M.L. (2004). Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 24,5639-5649.
    Yoneyama, M., and Fujita, T. (2008). Structural mechanism of RNA recognition by the RIG-I-like receptors. Immunity 29,178-181.
    Yoneyama, M., and Fujita, T. (2009). RNA recognition and signal transduction by RIG-I-like receptors. Immunological reviews 227,54-65.
    Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M., Taira, K., Foy, E., Loo, Y.M., Gale, M., Jr., Akira, S., et al. (2005). Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175,2851-2858.
    Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S., and Fujita, T. (2004). The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5,730-737.
    You, F., Sun, H., Zhou, X., Sun, W., Liang, S., Zhai, Z., and Jiang, Z. (2009). PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. Nat Immunol 10,1300-1308.
    Zhang, M., Tian, Y., Wang, R.P., Gao, D., Zhang, Y., Diao, F.C., Chen, D.Y, Zhai, Z.H., and Shu, H.B. (2008a). Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3. Cell Res 18,1096-1104.
    Zhang, M., Wu, X., Lee, A.J., Jin, W., Chang, M., Wright, A., Imaizumi, T., and Sun, S.C. (2008b). Regulation of IkappaB kinase-related kinases and antiviral responses by tumor suppressor CYLD. The Journal of biological chemistry 283,18621-18626.
    Zhao, C., Denison, C., Huibregtse, J.M., Gygi, S., and Krug, R.M. (2005). Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proceedings of the National Academy of Sciences of the United States of America 102,10200-10205.
    Zhong, B., Yang, Y., Li, S., Wang, Y.Y., Li, Y, Diao, F., Lei, C., He, X., Zhang, L., Tien, P., and Shu, H.B. (2008). The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29,538-550.
    Zhong, B., Zhang, L., Lei, C., Li, Y., Mao, A.P., Yang, Y., Wang, Y.Y., Zhang, X.L., and Shu, H.B. (2009). The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 30,397-407.
    Zhu, E.D., Demay, M.B., and Gori, F. (2008). Wdr5 is essential for osteoblast differentiation. J Biol Chem 283,7361-7367.
    《分子病毒学》,吴柏春,华中师范大学出版社,1999年7月,第一版。
    《抗病毒天然免疫》,舒红兵主编,科学出版社,2009年9月,第一版。
    《分子克隆实验指南》J.萨姆布鲁克等,科学出版社,2002年11月,第三版。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700