用户名: 密码: 验证码:
EβF合成酶基因的克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蚜虫是重要的农业害虫,通过吸食植物汁液或传播病毒病可给作物生产造成严重危害。小麦现有种质资源中不仅缺乏有效的抗蚜基因,而且抗性机制不明确,导致抗虫育种进展缓慢。目前,麦蚜防治以喷洒农药为主,但大量使用农药,不仅对人畜有害,而且造成了严重环境污染。通过转基因工程创制小麦抗蚜新种质,是目前急需解决的重要议题。当前应用于小麦抗蚜基因工程的主要有雪花莲凝集素基因(gna)和半夏凝集素基因(pta)等植物凝集素基因,尽管这些基因抗蚜有一定效果,但研究表明gna转基因植物会影响蚜虫天敌的育性,这些基因应用的安全性引起争议。因此,挖掘和利用安全有效的新型抗蚜基因已成为小麦抗蚜基因工程的研究热点。[反]-β-法尼烯【(E)-β-farnesene,EβF】作为大多数蚜虫报警信息素的主要甚至唯一成份,可以使蚜虫产生骚动、从植株上脱落,并吸引蚜虫天敌,从而有效控制蚜虫危害。
     本研究以欧洲薄荷(Mentha x piperita)、亚洲薄荷(Mentha haplocalyx Briq)、黄花蒿(Artemisia annua)和花旗松(Pseudotsuga menziesii)为实验材料,克隆了其中的EβF合成酶基因并进行了功能分析,而且将MhβFS1基因转入小麦。具体实验结果如下:
     1.薄荷EβF合成酶基因的克隆及功能分析:(1)利用RT-PCR方法从亚洲薄荷与欧洲薄荷中分离EβF合成酶基因,其中亚洲薄荷有两个不同的cDNA克隆,分别命名为MhβFS1和MhβFS2,MhβFS2与MhβFS1相比,只有一个编码氨基酸残基的差异(第361位V→A),欧洲薄荷中分离的克隆与MhβFS1完全一致;MhβFS1和MhβFS2的基因组序列长度分别为2690 bp和2753 bp,均有6个内含子,且内含子的相位相同(分别为0、1、2、2、0、0)。(2)qRT-PCR实验结果表明MhβFS基因在薄荷根、茎、叶中均有表达,叶片中表达量稍高。(3)获得MhβFS1/MhβFS2融合蛋白,大小为63 kD左右,纯化后制备抗体,抗体效价大于125000。(4)MhβFS1转基因烟草研究:获得转基因植株12株,Southern杂交、qRT-PCR及Western杂交证明了对MhβFS1基因在烟草中的整合和表达。GC-MS结果显示,转基因株系Mh1-1、Mh1-2、Mh1-4和Mh1-6的EβF释放量分别为243、398、644、769 ng/day;驱蚜试验结果显示,转基因烟草植株对蚜虫有一定的驱避作用,与对照相比,Mh1-1、Mh1-2、Mh1-4和Mh1-6转基因株系上的蚜虫数量分别减少7.0%,9. 3%,16.3%和14.0%。
     2.黄花蒿EβF合成酶基因的克隆及功能分析:(1)从黄花蒿中分离出两个不同的AaβFS cDNA序列,分别命名为AaβFS1和AaβFS2;AaβFS1和AaβFS2有4个编码氨基酸的差异,包括第21位亮氨酸的缺失,50位天冬氨酸取代天冬酰胺,89位亮氨酸取代异亮氨酸,509位甘氨酸取代精氨酸,已将AaβFS1和AaβFS2 cDNA序列提交GenBank,登录号分别为GU294840、GU294841;AaβFS1基因组序列长度为2392 bp,含有6个内含子,相位依次是0,1,2,2,0和0。(2)分别获得AaβFS1和AaβFS2转基因烟草11株和5株。对转基因烟草植株进行了Southern杂交、qRT-PCR和SDS-PAGE等分子检测,确认了AaβFS基因在烟草中的整合与表达。GC-MS结果显示,AaβFS1和AaβFS2转基因烟草植株均能生成EβF,EβF释放量为217~706 ng/day。驱蚜试验显示,转基因烟草植株对蚜虫有驱避作用,与对照相比,Aa1-4-5转基因株系上的蚜虫数量减少了10.0%;蚜虫天敌吸引试验显示转基因烟草植株对大草蛉有吸引作用;在蚜虫与天敌混合试验中,在转基因株系中,Aa1-3-4上蚜虫数量减少16.4%,Aa1-4-5减少23.6%,Aa2-1-2减少10.9%,Aa2-3-6则减少20.0%,说明转基因烟草植株可以通过吸引蚜虫天敌来控制蚜虫虫害。
     3.花旗松EβF合成酶基因的克隆及功能分析:(1)从花旗松中分离出两个不同的PmβFS cDNA序列,分别命名为PmβFS1和PmβFS2;PmβFS1和PmβFS2 ORF均有2478个核苷酸组成,编码825个氨基酸,PmβFS1和PmβFS2有9个编码氨基酸的差异,相似性为98.9%;PmβFS2基因组序列长度为3846 bp,包含11个内含子。(2)融合蛋白PmβFS1/PmβFS2的大小为94 kD左右,以包涵体的形式存在于沉淀中。(3)经过PCR、qRT-PCR检测,分别获得15株PmβFS1阳性植株和5株PmβFS2阳性植株;GC-MS分析结果显示转基因烟草产生的EβF量过低,可能与PmβFS1和PmβFS2在烟草中的活性不高有关。
     4. MhβFS1转基因小麦创制:为提高目的基因的表达水平,本研究采用水稻rbcS启动子,并在MhβFS1 5'端引入了水稻rbcS基因的叶绿体转导肽(CTP)、?和kozak序列,3'端引入poly(A)序列,成功构建了适用于小麦基因枪转化的植物表达载体MhβFS1-pG4AB及MhβFS1+CTP-pG4AB;在此基础上进一步构建了适用于小麦农杆菌介导法转化的植物表达载体MhβFS1-pGПUB和MhβFS1+CTP-pGПUB。分别通过基因枪法和农杆菌介导法将其转入扬麦12和科农199,对转基因植株连续进行PCR鉴定和繁殖,已获得T3代转基因种子;选择部分T0株系进行Southern杂交,结果显示MhβFS1基因已整合至小麦基因组,目前正在检测转基因小麦能否释放EβF及其对蚜虫的驱避性。
Aphids are major agricultural pests, partly due to their serious physical and economic damage to cultivated plants by sucking nutrients from the phloem or by transmitting plant viruses. However, the plant defence against aphid-resistance among the available wheat germplasm was seldom identified with the mechanism underlying remains unclear. Chemical insecticides provide a simple strategy for wheat aphid control. However, the large-scale application of such chemicals is not in an environmentally friendly way and becoming increasingly unacceptable. Transgenic wheat engineered for enhanced aphids′resistance could be an efficient alternative strategy. Some plant lectins, including Galanthus nivalis agglutinin (gna) and Pinellia ternate agglutinin (pta), have shown to be toxic towards aphids in transgenic wheat. However, it is reported that gna transgenic plants could cause the sterility of predatory ladybird via aphids in its food chain, and biosafety issues related to the application of these genes need to be evaluated. Therefore, other safe and effective genes for aphid control need to be exploited. EβF [(E)-β-farnesene], as the main and sometimes only component of most aphid alarm pheromone, could cause other aphids in the vicinity to become agitated or disperse from their host plant. What is more, EβF can also function as a kairomone to attract the predator of aphids.
     Here, the EβF synthase genes were isolated from peppermint、sweet wormwood (Artemisia annua) and douglas fir (Pseudotsuga menziesii), respectively. Functional analysis of individual EβF synthase gene was carried out with transgenic tobacco plants obtained. Moreover, one of the isolated EβF synthase genes, MhβFS1, was transferred into wheat for the first time. The results are indicated as following:
     1. Cloning and functional analysis of the EβF synthase genes from peppermint: (1) MhβFS genes were isolated from Mentha haplocalyx Briq and Mentha x piperita by RT-PCR. Two EβF synthase genes, named MhβFS1 and MhβFS2, were discovered in Mentha haplocalyx Briq. Compared with MhβFS1, there was a substitution of Val to Ala at position 361 for MhβFS2. The sequence of EβF synthase gene from Mentha x piperita was the same as that of MhβFS1. The length of MhβFS1 and MhβFS2 genomic sequence were 2690 and 2753 bp, respectively. Both of them contain six introns with the same intron phase (intron phase of the six introns is 0, 1, 2, 2, 0 and 0, respectively). (2) qRT-PCR confirmed that MhβFS could express in all the three selected organs, the expression level in leaves was somewhat higher than that of the roots and stems. (3) The molecular weight of heterologous recombinant MhβFS1/MhβFS2 was about 63 kD. The recombinant MhβFS1 was purified using HisTrapTM HP before injecting into a rabbit. The titer of the rabbit′s anti-serum was higher than 125 000. (4) Twelve MhβFS1 positive transgenic individuals were identified by PCR, some of them were further analyzed by southern blot, qRT-PCR and western blot. GC-MS showed that transgenic lines emitted EβF at a level of 243 ng per day for Mh1-1, 398 ng per day for Mh1-2, 644 ng per day for Mh1-3 and 769 ng per day for Mh1-4, respectively. Compared with the control plant W38, transgenic lines showed repellence to aphids with the number of aphids on Mh1-1, Mh1-2, Mh1-4, Mh1-6 decreased 7.0%,9. 3%,16.3% and 14.0%, respectively.
     2. Cloning and functional analysis of the EβF synthase genes from sweet wormwood: (1) Two EβF synthase genes, designed as AaβFS1 and AaβFS2, were isolated from Artemisia annua. The deduced protein of AaβFS1 had four amino acids differing from that of AaβFS2 including a Leu deletion at position 21, a Asp to Asn at position 50, a Leu to Ile at position 89, a Gly to Arg at position 509. The cDNA sequences of AaβFS1 and AaβFS2 were deposited in GenBank under accession number GU294840 and GU294841, respectively. The length of AaβFS1 genomic sequence was 2392 bp, containing six introns with the intron phase of 0, 1, 2, 2, 0 and 0, respectively. (2) Eleven AaβFS1 and five AaβFS2 positive transgenic tobacco plants were identified by PCR. Southern blot, qRT-PCR and SDS-PAGE further confirmed the integration, expression of the transgenes in transgenic lines. According to the results of GC-MS, AaβFS1 and AaβFS2 transgenic tobacco plants could emit EβF at a level of 217~706 ng/day. The number of aphids on transgenic line Aa1-4-5 decreased 10.0% compared with the non-transgenic control W38. Interestingly, transgenic tobacco plants showed special attraction to green lacewings (Chrysoperla carnea). Then four hundred alate aphids and ten lacewings were simultaneously introduced into a setup, twelve hours later, the number of aphids was reduced by approximately 16.4% in transgenic line Aa1-3-4, 23.6% in Aa1-4-5, 10.9% in Aa2-1-2, 20.0% in Aa2-3-6, respectively. Therefore, we would like to presume that, AaβFS1 and AaβFS2 lines could have a pleiotropic effect on aphid behaviors, especially attraction to aphid predators for aphid control.
     3. Cloning and functional analysis of the EβF synthase genes from Douglas fir: (1) Two different PmβFS cDNA clones, designed as PmβFS1 and PmβFS2, were isolated from Douglas fir. Both the ORF of PmβFS1 and PmβFS2 contained 2478 nucleotide, which encoded 825 amino acids. The deduced protein of PmβFS1 had four amino acids differing from that of PmβFS2 with 98.9% identities. The length of PmβFS2 genomic sequence was 3846 bp, containing eleven introns. (2) The molecular weight of heterologous recombinant PmβFS1/PmβFS2 protein was around 63 kD, existing in the inclusion body. (3) Fifteen PmβFS1 and five PmβFS2 positive transgenic tobacco plants were identified by PCR and qRT-PCR. GC-MS indicated that transgenic tobacco emitted small amounts of EβF, perhaps due to the activity of PmβFS1 and PmβFS2 synthesas were low in transgenic tobacco plants.
     4. Preliminary researches on MhβFS1 transgenic wheat: The expression vectors both for particle bombardment, i.e. MhβFS1-pG4AB and MhβFS1+CTP-pG4AB, and Agrobacterium-mediated transformation vectors such as MhβFS1-pGПUB and MhβFS1+CTP-pGПUB were constructed with rice rbcS promotor to direct the expression of target genes with chloroplast transit peptide, ?-kozak sequence added to the 5'-end of MhβFS1 and poly(A) sequence to the 3'-end. MhβFS1 was then transformed into wheat cultivar Yangmai 12 and Kenong199 by biolistic and Agrobacterium-mediated methods, respectively, Positive transgenic wheat lines were advanced to T3 generation. Southern blot of some T0 transgenic wheat lines indicated that transgenes were integrated into the genome of transgenic wheat. Further analysis of EβF emission of the transgenic lines and its effect on the bioassay for aphid control is now under way.
引文
1.曹雅忠,李克斌,尹姣,张克诚(2006).小麦主要害虫的发生动态及可持续控制的策略与实践.中国植保导刊, 26(8), 11-14.
    2.陈巨莲,倪汉祥,孙京瑞(2002).主要次生物质对麦蚜的抗性阈值及交互作用.植物保护学报, 29(1), 7-12.
    3.陈林(2001).苦豆碱及吡虫啉对菜田蚜虫群落的影响.徐州师范大学学报, 19(4), 59-61.
    4.甘吉生(2003). 2006—2020年《作物科技发展规划》研究报告. //路明主编, 2003中国作物学会学术年会论文集, 47-62.
    5.郭丽娜,王洪平(2008).异色瓢虫对麦蚜和红蜘蛛的捕食功能反应.河南农业科学, 4, 72-74.
    6.郭三堆,崔洪志,夏兰芹,武东亮,倪万潮,张震林,张保龙,徐英俊(1999).双价抗虫转基因棉花研究.中国农业科学, 32(3), 1-7.
    7.韩文智(1990).豆蚜在不同品种扁豆上的取食行为.昆虫学报, 33(1), 28-33.
    8.黄海群,林拥军(2007).水稻rbcS基因启动子的克隆及结构功能分析.农业生物技术学报, 15(3), 451-458.
    9.蒋金炜,陈俊伟(1994).麦田蚜茧蜂对麦蚜抑制作用的评估.河南职业技术师范学院学报, 22(3), 1-4.
    10.姜永幸(1994).棉蚜的取食行为及棉花抗蚜的生理生化机制.中国农业科学院博士学位论文.
    11.李俊(2002).亚洲薄荷在西双版纳引种的初步研究.云南热作科技, 25(3), 16-17.
    12.李巧丝,武予清,李素娟,刘爱芝,刘媛媛(2003).麦蚜危害对优质面包小麦品质的影响.植物保护, 29(1), 43-44.
    13.李素娟,张志勇,王兴远(1998).用模糊识别技术鉴定小麦品种(系)抗蚜性研究.植物保护, 24(5), 15-16.
    14.梁辉,朱银峰,朱祯,孙东发,贾旭(2004).雪花莲凝集素基因转化小麦及转基因小麦抗蚜性的研究.遗传学报, 31(2), 189-194.
    15.李瑞红,范燕萍,余让才,陆旺金,庄楚雄(2008).白姜花倍半萜合成酶基因的克隆及表达.园艺学报, 35(10), 1527-1532.
    16.李云寿,唐绍宗,邹华英,汪禄祥,杨益章,李晚谊,纳晓燕,佴注(2000).黄花蒿提取物的杀虫活性.农药, 39(10), 25-26.
    17.刘巧泉,于恒秀,张文娟,王红梅,顾铭洪(2005).水稻rbcS启动子控制的外源基因在转基因水稻中的特异性表达.植物生理与分子生物学, 31(3), 247-253.
    18.刘勇,陈巨莲,程登发,倪汉祥(2006).我国小麦害虫无公害治理的现状及展望. 2006年中国科协年会, 65-69.
    19.罗永明,刘爱华,李琴,黄璐琦(2003).植物萜类化合物的生物合成途径及其关键酶的研究进展.江西中医学院学报, 15(2), 46-49.
    20.马靓,丁鹏,杨广笑,何光源(2006).植物类萜生物合成途径及关键酶的研究进展.生物技术通报, 1, 22-30.
    21.马蕊,陈巨莲,程登发,孙京瑞(2010).蚜虫唾液主要成分及其在寄主和害虫互作中的作用.植物保护, 36, 15-21.
    22.倪万潮,张震林,郭三堆(1998).转基因抗虫棉的培育.中国农业科学, 31, 36-40.
    23.武予清,李素娟,刘爱芝,李世功(2002).小麦抗蚜育种研究进展.河南农业科学, 2, 19-20.
    24.徐琼芳,李连城,陈孝,马有志,叶兴国,张增艳,徐惠君,辛志勇(2001).基因枪法获得GNA转基因小麦植株的研究.中国农业科学, 34(1), 1-4.
    25.徐琼芳,田芳,陈孝,侯文胜,李连城,杜丽璞,徐惠君,辛志勇(2004).转基因抗虫小麦中sgna基因的遗传分析及抗虫性鉴定.作物学报, 30(5), 475-480.
    26.杨杉,乔利利,蔡万伦,华红霞,张宏宇,杨长举(2009).几种植物精油对赤拟谷盗成虫的熏蒸作用.中国粮油学报, 24(4) , 122-126.
    27.杨广,关雄, Wang-Pruski G.F.,魏辉,尤民生(2007).植物诱导抗虫基因研究进展.农业生物技术学报, 15, 157-166.
    28.尹玲莉,侯晓杰(2007).植物抗性信号分子-水杨酸研究进展.中国农学通报, 23(1), 338-342.
    29.喻修道,徐兆师,陈明,李连城,马有志(2010).小麦转基因技术研究及其应用.中国农业科学, 43(8), 1539-1553.
    30.曾君祉,王东江,吴有强,张健,周文娟,朱小平,徐乃正(1993).用花粉管途径获得小麦转基因植株.中国科学, 3(6), 560-564.
    31.郑光宇(2006).基因工程防治蚜虫研究进展.喀什师范学院学报, 27(3), 54-60.
    32.张永强,丁伟,赵志模,吴静,樊钰虎(2008).黄花蒿提取物对朱砂叶螨生物活性的研究.中国农业科学, 41(3), 720-726.
    33.赵亚娥,郭娜(2007).薄荷油体外抗蠕形螨效果及杀螨机制.昆虫知识, 44, 74-77.
    34.朱芬,雷朝亮,王健(2003).黄花蒿粗提物对几种害虫拒食性的初步研究.昆虫天敌, 2003, 25(1), 16-19.
    35. Acar E.B., Medina J.C., Lee M.L., Booth G.M (2001). Olfactory behaviour of convergent lady beetles (Coleoptera:Coccinellidae) to alarm pheromone of green peach aphid (Hemiptera: Aphididae). Canadian Entomologist, 133, 389-397.
    36. Adams J.B., Drew M.E (1965). A cellulose-hydrolyzing factor in aphid saliva. Canadian Journal of Zoology, 43, 489-496.
    37. Adams J.B., McAllan J.V (1956). Pectinase in the saliva of Myzus persicae (Sulz.) (Homoptera: Aphididae). Canadia Journal of Zoology, 34, 541-543.
    38. Aharoni A., Giri A.P., Deuerlein S., Griepink F., de-Kogel W.J., Verstappen F.W.A., Verhoeven H.A., Jongsma M.A., SchwabW., Bouwmeester H.J (2003). Terpenoid metabolism in wildtype and transgenic Arabidopsis plants. Plant Cell, 15, 2866-2884.
    39. Al Abassi S., Birkett M.A., Pettersson J., Pickett J.A., Wadhams L.J., Woodcock C.M (2000). Response of the seven-spot ladybird to an aphid alarm pheromone and an alarm pheromone inhibitor mediated by paired olfactory cells. Journal of Chemical Ecology, 26, 1765-1771.
    40. Alborn T., Turlings T.C.J., Jones T.H., Stenhagen G., Loughrin J.H., Tumlinson J.H (1997). Anelicitor of plant volatiles from beet armyworm oral secretion. Science, 276, 945-949.
    41. Alston F.H., Briggs J.B (1968). Resistance to Sappaphis devecta (Wlk) in apple. Euphytica, 17, 468-472.
    42. Alston F.H., Briggs J.B (1977). Resistance genes in apple and biotypes of Dysaphis devecta. Annals of Applied Biology, 87, 75-81.
    43. Altpeter F., Diaz I., McAuslane H., Gaddour K., Carbonero P., Vasil I.K (1999). Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Molecular Breeding, 5, 53-63.
    44. Alvarez M.L., Guelman S., Halford N.G., Lustig S., Reggiardo M.I., Rya-bushmina N., Shewry P., Stein J., Vallejos R.H (2000). Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theoretical and Applied Genetics, 100, 319-327.
    45. Amoah B.K., Wu H., Sparks C., Jones H.D (2001). Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. Journal of Experimental Botany, 52, 1135-1142.
    46. Anderson G.R., Papa D., Peng J.H., Tahir M, Lapitan N.L.V (2003). Genetic mapping of Dn7, a rye gene conferring resistance to the Russian wheat aphid in wheat. Theoretical and Applied Genetics, 2003, 107: 1297-1303.
    47. Aquilino K.M., Cardinal B.J., Ives A.R (2005). Reciprocal effects of host plant and natural enemy diversity on herbivore suppression: an empirical study of a model tritrophic system. Oikos, 108, 275-282.
    48. Argandons V.H., Chaman M., Cardemil L., Munoz O., Zuniga G.A., Corcuera L.J (2001). Ethylene production and peroxidase activity in aphid infested barley. Journal of Chemical Ecology, 27, 53-68.
    49. Arimura G., Ozawa R., Shomoda T., Nishioka T., Boland W., Takabayashi J (2000). Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature, 406, 512-515.
    50. Awmack C.S., Harrington R (2000). Elevated CO2 affects the interactions between aphid pests and host plant flowering. Agricultural and Forest Entomology, 2, 57-61.
    51. Back K., Chappell J (1996). Identifying functional domains within terpene cyclases using a domain-swapping strategy. Proceedings of the National Academy of Sciences of the USA, 93, 6841-6845.
    52. Baldwin I.T., Zhang Z.P., Diab N., Ohnmeiss T.E., McCloud E.S., Lynds G., Schmelz E.A (1997). Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta, 201, 397-404.
    53. Banerjee S., Hess D., Majumder P., Roy D., Das S (2004). The interactions of Allium sativum leaf agglutinin with a chaperonin group of unique receptor protein isolated from a bacterial endosymbiont of the mustard aphid. Journal of Biological Chemistry, 279, 23782-23789.
    54. Barro F., Rooke L., Békés F., Gras P., Tatham A.S., Fido R., Lazzeri P.A., Shewry P.R., Barcelo P (1997). Transformation of wheat with high molecular weight subunit genes results in improvedfunctional properties. Nature Biotechnology, 15, 1295-1299.
    55. Beale M.H., Birkett M.A., Bruce T.J.A., Chamberlain K., Field L.M., Huttly A.K., Martin J.L., Parker R., Phillips A.L., Pickett J.A., Prosser I.M., Shewry P.R., Smart L.E., Wadhams L.J., Woodcock C.M., Zhang Y (2006). Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proceedings of the National Academy of Sciences of the USA, 103, 10509-10513.
    56. Belefant-Miller H., Porter D.R., Pierce M.L., Mort A.J (1994). An early indicator of resistance in barley to Russian wheat aphid. Plant Physiology, 105, 1289-1294.
    57. Bendtsen J.D., Nielsen H., von Heijne G., Brunak S (2004). Improved prediction of signal peptides: SignalP 3.0. Journal of molecular biology, 340, 783-795.
    58. Bhattarai K.K., Li Q., Liu Y., Dinesh-Kumar S.P., Kaloshian I (2007). The Mi-1-mediated pest resistance requires Hsp90 and Sgt1. Plant Physiology, 144, 312-323.
    59. Bhattarai K.K., Xie Q.G., Pourshalimi D., Younglove T., Kaloshian I (2007). Coi1-dependent signaling pathway is not required for Mi-1-mediated potato aphid resistance. Molecular Plant-Microbe Interactions, 20, 276-282.
    60. Birch A.N.E., Geoghegan I.E., Majerus M.E.N., McNicol J.W., Hackett C.A., Gatehouse A.M.R., Gatehouse J.A.. (1999). Tritrophic interactions involving pest aphids, predatory 2-spot ladybirds and transgenic potatoes expressing snowdrop lectin for aphid resistance. Molecular Breeding, 5, 75-83.
    61. Birch R.G (1997). Plant transformation: Problems and strategies for practical application. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 297-326.
    62. Blackman R.L., Eastop V.F (2000). Aphids on the World’s Crops: An Identification and Information Guide. Wiley & Sons Ltd.
    63. Bohlmann J., Martin D., Oldham N.J., Gershenzon J (2000). Terpenoid secondary metabolism in Arabidopsis thaliana: cDNA cloning, characterization, and functional expression of a myrcene/(E)-beta-ocimene synthase. Arch Biochem Biophys, 375, 261-269.
    64. Bohlmann J, Meyer-Gauen G, Croteau R (1998). Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proceedings of the National Academy of Sciences, USA, 95, 4126-4133.
    65. Bohlmann J., Phillips M., Ramachandiran V., Katoh S., Croteau R.B (1999). cDNA cloning, characterization, and functional expression of four new monoterpene synthase members of the Tpsd gene family from grand fir (Abies grandis). Arch Biochem Biophys, 368, 232-243.
    66. Boissot N., Thomas S., Sauvion N., Marchal C., Pavis C., Dogimont C (2010). Mapping and validation of QTLs for resistance to aphids and whiteflies in melon. Theoretical and Applied Genetics, 121, 1432-2242.
    67. Bosland P.W., Ellington J.J (1996). Comparison of Capsicum annuum and C. pubescens for antixenosis as a means of aphid resistance. Hort Science, 31(6), 1017-1018.
    68. Botha C.E.J., Matsiliza B (2004). Reduction in transport in wheat (Triticum aestivum) is caused by sustained phloem feeding by the Russian wheat aphid (Diuraphis noxia). South African Journal ofBotany, 70, 249-254.
    69. Bouwmeester H.J., Kodde J., Verstappen F.W.A., Altug I.G., de Kraker J.W., Wallaart T.E (2002). Isolation and characterization of two germacrene A synthase cDNA clones from chicory. Plant Physiology, 129, 134-144.
    70. Bowers W.S., Nault L.R., Webb R.E., Dutky S.R (1972). Aphid alarm pheromone: Isolation, identification, synthesis. Science, 177, 1121-1122.
    71. Bowers W.S., Nishino C., Montgomery M.E., Nault L.R., Nielson M.W (1977). Sesquiterpene progenitor, germacrene A: an alarm pheromone in aphids. Science, 196, 680-681.
    72. Boyko E.V., Smith C.M., Thara V.K., Bruno J.M., Deng Y (2006). The molecular basis of plant gene expression during aphid invasion: wheat Pto- and Pti-like sequences are involved in interactions between wheat and Russian wheat aphid (Homoptera: Aphididae). Journal of Economic Entomology, 99, 1430-1445.
    73. Briggs G. G., Cayley G. R., Dawson G. W., Griffiths D. C., Macaulay E. D. M., Pickett J. A., Pile M. M., Wadhams L. J., Woodcock C. M (1986). Some fluorine-containing pheromone analogues. Pesticide Science, 17, 441-448.
    74. Brizibe E.A., Gajdosova A., Olesen A., Andersen S.A (2000). Cytodifferentiation and transformation of embryogenic callus lines derived from anther culture of wheat. Journal of Experimental Botany, 51, 187-196.
    75. Bruce T.J.A., Birkett M.A., Blande J., Hooper A.M., Martin J.L., Khambay B., Prosser I., Smart L.E., Wadhams L.J (2005). Response of economically important aphids to components of Hemizygia petiolata essential oil. Pest Management Science, 61, 1115-1121.
    76. Burd J.D (2002). Physiological modification of the host feeding site by cereal aphids (Homoptera: Aphididae). Journal of Economic Entomology, 95, 463-468.
    77. Cai Q.N., Zhang Q.W., Cheo M (2004). Contribution of indole alkaloids to Sitobion avenae (F.) resistance in wheat. Journal of Applied Entomology, 128, 517-521.
    78. Caillaud C.M., Niemeyer H.M (1996). Possible involvement of the phloem sealing system in the acceptance of a plant as host by an aphid. Experienta, 52, 927-931.
    79. Campbell B.C., Jones K.C., Dreyer D.L (1986). Discriminative behavioural responses by aphids to various plant matrix polysaccharides. Entomologia Experimentalis et Applicata, 41, 17-24.
    80. Casteel C., Walling L.L., Paine T (2006). Behavior and biology of the tomato psyllid, Bactericerca cockerelli, in response to the Mi-1.2 gene. Entomologia Experimentalis et Applicata, 121, 67-72.
    81. Cevik V., King J (2002). High resolution genetic analysis of the Sd1 aphid resistance locus in Malus spp. Theoretical and Applied Genetics, 105, 346-354.
    82. Chada H.L (1959). Insectary technique for testing the resistance of small grains to the greenbug. Journal of Economic Entomology, 52(2), 276-279.
    83. Chang G.C., Neufeld J., Eigenbrode S.D (2006). Leaf surface wax and plant morphology of peas influence insect density. Entomologia Experimentalis et Applicata, 119, 197-205.
    84. Chappell J (1995). The biochemistry and molecular biology of isoprenoid metabolism. PlantPhysiology, 107, 1- 6.
    85. Chappell J., Nable R (1987). Induction of sesquiterpenoid biosynthesis in tobacco cell suspension cultures by fungal elicitor. Plant Physiology, 85, 469-473.
    86. Chen D.H., Liu C.J., Ye H.C., Li F.G., Liu B.L., Meng L.X., Chen X.Y (1999). Ri-mediated transformation of Artemisia annua with a recombinant farnesyl diphosphate synthase gene for artemisinin production. Plant Cell, Tissue and Organ culture, 57, 157-162.
    87. Chen F., D'Auria J.C., Tholl D., Ross J.R., Gershenzon J., Noel J.P., Pichersky E (2003). An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant Journal, 36, 577-588.
    88. Chen F., Tholl D., D'Auria J.C., Farooq A., Pichersky E., Gershenzon J (2003). Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell, 15, 481-494.
    89. Chen X.Y., Chen Y., Heinstein P., Davisson V.J (1995). Cloning, expression, and characterization of (+)-delta-cadinene synthase: A catalyst for cotton phytoalexin biosynthesis. Arch Biochem Biophys, 324, 255-266.
    90. Cheng A.X., Xiang C.Y., Li J.X., Yang C.Q., Hu W.L., Wang L.J., Lou Y.G., Chen X.Y (2007). The rice (E)-β-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry, 68: 1632-1641.
    91. Cheng M., Fry J.E., Pang S., Zhou H., Hironaka C.M., Duncan D.R., Conner T.W., Wan Y (1997). Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiology, 115, 971-980.
    92. Chisholm S.T., Coaker G., Day B., Staskawicz B.J (2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 124, 803-814.
    93. Chugh A., Khurana P (2003). Regeneration via somatic embryogenesis from leaf basal segments and genetic transformation of bread and emmer wheat by particle bombardment. Plant Cell, Tissue and Organ Culture, 74, 151-161.
    94. Colby S.M., Crock J., Dowdle R.B., Lemaux P.G., Croteau R (1998). Germacrene C synthase from Lycopersicon esculentum cv. VFNT Cherry tomato: cDNA isolation, characterization, and bacterial expression of the multiple product sesquiterpene cyclase. Proceedings of the National Academy of Sciences , USA, 95, 2216–2221.
    95. Cooper W.R., Jia L., Goggin F.L (2004). Acquired and R-gene-mediated resistance against the potato aphid in tomato. Journal of Chemical Ecology, 30, 2527-2542.
    96. Crock J, Wildung M, Croteau R (1997). Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-β-farnesene. Proceedings of the National Academy of Sciences, USA, 94, 12833-12838.
    97. Cunillera N, Boronat A, Ferrer A. 1997. The Arabidopsis thaliana FPS1 gene generates a novel mRNA that encodes a mitochondrial farnesyl-diphosphate synthase isoform. Journal of Biological Chemistry, 272, 15381-15388.
    98. Dawson G.W., Gibson R.W., Griffiths D.C., Pickett J.A., Rice A.D., Woodcock C.M (1982). Aphid alarm pheromone derivatives affecting settling and transmission of plant viruses. Journal of Chemical Ecology, 8, 1377-1388.
    99. Dawson G.W., Griffiths D.C., Pickett J.A., Plumb R.T., Woodcock C.M., Zhong-Ning Z (1988). Structure/activity studies on aphid alarm pheromone derivatives and their field use against transmission of barley yellow dwarf virus. Pesticide Science, 22, 17-30.
    100. De Block M., Debrouwer D., Moens T (1997). The development of a nuclear male sterility system in wheat. Expression of the barnase gene under the control of tapetum specific promoters. Theoretical and Applied Genetics, 95, 125-131.
    101. De Moraes C.M., Lewis W.J., ParéP.W., Alborn H.T., Tumlinson J.H (1998). Herbivore-infested plants selectively attract parasitoids. Nature, 393, 570-572.
    102. De Vos M., Jander G (2009). Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant, Cell & Environment, 32, 1548-1560.
    103. Degenhardt J., Gershenzon J., Baldwin I.T., Kessler A (2003). Attracting friends to feast on foes: Engineering terpene emission to make crop plants more attractive to herbivore enemies. Current Opinion in Biotechnology, 14, 169-176.
    104. Diemer F., Caissard J.C., Moja S., Chalchat J.C., Jullien F (2001). Altered monoterpene composition in transgenic mint following the introduction of 4S-limonene synthase. Plant Physiology et Biochemistry, 39, 603-614.
    105. Ding L., Li S.C., Gao J.M., Wang Y.S., Yang G., He G.Y (2009). Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat. Molecular Biology Reports, 36, 29-36.
    106. Divol F, Vilaine F, Thibivilliers S., Amselem J., Palauqui J.C., Kusiak K., Dinant S (2005). Systemic response to aphid infestation by Myzus persicae in the phloem of Apium graveolens. Plant Molecular Biology, 2005, 57, 517-540.
    107. Dixon A.F.G (1987). Parthenogenetic reproduction and the rate of increase in aphids. In Aphids, Their Biology, Natural Enemies and Control. Edited by Minks AK, Harrewijn P. Elsevier, 269-287.
    108. Dorschner K.W., Ryan J.D., Johnson R.C., Eikenbary R.D (1987). Modification of host nitrogen levels by the greenbug (Homoptera, Aphididae)-its role in resistance of winter wheat to aphids. Environmental Entomology, 16(4), 1007-1011.
    109. Dreyer D.L.,Campbell B.C (1984). Association of the degree of methylation of intercellular pectin with plant resistance to aphids and with induction of aphid biotypes. Cellular and Molecular Life Science, 40, 224-226.
    110. Dreyer D.L., Jones K.C (1981). Feeding deterrency of flavonoids and related phenolics towards Schizaphis graminum and Myzus Persicae: aphid feeding deterrents in wheat. Phytochemistry, 20: 2489-2493.
    111. Du Y., Poppy G.M., Powell W., Pickett J.A., Wadhams L.J., Woodcock C.M (1998). Identificationof semiochemicals released during feeding that attracts parasitoid Aphidius ervi. Journal of Chemical Ecology, 24, 1355-1368.
    112. Dudareva N., Cseke L., Blanc V.M., Pichersky E (1996). Evolution of floral scent in Clarkia: Novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell, 8, 1137-1148.
    113. Dutta I., Majumder P., Saha P., Ray K., Das S (2005). Constitutive and phloem specific expression of Allium sativum leaf agglutinin (ASAL) to engineer aphid (Lipaphis erysimi) resistance in transgenic Indian mustard (Brassica juncea). Plant Science, 169, 996-1007.
    114. Eenink A.H., Dieleman F.L (1983). Inheritance of resistance to the leaf aphid Nasanovia ribisnigri in the wild lettuce species Lactuca virosa. Euphytica, 32, 691-695.
    115. Eenink A.H., Groenwold R., Dieleman F.L (1982). Resistance of lettuce (Lactuca) to the leaf aphid Nasonovia ribisnigri. 1. Transfer of resistance from L. virosa to L. sativa by interspecific crosses and selection of resistant breeding lines. Euphytica, 31, 291-300.
    116. Elagamy F.M., Haynes K.F (1992). Susceptibility of the pea aphid (Homoptera, Aphididae) to an insecticide and a predator in the presence of synthetic aphid alarm pheromone. Journal of Economic Entomology, 85(3),794-798.
    117. Endo T., Fedorov A., de Souza S.J., Gilbert W (2002). Do introns favor or avoid regions of amino acid conservation?. Molecular Biology and Evolution, 19, 521-525.
    118. Facchini P.J., Chappell J (1992). Gene family for an elicitor induced sesquiterpene cyclase in tobacco. Proceedings of the National Academy of Sciences of the USA, 89, 11088-11092.
    119. Fedorov A., Suboch G., Bujakov M., Fedorova L (1992). Analysis of nonuniformity in intron phase distribution. Nucleic Acids Research, 20, 2553-2557.
    120. Fernandes G.W (1990). Hypersensitivity: a neglected plant resistance mechanism against insect herbivores. Environmental Entomology, 19, 1173-1182.
    121. Fidantsef A.L., Stout M.J., Thaler J.S., Duffey S.S., Bostock R.M (1999). Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor II, and pathogenesis related protein P4 in the tomato, Lycopersicon esculentum. Physiology and Molecular Plant Pathology, 54, 97-114.
    122. Flamini G, Cioni PL, Morelli I (2003). Differences in the fragrances of pollen, leaves, and floral parts of Garland (Chrysanthemum coronarium) and composition of the essential oils from flowerheads and leaves. Journal of Agricultural and Food Chemistry, 51, 2267-2271.
    123. Foster S.P., Denholm I., Thompson R., Poppy G.M., Powell W (2005). Reduced response of insecticide-resistant aphids and attraction of parasitoids to aphid alarm pheromone; a potential fitness trade-off. Bulletin of Entomological Research, 59, 1-10.
    124. Francis F., Lognay G., Haubruge E (2004). Olfactory responses to aphid and host plant volatile releases: E-β-Farnesene an effective kairomone for the predator Adalia bipunctata. Journal of Chemical Ecology, 30, 741-755.
    125. Francis F., Martin T., Lognay G., Haubruge E (2005). Role of (E)-β-farnesene in systematic aphidprey location by Episyrphus balteatus larvae (Diptera: Syrphidae). European Journal of Entomology, 102, 431-436.
    126. Gallie D.R.,Lucas W.J (1989).Visualizing mRNA expression in plant protoplasts: Factors influencing efficient mRNA uptake and translation. Plant Cell, 1, 301-311.
    127. Gao L.L., Anderson J.P., Klingler J.P., Nair R.M., Edwards O.R., Singh K.B (2007). Involvement of the octadecanoid pathway in bluegreen aphid resistance in Medicago truncatula. Molecular Plant-Microbe Interactions, 20, 82-93.
    128. Gatehouse A.M.R., Down R.E., Powell K.S., Sauvion N., Bahbe Y., Newell C.A., Merryweather A., Hamilton W.D.O., Gatehouse J.A (1996). Transgenic potato plants with enhanced resistance to the peach-potato aphid Myzus persicae. Entomologia Experimentalis et Applicata, 79, 295-307.
    129. Gershenzon J., Dudareva N (2007). The function of terpene natural products in the natural world. Nature Chemical Biology, 3, 408-414.
    130. Gibson RW, Pickett JA (1983). Wild potato repels aphids by release of aphid alarm pheromone. Nature, 302, 608-609.
    131. Girousse C., Bournoville R (1994). Role of phloem sap quality and exudation characteristics on performance of pea aphid grown on lucerne genotypes. Entomologia Experimentalis et Applicata, 70, 227-235.
    132. Girousse C., Moulia B., Silk W., Bonnemain J.L (2005). Aphid infestation causes different changes in carbon and nitrogen allocation in alfalfa stems as well as different inhibitions of longitudinal and radial expansion. Plant Physiology, 137, 1474-1484.
    133. Goggin F.L (2007). Plant-aphid interactions: molecular and ecological perspectives. Current opinion in plant biology, 10, 399-408.
    134. Goggin F.L., Jia L.L., Shah G., Hebert S., Williamson V.M., Ullman D.E (2006). Heterologous expression of the Mi-1.2 gene from tomato confers resistance against nematodes but not aphids in eggplant. Molecular plant-microbe interactions, 19, 383-388.
    135. Goggin F.L., Shah G., Williamson V.M., Ullman D.E (2004). Developmental regulation of Mi-mediated aphid resistance is independent of Mi-1.2 transcript levels. Molecular Plant-Microbe Interactions, 17, 532-536.
    136. Grimes H.D., Koetje D.S., Franceschi V.R (1992). Expression, activity, and cellular accumulation of methyl jasmonate-responsive lipoxygenase in soybean seedlings. Plant Physiology, 100, 433-443.
    137. Guerrieri E., Poppy G.M., Powell W., Tremblay E., Pennacchio F (1999). Induction and systemic release of herbivore-induced plant volatiles mediating in-flight orientation of Aphidius ervi. Journal of chemical ecology, 25, 1247-1261.
    138. Hagio T (1998). Optimising the particle bombardment method for efficient genetic transformation. Japan Agricultural Research Quarterly, 32, 239-247.
    139. Hansen L.M (2006). Effect of 6-methoxybenzoxazolin-2-one (MBOA) on the reproduction rate of the grain aphid (Sitobion avenae F.). Journal of Agricultural and Food Chemistry, 54, 1031-1035.
    140. Harmel N., Almohamad R., Fauconnier M.L., Du Jardin P., Verheggen F., Marlier M., Haubruge E., Francis F (2007). Role of terpenes from aphid-infested potato on searching and oviposition behavior of Episyrphus balteatus. Insect Science, 14, 57-63.
    141. Harmel N., Létocart E., Cherqui A., Giordanengo P., Mazzucchelli G., Guillonneau F., De Pauw E., Haubruge E., Francis F (2008). Identification of aphid salivary proteins: a proteomic investigation of Myzus persicae. Insect Molecular Biology, 17(2),165-174.
    142. He D.G., Mouradov A., Yang Y.M., Mouradova E., Scott K.J (1994). Transformation of wheat (Triticum aestium L) through electroporation of protoplasts. Plant Cell Reports, 14, 192-196.
    143. He Y, Jones H D, Chen S, Chen X M, Wang D W, Li K X, Wang DS, Xia L Q (2010). Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. Journal of Experimental Botany, 61(6), 1567-1581.
    144. Hebert S.L., Jia L., Goggin F.L (2007). Quantitative differences in aphid virulence and foliar symptom development on tomato plants carrying the Mi resistance gene. Environmental Entomology, 36, 458-467.
    145. Hiei Y., Ohta S., Komari T., Kumashiro T (1994). Efficient transformation of rice (Oryza sativa L. ) mediated by Agrobacterium and sequence analysis of boundaries of the T-DNA. Plant Journal, 6(2), 271-282.
    146. Hilder V.A., Powell K.S., Gatehouse A.M.R., Gatehouse J.A., Gatehouse L.N., Shi Y., Hamilton W.D.O., Merryweather A., Newell C.A., Timans J.C., Peumans W.J., Van Damme E., Boulter D (1995). Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Research 4, 18-25.
    147. Hodge S., Pope T.W., Holaschke M., Powell G (2006). The effect of beta-aminobutyric acid on the growth of herbivorous insects feeding on Brassicaceae. Annals of Applied Biology, 148, 223-229.
    148. Hohn T.M., Ohlrogge J.B (1991). Expression of a fungal sesquiterpene cyclase gene in transgenic tobacco. Plant Physiology, 97, 460-462.
    149. Hu T., Metz S., Chay C., Zhou H.P., Biest N., Chen G., Cheng M., Feng X., Radionenko M., Lu F., Fry J (2003). Agrobacterium mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Reports, 21, 1010-1019.
    150. Huber D.P.W., Philippe R.N., Godard K.A., Sturrock R.N., Bohlmann J (2005). Characterization of four terpene synthase cDNAs from methyl jasmonateinduced Douglas-fir, Pseudotsuga menziesii. Phytochemistry, 66, 1427-1439.
    151. Ingrain H.M., Power J.B., Lowe K.C., Davey M.R (1999). Optimisation of procedures for microprojectile bombardment of microspore-derived embryos in wheat. Plant Cell Tissue and Organ Culture, 57, 207-210.
    152. Jang I.C., Nahm B.H., Kim J.K (1999). Subcellular targeting of green fluorescent protein to plastids in transgenic rice plants provides a high-level expression system. Molecular Breeding, 5, 453-461.
    153. Jansen J.P.A (1999). Aphid resistance in composites. US Patent, 5977443, 111-02.
    154. Jones H D, Doherty A, Wu H (2005). Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods, 1:5 (doi:10.1186/1746-4811-1 -5).
    155. Kaloshian I (2004). Gene-for-gene disease resistance: bridging insect pest and pathogen defence. Journal of Chemical Ecology, 30, 2419–2438.
    156. Kaloshian I., Yaghoobi J., Liharska T., Hontelez J., Hanson D., Hogan P., Jesse T., Wijbrandi J., Simons G., Vos P., Zabel P., Williamson V.M (1998). Genetic and physical localization of the root-knot nematode resistance locus Mi in tomato. Molecular and General Genetics, 257, 376-385.
    157. Kappers I.F., Aharoni A., van Herpen T.W.J.M., Luckerhoff L.L.P., Dicke M., Bouwmeester H.J (2005). Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science, 309, 2070-2072.
    158. Kim J.H., Jander G (2007). Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant Journal, 49, 1008-1019.
    159. Klingler J.P., Edwards O.R., Singh K.B (2007). Independent action and contrasting phenotypes of resistance genes against spotted alfalfa aphid and bluegreen aphid in Medicago truncatula. New Phytologist, 173, 630-640.
    160. Kordali S., Aslan I., Calmasur O., Cakir A (2006). Toxicity of essential oils isolated from three Artemisia species and some of their major components to granary weevil, Sitophilus granarius (L.) (Coleoptera:Curculionidae). Industrial Crops and Production, 23, 162-170.
    161. Knoblauch M., Peters W.S., Ehlers K., van Bel A.J.E (2001). Reversible calcium-regulated stopcocks in legume sieve tubes. Plant Cell, 13, 1221-1230.
    162. Knoblauch M., van Bel A.J.E (1998). Sieve tubes in action. Plant Cell, 10, 35-50.
    163. Kirubakaran S.I.,Sakthivel N (2006). Cloning and overexpression of antifungal barley chitinase gene in Escherichia coli. Protein Expression and Purification, 52, 159-166.
    164. Kozak M (1984). Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Research, 12, 857-872.
    165. Kunert G., Otto S., R?se U.S.R., Gershenzon J., Weisser W.W (2005). Alarm pheromone mediates production of winged dispersal morphs in aphids. Ecology Letters, 8, 596-603.
    166. Kusnierczyk A., Winge P., Jorstad T.S., Troczynska J., Rossiter J.T., Bones A.M (2008). Towards global understanding of plant defence against aphids-timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Plant, Cell & Environment, 31, 1097-1115.
    167. Kyozuka J., McElroy D., Hayakawa T., Xie Y., Wu R., Shimamoto K (1993). Light-regulated and cell-specific expression of tomato rbcS-gusA and rice rbcS-gusA fusion gene in transgenic rice. Plant Physiology, 102, 991-1000.
    168. Lambers D.H.R., Schepers A (1978). The effect of trans-β-farnesene used as a repellent against landing aphid alatae in seed potato growing. Potato Research, 21, 23-26.
    169. Laule O., Fürholz A., Chang H.S., Zhu T., Wang X., Heifetz P.B., Gruissem W., Lange M (2003).Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the USA, 100, 6866-6871.
    170. Lavy M., Zuker A., Lewinsohn E., Larkov O., Ravid U., Vainstein A., Weiss D (2002). Linalool and linallol oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Molecular Breeding, 9, 103-111.
    171. Leckband G., L?rz H (1998). Tranformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theoretical and Applied Genetics, 96, 1004-1012.
    172. Leszczynski B., Dixon A.F.G (1990). Resistance of cereals to aphids: interaction between hydroxamic acids and the aphid Sitobion avenae (Homoptera:Aphididae). Annals of Applied Biology 117, 21-30.
    173. Levy M., Wang Q.M., Kaspi R., Parrella M.P., Abel S (2005). Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant Journal, 43, 79-96.
    174. Lewinsohn E., Schalechet F., Wilkinson J., Matsui K., Tadmor Y., Nam K.H., Amar O., Lastochkin E., Larkov O., Ravid U., Hiatt W., Gepstein S., Pichersky E (2001). Enhanced levels of the aroma and flavour compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiology, 127, 1256-1265.
    175. Li Q., Xie Q.G., Smith-Becker J., Navarre D.A., Kaloshian I (2006). Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling cascades. Molecular Plant-Microbe Interactions, 19, 655-664.
    176. Liu X.M., Smith C.M., Friebe B.R., Gill B.S (2005). Molecular mapping and allelic relationships of Russian wheat aphid-resistance genes. Crop Science, 45, 2273-2280.
    177. Liu X.M., Smith C.M., Gill B.S., Tolmay V (2001). Microsatellite markers linked to six Russian wheat aphid resistance genes in wheat. Theoretical and Applied Genetics, 102, 504-510.
    178. Long M., de Souza S.J., Rosenberg C., Gilbert W(1998). Relationship between“proto-splice sites”and intron phases: Evidence from dicodon analysis. Proceedings of the National Academy of Sciences of the USA, 95, 219-223.
    179. Long M., Deutsch M (1999). Association of intron phases with conservation at splice site sequences and evolution of spliceosomal introns. Molecular Biology and Evolution, 16, 1528-1534.
    180. Louis J., Leung Q., Pegadaraju V., Reese J., Shah J (2010). PAD4-dependent antibiosis contributes to the ssi2-conferred hyper-resistance to the green peach aphid. Molecular Plant-Microbe Interactions, 23, 618-627.
    181. Lücker J., Bouwmeester H.J., Schwab W., Blaas J., van der Plas L.H., Verhoeven H.A (2001). Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-b-D-glucopyranoside. Plant Journal, 27, 315-324.
    182. Lücker J., El-Tamer M.K., Schwab W., Verstappen F.W.A., van der Plas L.H.W., Bouwmeester H.J.,Verhoeven H.A (2002). Monoterpene biosynthesis in lemon (Citrus limon): cDNA isolation and functional analysis of four monoterpene synthases. European Journal of Biochemistry, 269, 3160-3171.
    183. Luo Z.X., Wu R (1988). A simple method for the transformation of rice via the pollen-tube pathway. Plant Molecular Biology Reporter, 6(3), 165-174.
    184. Lynch M (2002). Intron evolution as a population-genetic process. Proceedings of the National Academy of Sciences of the USA, 99, 6118-6123.
    185. Lyth M (1985). Hypersensitivity in apple to feeding by Dysaphis plantaginea: effects on aphid biology. Annals of Applied Biology, 107, 155-161.
    186. Madhusudhan V.V., Miles P.W (1998). Mobility of salivary components as a possible reason for differences in the responses of alfalfa to the spotted alfalfa aphid and pea aphid. Entomologia Experimentalis et Applicata, 86, 25-39.
    187. Ma R., Reese J.C., Black W.C., Bramel-Cox P (1990). Detection of pectinesterase and polygalacturonase from salivary secretions of living greenbugs, Schizaphis graminum (Homoptera: Aphididae). Journal of Insect Physiology, 36, 507-512.
    188. Ma R., Reese J.C., Black W.C., Bramel-Cox P (1998). Chlorophyll loss in a greenbug-susceptible sorghum due to pectinases and pectin fragments. Journal of the Kansas Entomological Society, 71(1), 51-60.
    189. Martinez de Ilarduya O.M., Xie Q.G., Kaloshian I (2003). Aphid-induced defence responses in Mi-1-mediated compatible and incompatible tomato interactions. Molecular Plant-Microbe Interactions, 16, 699-708.
    190. Maruyama T, Ito M, Honda G. 2001. Molecular cloning, functional expression and characterization of (E)-β-farnesene synthase from Citrus junos. Biological & Pharmaceutical Bulletin, 24, 1171-1175.
    191. Mercke P., Crock J., Croteau R.B., Brodelius P.E (1999). Cloning, expression, and characterization of epi-cedrol synthase, a sesquiterpene cyclase from Artemisia annua L. Archives of Biochemistry, 369, 213-222.
    192. Mewis I., Appel H.M., Hom A., Raina R., Schultz J.C (2005). Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiology, 138, 1149-1162.
    193. Mewis I., Tokuhisa J.G., Schultz J.C., Appel H.M., Ulrichs C., Gershenzon J (2006). Gene expression and glucosinolate accumulation in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry, 67, 2450-2462.
    194. Micha S.G., Wyss U (1996). Aphid alarm pheromone (E)-β-farnesene: a host finding kairomone for the aphid primary parasitoid Aphidius uzbekistanicus (Hymenoptera: Aphidiinae). Chemoecology, 7, 132-139.
    195. Miles P.W (1990). Aphid salivary secretions and their involvement in plant toxicoses. Campbell RK, Eikenbary R.D. (eels). Aphid-plant genotype interactions. Elsevier, Amsterdam, 131-147.
    196. Miller B., Madilao L.L., Ralph S., Bohlmann J (2005). Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiology, 137, 369-382.
    197. Miller H.L., Neese P.A., Ketring D.L., Dillworth J.W (1994). Involvement of ethylene in aphid infestation of barley. Journal of Plant Growth Regulation, 13, 167-171.
    198. Milligan S.B., Bodeau J., Yaghoobi J., Kaloshian I., Zabel P., Williamson V.M (1998). The root-knot nematode resistance gene Mi from tomato is a member of leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell, 10, 1307-1319.
    199. Mituhara I., Ugaki M., Hirochika H., Ohshima M., Murakami T., Gotoh Y., Katayose Y., Nakamura S., Honkura R., Nishimiya S., Ueno K., Mochizuki A., Tanimoto H., Tsugawa H., Otsuki Y., Ohashi Y (1996). Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiology, 37, 49-59.
    200. Miyazawa M, Tamura N (2007). Components of the essential oil from sprouts of Polygonum hydropiper L. (‘Benitade’). Flavour and Fragrance Journal, 22, 188-190.
    201. Moharramipour S., Tsumuki H., Sato K., Yoshida H (1997). Mapping resistance to cereal aphids in barley. Theoretical and Applied Genetics, 94, 592-596.
    202. Mondor E.B., Roitberg B.D (2000). Has the attraction of predatory coccinellids to cornicle droplets constrained aphid alarm signalling behavior? Journal of Insect Behavior, 13, 321-329.
    203. Mondor E.B., Roitberg B.D (2003). Age-dependent fitness costs of alarm signaling in aphids. Canadian Journal of Zoology, 81, 757-762.
    204. Moloi M.J., van der Westhuizen A.J (2006). The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid. Plant Physiology, 163, 1118-1125.
    205. Moran P.J., Cheng Y., Cassell J.L., Thompson G.A (2002). Gene expression profiling of Arabidopsis thaliana in compatible plant-aphid interactions. Archives of Insect Biochemistry and Physiology, 51, 182-203.
    206. Moran P.J., Thompson G.A (2001). Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiology, 125, 1074-1085.
    207. Munoz-Bertomeu J., Arrillaga I., Ros R., Segura J (2006). Upregulation of 1-deoxy-D-xylulose-5-phosphate synthase enhances production of essential oils in transgenic spike lavender. Plant Physiology, 142 (3), 890-900.
    208. Mutti N.S., Park Y., Reese J.C., Reeck G.R (2006). RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. Journal of Insect Science, 6.38 Available online: http://insectscience.org/6.38.
    209. Nakamuta K (1991). Aphid alarm pheromone component, (E)-beta-farnesene, and local search by a predatory lady beetle, Coccinella septempunctata Bruckii mulsant (Coleoptera, Coccinellidae). Applied Entomology and Zoology, 26, 1-7.
    210. Nault L.R., Montgomery M.E., Bowers W.S (1976). Ant-aphid association: role of aphid alarm pheromone. Science, 192, 1349-1351.
    211. Nelson E.H., Matthews C.E., Rosenheim J.A (2004). Predators reduce prey population growth by inducing changes in prey behavior. Ecology, 85, 1853-1858.
    212. Newton E., Bullock J.M (2009). Bottom-up effects of glucosinolate variation on aphid colony dynamics in wild cabbage populations. Ecological Entomology, 34, 614-623.
    213. Nishino C., Bowers W.S., Montgomery M.E., Nault L.R (1976). Aphid alarm pheromone mimics: Sesquiterpene hydrocarbons. Agricultural and Biological Chemistry, 40, 2303-2304.
    214. Nishino C., Bowers W.S., Montgomery M.E., Nault L.R (1976). Aphid alarm pheromone mimics:Thenor-farnesenes. Applied Entomology and Zoology, 11, 340-343.
    215. Nombela G., Williamson V.M., Muniz M (2003). The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Molecular Plant-Microbe Interactions, 16, 645-649.
    216. Outchkourov N.S., Peters J., de Jong J., Rademakers W., Jongsma M.A (2003). The promoter-terminator of chrysanthemum rbcS1 directs very high expression levels in plants. Planta, 216, 1003-1012.
    217. Pallipparambil G.R., Reese J.C., Avila C.A., Louis J.M., Goggin F.L (2010). Mi-mediated aphid resistance in tomato: tissue localization and impact on the feeding behavior of two potato aphid clones with differing levels of virulence. Entomologia Experimentalis et Applicata. 135, 295 -307.
    218. Park S.J., Huang Y., Ayoubi P (2005). Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using Cdna subtraction and microarray analysis. Planta, 223, 932-947.
    219. Pascal T., Pfeiffer F., Kervella J., Lacroze J.P., Sauge M.H (2002). Inheritance of green peach aphid resistance in the peach cultivar 'Rubira'. Plant Breeding, 121, 459-461.
    220. Pasteels JM (2007). Chemical defence, offence and alliance in ants-aphids-ladybirds relationships. Population Ecology, 49, 5-14.
    221. Patnaik D., Khurana P (2003). Genetic transformation of Indian bread (T. aestivum) and pasta (T. durum) wheat by particle bombardment of mature embryo-derived calli. BMC Plant Biology, 3, 5 http//www.biomedcentral.com/1471-2229/3/5.
    222. Pegadaraju V., Knepper C., Reese J., Shah J (2005). Premature leaf senescence modulated by the Arabidopsis Phytoalexin Deficient4 gene is associated with defence against the phloem-feeding green peach aphid. Plant Physiology, 139, 1927-1934.
    223. Pellegrineschi A., Reynolds M., Pacheco M., Brito R.M., Almeraya R., Yamaguchi-Shinozaki K., Hoisington D (2004). Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome, 47, 493-500.
    224. Pena-Cortes H., Albrecht T., Prat S., Weiler E.W., Willmitzer L (1993). Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta, 191, 123-128.
    225. Peng Z., Miles P.W (1988). Studies on the salivary physiology of plant bugs: function of the catecholase of the rose aphid. Journal of Insect Physiology, 34, 1027 -1033.
    226. Podjasek J.O., Bosnjak L.M., Brooker D.J., Mondor E.B (2005). Alarm pheromone induces a transgenerational wing polyphenism in the pea aphid, Acyrthosiphon pisum. Canadian Journal of Zoology, 83, 1138-1141.
    227. Powell G., Tosh C.R., Hardie J (2006). Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annual Review of Entomology, 51, 309-330.
    228. Primavesi L.F., Wu H., Mudd E.A., Day A., Jones H.D (2008). Visualisation of plastids in endosperm, pollen and roots of transgenic wheat expressing modified GFP fused to transit peptides from wheat SSU RubisCO, rice FtsZ, and maize ferredoxin III proteins. Transgenic research, 17, 529-543.
    229. Prosser IM, Adams RJ, Beale MH, Hawkins ND, Phillips AL, Pickett JA, Field LM (2006). Cloning and functional characterisation of a cismuuroladiene synthase from black peppermint (Mentha×piperita) and direct evidence for a chemotype unable to synthesise farnesene. Phytochemistry, 67, 1564-1571.
    230. Qureshi J.A., Michaud J.P (2005). Interactions among three species of cereal aphids simultaneously infesting wheat. Journal of Insect Science, 5.13. Available online: http://insectscience.org/5.13.
    231. Rahbe Y., Deraison C., Bonade-Bottino M., Girard C., Nardon C., Jouanin L (2003). Effects of the cysteine protease inhibitor oryzacystatin (OC-I) on different aphids and reduced performance of Myzus persicae on OC-I expressing transgenic oilseed rape. Plant Science, 164, 441-450.
    232. Rajaonarivony J.I.M., Gershenzon J., Croteau R (1992). Characterization and mechanism of (4S)-limonene synthase, a monoterpene cyclase from the glandular trichomes of peppermint (Mentha x piperita). Archives of biochemistry and biophysics, 296, 49-57.
    233. Ramirez C.C., Villagra C.A., Niemeyer H.M (2006). Increased xylem ingestion and decreased phloem ingestion in the aphid Acyrthosiphon pisum (Hemiptera:Aphididae) parasitised by Aphidius ervi (Hymenoptera:Braconidae). European Journal of Entomology, 103, 263-265.
    234. Ribeiro A.P.O., Pereira E.J.G., Galvan T.L., Picanco M.C., Picoli E.A.T., da Silva D.J.H., Fari M.G., Otoni W.C (2006). Effect of eggplant transformed with oryzacystatin gene on Myzus persicae and Macrosiphum euphorbiae. Journal of Applied Entomology, 130, 84-90.
    235. Roche P., Alston F.H., Maliepaard C., Evans K.M., Vrielink R., Dunemann F., Markussen T., Tartarini S., Brown L.M., Ryder C., King G.J (1997). RFLP and RAPD markers linked to the rosy leaf curling aphid resistance gene (Sd(1)) in apple. Theoretical and Applied Genetics, 94, 528-533.
    236. Roditakis E., Couzin I.D., Balrow K., Franks N.R., Charnley A.K (2000). Improving secondary pick up of insect fungal pathogen conidia by manipulating host behaviour. Annals of Applied Biology, 137, 329-335.
    237. Rohmer M (1999). The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Natural Product Reports, 16, 565-574.
    238. Rosengrant M.W., Agcaoili-Sombilla M., Perez N.D (1995). Global Food Projections to 2020: Iimplications for Investment. Washington, DC: IFPRI.
    239. Rossi M., Goggin F.L., Milligan S.B., Kaloshian I., Ullman D.E., Williamson V.M (1998). The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proceedings of the National Academy of Sciences of the USA, 95, 9750-9754.
    240. Rpberta H.S., Elizabeth E.H (1995). Agrobacterium tumefaciens transformation of monocotydons. Crop Science, 35, 301-309.
    241. Rutledge C.E., Robinson A.P., Eigenbrode S.D (2003). Effects of a simple plant morphological mutation on the arthropod community and the impacts of predators on a principal insect herbivore. Oecologia, 135, 39-50.
    242. Ruvinsky A., Eskesen S.T., Eskesen F.N., Hurst L.D (2005). Can codon usage bias explain intron phase distributions and exon symmetry?. Journal of Molecular Evolution, 60, 99-104.
    243. Ryan J.D., Morgham A.T., Richardson P.E., Johnson R.C., Mort A.J., Eikenbary R.D (1990). Greenbugs and wheat: a model system for the study of phytotoxic homoptera. In: Campbell R K, Eikenbary R D. Aphid-plant genotype interactions. Elsevier, Amsterdam, 171-186.
    244. Sakata H., Hashimoto Y (2000). Should aphids attract or repel ants? Effect of rival aphids and extrafloral nectaries on ant-aphid interactions. Population Ecology, 42, 171-178.
    245. Sandstrom J., Telang A., Moran N.A (2000). Nutritional enhancement of host plants by aphids-a comparison of three aphid species on grasses. Journal of Insect Physiology, 46, 33-40.
    246. Sanford J.C., DeVit M.J., Russell J.A., Smith F.D., Harpending P.R., Roy M.K., Johnston S.A (1991). An improved helium-driven biolistic device. Nature Biotechnology, 3, 3-16.
    247. Sanmiya K, Ueno O, Matsuoka M, Yamamoto N (1999). Localization of farnesyl diphosphate synthase in chloroplasts. Plant and Cell Physiology, 40, 348-54.
    248. Sano H., Seo S., Koizumi N., Niki T., Iwamura H., Ohashi Y (1996). Regulation by cytokinins of endogenous levels of jasmonic acid and salicylic acid in mechanically wounded tobacco plants. Plant Cell Physiology, 37, 762-769.
    249. Savage T.J., Ichii H., Hume S.D., Little D.B., Croteau R (1995). Mono-terpene synthases from gymnosperms and angiosperms: stereospecificity and inactivation by cysteinyl- and arginyl-directed modifying reagents. Archives of Biochemistry and Biophysics, 320, 257-265.
    250. Schnee C., Kollner T.G., Gershenzon J., Degenhardt J (2002). The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-β-Farnesene, (E)-Nerolidol, and (E,E)-Farnesol after herbivore damage. Plant Physiology, 130, 2049-2060.
    251. Shen B., Zheng Z., Dooner H.K., Shen B.Z., Zheng Z.W (2000). A maize sesquiterpene cyclase gene induced by insect herbivory and volicitin: characterization of wild-type and mutant alleles. Proceedings of the National Academy of Sciences of the USA, 97, 14807-14812.
    252. Smith C.M., Boyko E.V (2007). The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomologia Experimentalis et Applicata, 122, 1-16.
    253. Snyder W.E (2006). Predator biodiversity strengthens herbivore suppression. Ecology Letters, 9,789-796.
    254. Spellman B., Brown M.W., Mathews C.R (2006). Effect of floral and extrafloral resources on predation of Aphis spiraecola by Harmonia axyridis on apple. BioControl, 51, 715-724.
    255. Stadler B., Dixon A.F.G (2005). Ecology and evolution of aphid-ant interactions. Annual Review of Ecology, Evolution, and Systematics, 36, 345-372.
    256. Starks C.M., Back K.W., Chappell J., Noel J.P (1997). Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science, 277, 1815-1820.
    257. Steele C.L., Crock J., Bohlmann J., Croteau R (1998). Sesquiterpene synthases from grand fir (Abies grandis). Comparison of constitutive and wound-inducible activities, and cDNA isolation, characterization, and bacterial expression ofδ-selinene synthase andγ-humulene synthase. Journal of Biological Chemistry, 273, 2078-2089.
    258. St?ger E., Williams S., Christou P., Down R. E., Gatehouse J. A (1999). Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin;GNA) in transgenic wheat plants: Effects on predation by the grain aphid Sitobion avenae. Molecular Breeding, 5, 65-73.
    259. Stout M.J., Workman K.V., Bostock R.M., Duffey S.S (1998). Specificity of induced resistance in the tomato, Lycopersicon esculentum. Oecologia, 113, 74-81.
    260. Su J., Zhu S., Zhang Z., Ge F (2006). Effect of synthetic aphid alarm pheromone (E)-beta-farnesene on development and reproduction of Aphis gossypii (Homoptera: Aphididae). Journal of Economic Entomology, 99(5), 1636-1640.
    261. Sudhakar D., Duc L.T., Bong B.B., Tinjuangjun P., Maqbool S.B., Valdez M., Jefferson R.A., Christon P (1998). An efficient rice transformation system utilising mature seed-derived explants and a portable, inexpensive particle bombardment device. Transgenic Research, 7, 289-294.
    262. Sylwia G., Bogumil L., Wieslaw O (2006). Effect of low and high-saponin lines of alfalfa on pea aphid. Journal of Insect Physiology, 52, 737-743.
    263. Tjallingii W.F (2006). Salivary secretions by aphids interacting with proteins of phloem wound responses. Journal of Experimental Botany, 57, 739-745.
    264. Trapp S.C., Croteau R.B (2001). Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics, 158, 811-832.
    265. Urbanska A., Tjallingii W.F., Dixon A.F.G., Leszczynski B (1998). Phenol oxidizing enzymes in the grain aphid's saliva. Entomologia Experimentalis et Applicata, 86, 197-203.
    266. UzéM., Potrykus I., Sautter C (1999). Single-stranded DNA in the genetic transformation of wheat (Triticum aestivum L.): Transformation frequency and integration pattern. Theoretical and Applied Genetics, 99, 487-495.
    267. Van Poecke R.M.P., Posthumus M.A., Dicke M (2001). Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: Chemical, behavioral, and gene-expression analysis. Journal of Chemical Ecology, 27, 1911-1928.
    268. van Veen F.J.F., Morris R.J., Godfray H.C.J (2006). Apparent competition, quantitative food webs, and the structure of phytophagous insect communities. Annual Review of Entomology, 51, 187-208.
    269. Vancanneyt G., Sanz C., Farmaki T., Paneque M., Ortego F., Castanera P., Sanchez-Serrano J.J (2001). Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proceedings of the National Academy of Sciences of the USA, 98, 8139-8144.
    270. Vasil I.K., Anderson O.D (1997). Genetic engineering of wheat gluten. Trends in Plant Science, 2(8): 292-297.
    271. Vasil V., Brown S.M., Re D., Fromm M.E., Vasil I.K (1991). Stably transformed callus lines from microprojectile bombardment of cell suspension cultures of wheat. Nature Biotechnology, 9, 743-747.
    272. Vasil V., Castillo A.M., Fromm M.E., Vasil I.K (1992). Herbicide resistant fertile transgenic wheat plants obtained by microprojectile. Nature Biotechnology, 10, 667-674.
    273. Verheggen F.J., Arnaud L., Bartram S., Gohy M., Haubruge E (2008). Aphid and plant volatiles induce oviposition in an aphidophagous hoverfly. Journal of Applied Entomology, 34, 301-307.
    274. Vishnudasan D., Tripathi M.N., Rao U., Khurana P (2005). Assessment of nematode resistance in wheat transgenic plants expressing potato proteinase inhibitor (PIN2) gene. Transgenic Research, 14(5), 665-675.
    275. Voelckel C., Weisser W.W., Baldwin I.T (2004). An analysis of plant-aphid interactions by different microarray hybridization strategies. Molecular Ecology, 13, 3187-3195.
    276. V?geli U., Chappell J (1988). Induction of sesquiterpene cyclase and suppression of squalene synthetase activities in plant cell cultures treated with fungal elicitor. Plant Physiology, l88, 1291-1296.
    277. Wallaart T.E., Bouwmeester H.J., Hille J., Poppinga L., and Maijers N.C.A (2001). Amorpha-4,11-diene synthase: Cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta, 212, 460-465.
    278. Wallaart T.E., Pras N., Quax W.J (1999). Seasonal variations of artemisinin and its biosynthetic precursors in tetraploid Artemisia annua plants compared with the wild-type. Planta Medica, 65, 723-728.
    279. Wang E., Wang R., DeParasis J., Loughrin J.H., Gan S., Wagner G.J (2001). Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nature Biotechnology, 19, 71-374.
    280. Weir B., Gu X., Wang M.B., Upadhyaya N., Elliott A.R., Brettell R.I.S (2001). Agrobacterium tumefaciens-mediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker. Australian Journal of Plant Physiology, 28, 807-818.
    281. Wientjens W.H.J.M., Lakwijk A.C., Van Der Marel T (1973). Alarm pheromone of grain aphids. Experientia, 29, 658-660.
    282. Wildung M.R., Croteau R (1996). A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. Journal of Biological Chemistry, 271, 9201-9204.
    283. Will T., Tjallingii W.F., Thonnessen A., van Bel A.J.E (2007). Molecular sabotage of plant defenseby aphid saliva. Proceedings of the National Academy of Sciences of the USA, 104, 10536-10541.
    284. Wohlers P (1981). Aphid avoidance of plants contaminated with alarm pheromone (E)-β-farnesene. Zeitschrift für Angewandte Entomologie, 92, 329-336.
    285. Wool D (2004). Galling aphids: specialization, biological complexity, and variation. Annual Reviews in Entomology, 49, 175-192.
    286. Wu H., Sparks C., Amoah B., Jones H.D (2003). Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Reports, 21, 659-668.
    287. Wu J., Luo X., Guo H., Xiao J., Tian Y (2006). Transgenic cotton, expressing Amaranthus caudatus agglutinin, confers enhanced resistance to aphids. Plant Breeding, 125, 390-394.
    288. Xia G.M., Li Z.Y., He C.X., Chen H.M., Richard B (1999). Transgenic plant regeneration from wheat (Triticum aestivum L.) mediated by Agrobacterium tumefaciens. Acta Phytophysiological Sinica, 25, 22-28.
    289. Yamaguchi S., Saito T., Abe H., Yamane H., Murofushi N., Kamiya Y (1996). Molecular cloning and characterization of a cDNA encoding the gibberellin biosynthetic enzyme ent-kaurene syn-thase B from pumpkin (Cucurbita maxima L.). Plant Journal, 10, 203-213.
    290. Ye X., Salim A.B., Kl?ti A., Zhang J., Lucca P., Beyer P., Potrykus I (2000). Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 14, 303-305.
    291. Yu Y., Wei Z. (2008). Increased oriental armyworm and aphid resistance in transgenic wheat stably expressing Bacillus thuringiensis (Bt) endotoxin and Pinellia ternate agglutinin (PTA). Plant Cell Tissue and Organ Culture, 94(1), 33-44.
    292. Zhao L.Y.,Chen J.L., Cheng D.F., Sun J.R., Liu Y., Tian Z (2009). Biochemical and molecular characterizations of Sitobion avenae induced wheat defense responses.Crop Protection, 28(5), 435-442.
    293. Zhou H., Arrowsmith J.W., Fromm M.E., Hironaka C.M., Taylor M.L., Rodriguez D., Pajeau M.E., Brown S.M., Santino C.G., Fry J.E (1995). Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Reports, 15, 159-163.
    294. Zhou H., Stiff C.M., Konzak C.F (1993). Stably transformed callus of wheat by electroporation-induced direct gene transfer. Plant Cell Reports, 12, 612-616.
    295. Zhu J.W., CosséA.A., Obrycki J.J., Boo K.S., Baker T.C (1999). Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea to semiochemicals released from their prey and host plant: electroantennogram and behavioral responses. Journal of Chemical Ecology,25, 1163-1177.
    296. Zhu-Salzman K., Salzman R.A., Ahn J.E., Koiwa H (2004). Transcriptional regulation of sorghum defense determinants against a phloemfeeding aphid. Plant Physiology, 134, 420-431.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700