用户名: 密码: 验证码:
木聚糖酶和纤维素酶对后备奶牛生长代谢、瘤胃发酵及微生物区系的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从土壤等环境中筛选出产木聚糖酶菌株,分析其中酶活力较高的一株黑曲霉S8-3产酶酶学性质。对该菌株液体发酵后将其与纤维素酶、淀粉酶、蛋白酶、果胶酶等按不同比例复配,在体外对玉米—豆粕—青干草底物进行降解,确定可在反刍动物日粮中添加的复合酶的酶系组成。进一步用体外法研究了外源酶与瘤胃内源酶的协同作用,探讨了外源酶提高饲料利用率的机制。随后研究了复合酶在动物体内的作用效果,以3月龄到7月龄的后备牛为试验动物进行了生长消化代谢试验,分析了添加外源酶对后备牛生长性能、营养消化、血液指标、瘤胃发酵及瘤胃微生物区系变化的影响。本研究系统分析并阐述了外源酶制剂在后备牛日粮中的应用效果及其作用机制。现摘要如下:
     产木聚糖酶菌株的筛选研究
     从生长作物、长期堆积草料或腐质物的土壤中筛选产木聚糖酶菌株。通过富集培养定向筛选技术,从土壤中分离获得18株产木聚糖酶菌株,挑选其中5株进行摇瓶培养。对产酶最高的菌株S8-3进行鉴定,同时分析该菌株产生的木聚糖酶的酶学性质。经鉴定该菌株为黑曲霉(Aspergillums Niger);该菌株发酵液的木聚糖酶活性为628.43 U/mL;木聚糖酶的最适作用温度为45聚,最适pH为4.5,在705保温30 min后酶活力仍为60%以上,在pH 3.0-7.0内稳定性较好。预期该菌株产的木聚糖酶具有用于饲料添加剂的潜力。
     外源酶对玉米-豆粕-青干草型底物人工瘤胃发酵的影响
     利用体外培养法研究了8种不同外源复合酶组合对玉米-豆粕-青干草型底物瘤胃发酵的影响。外源复合酶由纤维素酶、木聚糖酶、酸性蛋白酶、中性蛋白酶和果胶酶组成。研究表明,各组复合酶处理的产气量、氨态氮浓度、VFA浓度与对照组相比有所增加,均存在显著差异(P<0.05)。研究结果表明,在本试验条件下,添加外源复合酶可以改变瘤胃发酵模式,提高体外发酵产气量、发酵液氨态氮浓度和VFA浓度,提高饲料的消化率。研究结果表明,在本试验条件下,高纤维素酶、低木聚糖酶处理组对玉米-豆粕-青干草类型底物降解效果较好,酸性蛋白酶、中性蛋白酶、果胶酶比例的变化对结果影响较小。
     外源酶与瘤胃内源酶互作作用的研究
     在反刍动物日粮中添加外源酶能提高饲料消化率的机制尚不清楚。在瘤胃中直接水解可能是一种方式,但是与瘤胃内庞大的消化酶系相比,外源酶的添加量所占比例较小,因此外源酶在瘤胃内对底物的水解所发挥的作用需要进行量化。本试验采用体外发酵法研究添加外源酶制剂对瘤胃内源酶对羧甲基纤维素、木聚糖及TMR等不同底物降解作用的影响。试验采用7不同完全随机区组设计,研究木聚糖酶、纤维素酶、瘤胃内源酶等3种单酶、复合酶A(木聚糖酶:纤维素酶:瘤胃内源酶=1:1:2)、复合酶B(木聚糖酶:瘤胃内源酶=1:1)、复合酶C(纤维素酶:瘤胃内源酶=1:1)及空白对照组共7个处理组分别在4.5,5.0,5.5,6.0,6.5,7.0等6个pH条件进行体外发酵试验。试验选用的外源纤维素酶和木聚糖酶均为粉状商品酶,使用前进行纯化。瘤胃内源酶通过采集奶牛瘤胃液,经过离心、过硫酸铵沉淀、透析脱盐、琼脂糖凝胶分离纯化等一系列步骤自行制备。在pH4.5-7.0,395条件下测定瘤胃内源酶,外源酶及复合酶对羧甲基纤维素、木聚糖和TMR的降解能力。外源酶制剂与瘤胃内源酶在降解羧甲基纤维素、木聚糖和TMR上具有互作作用。复合酶A降解TMR,葡萄糖和木糖浓度分别较瘤胃内源酶提高了86%和112%;复合酶B降解TMR,木糖浓度较瘤胃内源酶提高了217%,葡萄糖浓度变化无差异。复合酶C降解TMR,葡萄糖浓度和木糖浓度分别较瘤胃内源酶提高了43%和94%。尤其在pH6.0-6.5条件下,复合酶的降解能力更强。研究结果表明,复合酶A中纤维素酶与木聚糖酶的比例更有利于底物的降解。瘤胃内源酶和外源酶之间的互作作用提高了瘤胃内环境中的底物的降解,这可能是添加纤维素酶、木聚糖酶等外源酶促进饲料消化的重要作用机制之一。
     添加外源酶制剂对后备牛消化代谢及血液生化指标的影响
     为研究添加外源酶制剂对3-7月龄后备牛生长性能及消化代谢的影响,分别选取16头3月龄、4月龄、5月龄的后备荷斯坦奶牛,共48头。将三月龄牛只随机分为2组,分别标记为CT,ET;将四月龄牛只随机分为2组,分别标记为CA,EA;将五月龄牛只随机分为2组,分别标记为CM,EM,共六个处理组。CT、CA,CM组牛只饲喂对照组TMR,ET、EA,EM组牛只饲喂加酶TMR,剂量为20g/日·头。结果表明:ET、CT组之间,EA、CA组之间,EM、CM组之间,试验牛只体增重和日增重均有显著差异(P<0.05),表明添加复合酶可以增加后备牛的腹围和胸围,促进后备牛的生长。对各处理组牛只瘤胃液中发酵参数测定结果显示,添加酶制剂可以增加瘤胃液中总挥发性脂肪酸和乙酸含量提高乙酸/丙酸比例,改善瘤胃发酵水平。消化试验结果表明,添加酶制剂可以提高后备牛TMR的NDF、ADF和总能表观消化率,但对蛋白质和粗脂肪表观消化率没有显著影响。对各处理组间血清学指标分析结果显示,血浆中甘油三酯、胆固醇、ALP含量差异不显著(P>0.05),白蛋白含量和白球比在个别处理组之间存在显著差异。
     添加外源酶制剂对后备牛瘤胃发酵参数及瘤胃微生物变化的影响
     利用PCR-DGGE技术分析三月龄、四月龄、五月龄后备牛在饲喂对照组TMR和加酶处理TMR后瘤胃内细菌和真菌的区系变化的影响。酶制剂处理使3-7月龄后备牛瘤胃微生物DGGE图谱条带数量增加,瘤胃微生物区系发生了变化。序列分析结果表明,酶制剂处理组中有2个克隆分别与普雷沃氏菌和瘤胃黄色球菌相似度高于96%,该处理可以促进瘤胃微生物区系优势菌群的建立。
Strains in soil which can produce xylanase were screened from soil. And a strain producing xylanase with highest activity was selected and identified as Aspergillus Niger. This xylanase was studied with its characters such as optimized pH, temperature, and thermal stability. Then it was mixed with cellulose, amylase and protease in different rates to be compound enzymes. Their abilities to degrade corns, bean, and green dry grasses in vitro were detected and the best ratios was determined. Synergetic effect between external enzymes and internal enzymes in rumen was studied in order to understand the mechanism of the higher use of feed when adding external enzymes. More researches were done to know the effects of external compound enzymes influenced in rumor. Experiments of the growth, digestion, and metabolism of replacement cattle aged from three months to seven months were carried out to analyze effects that external enzymes influenced the growing performance, digestion, indexes in blood, fermentation in rumor and changes of micro-organisms in rumor. The article explained the use of external enzymes and their mechanism of action in ruminants.
     1. Screen acidic xylanase-producing microbes from natural environment for potential use in feed industry. Twenty xylanase-producing strains were isolated from soil by enrichment culture techniques. Five strains were chosen to ferment in shaking flasks. The strain S8-3, which had the highest production of xylanase, was preliminarily identified by standard methods, and the property of the xylanase produced by the strain was studied. Strain S8-3 was identified as Aspergillus Niger. The maximal enzymatic activity of xylanase in culture liquid was 628.43 U/mL. The xylanase activity was optimal at 45 degrees C and pH 4.5. Xylanase was stable at pH ranging from 3.0 to 7.0. Xylanase retained more than 60 % of its original activity after incubation for 30 min at 70 degrees C. The xylanase produced by strain S8-3 in this study may have the potential in feed industry.
     2. An in vitro system was conducted to investigate the effects of eight different levels of exogenous complex enzymes in a corn-soybean meal-hay diet on rumen fermentation. Exogenous complex enzyme consisted of cellulose, xylanase, acid protease, neutral protease and pectinase. The results showed gas production, ammonia-N (NH3-N), volatile fatty acids (VFA) concentration in each treatment were significantly higher than those in Control treatment (P<0.05). It also showed that the rumen fermentation pattern was changed with the addition of exogenous complex enzyme, and gas production in vitro, NH3-N and VFA concentration and the degradability were improved. Under the conditions of this experiment, high cellulose, low xylanase pattern group had better degradation on the corn - soybean meal - hay substrate; acid protease, neutral protease, pectinase had no significant effects on the degradation.
     3. The mechanism by which enzyme additives improve feed digestion in ruminants is not fully understood. Direct hydrolysis of feed in the rumen is a potential mode of action, but the importance of this mode needs to be quantified because of the relatively low exogenous hydrolyses activity added compared with the total activity added compared with the total activity present in the rumen. We examined the interactions between ruminal and exogenous enzymes on substrate (CMC, xylan and TMR) degradation using a completely randomized experimental design, with a 6(enzyme preparations and their combinations)×5(assay pH) arrangement of treatments. Ruminal enzymes were extracted from cattle fitted with rumen cannulae. Exogenous enzymes were commercial enzyme include cellulose and xylanase. The complex enzymes A, which was composed with the xylanase, cellulose and ruminal enzymes at the ratio of one third each. The complex enzymes B, which was composed with the xylanase and ruminal enzymes at the ratio of 0.5 to 0.5. The complex enzymes C, which was composed with the cellulose and ruminal enzymes at the ratio of 0.5 to 0.5. Ruminal and exogenous enzymes preparations and their combinations were tested for the ability to degrade soluble cellulose, xylan, and TMR over a range of pH form 4.5 to 7.0 at 39℃. Exogenous enzymes acted synergistically with enzymes from mixed rumen microorganisms in degrading soluble cellulose, xylan and TMR. The exogenous enzymes can interact with the ruminal enzymes when depredating CMC, Xyaln and TMR under the conditions of pH4.5-7.0, 39℃. Then the hydrolysis products of TMR were detected. The concentrate of glucose and xylan of the complex A group were 86 percent and 112 percent higher than ruminal enzymes group; the concentrate of xylan of the complex B group were 217 percent higher than ruminal enzymes group, but of the glucose was no different; The concentrate of glucose and xylan of the complex C group were 43 percent and 94 percent higher than ruminal enzymes group. And hydrolysis ability was much higher under pH 6.0-6.5, 39℃conditions. The synergistic effect between ruminal and exogenous enzymes increased the hydrolytic potential within the rumen environment and is likely a significant mechanism by which enzyme additives improve feed digestion.
     4. The effect of supplementation of exogenous enzymes on growth performance, nutrition digestibility and metabolism, rumen fermentation and microbiota diversity of 3 to 7 month heifers was studied. 16 herds heifer were selected on 3 month old, 4month old, 5 month old, respectively, add up to 48 herbs. The age of heifers in 3 month were randomly divided into two groups, labeled CT, ET; aged at 4 month heifers were randomly divided into two age groups, labeled CA, EA; aged at 5 month heifers were randomly divided into 2 groups were labeled as CM, EM. CT, CA, CM group of heifers fed control group TMR, ET, EA, EM group cows fed TMR supplement enzyme in a dose of 20g / day. head. The results showed that between ET and CT groups, between EA and CA groups, between EM and CM groups, body weight gain and average daily gain were significantly different. Adding enzyme can promote the growth of bovine abdomen and chest. Rumen fermentation parameters of each group heifers were measured. The results show that compound enzyme can increase the total rumen volatile fatty acids and acetic acid content, as well as acetic acid / propionic acid ratio. Digestion experiment results showed that compound enzyme preparations can increase the NDF, ADF apparent digestibility, total energy apparent digestibility, but crude fatty and crude protein digestibility did not significantly affected by compound enzyme treatment. The analysis results showed that plasma triglycerides, cholesterol, ALP levels were not significantly different. It could conclusion that TMR of exogenous enzymes can improve the feed digestion and promote the development of the rumen, improve ruminal fermentation, have no effects on lipid metabolism and protein metabolism, and thus promote their growth on 3 to 7 months heifers.
     5. Using sequence analysis of DGGE combined PCR to evaluate the microbiota diversity of heifers feed TMR treated by compound enzyme. The results showed that all groups of bacteria DGGE profiles reserve rumen similarity is not high, but enzyme preparation treatments increased numbers of DGGE bands, the results show that the rumen microbiota diversity changed. Sequence analysis showed that there were 2 clones, respectively Prevotella sp. and Ruminococcus flavaciens similarity higher than 96% in enzyme treatment group. Enzyme treatment can promote the establishing of advantages of ruminal microflora.
引文
1.阿伦,董晓芳,佟健明,吴莹莹,张琪. 2009.小麦日粮添加木聚糖酶对鹌鹑生长性能及免疫性能的影响.中国畜牧杂志,45:(11):30-33.
    2.程显好,刘鹏,隋晓春,张友军,崔岩,侯永勤,袁建国.一株产木聚糖酶的黑曲霉固态发酵产酶性质的研究.生物技术, 2005, 4: 21-23.
    3.崔月明,樊妙姬,栾桂龙,凌云,韦莉莉,蒋艳明.枯草芽孢杆菌XY1905木聚糖酶酶学性质的初步研究. [J].饲料工业, 2005, 26(6): 19~21.
    4.范秀容,沈薛.微生物学实验.北京:人民教育出版社, 1980: 73 - 75.
    5.冯定远,谭会泽,王修启,邹仕庚,左建军,黄燕华等.木聚糖酶对肉鸡肠道碱性氨基酸转运载体mRNA表达的影响.畜牧兽医学报, 2008,(3) :314-319.
    6.冯定远.酶制剂在饲料工业中的应用.北京:中国农业科学技术出版社, 2005.199~251
    7.伏显华,伍明,俊刘勇.饲料酶制剂中木聚糖酶酶学性质的研究[J].饲料工业,2006,27(12) :18~20
    8.付五兵,朱涛,张勤良,等.Bacillus subtilisT15产木聚糖酶的酶学特性及其在禽饲料中应用的初步研究.饲料工业, 2005 (16) : 34~35.
    9.傅彤.微生物接种剂对玉米青贮饲料发酵进程及其品质的影响.中国农业科学院硕士学位论文.北京:中国农业科学院, 2005:25-26.
    10.高俊勤,高峰,周光宏.木聚糖酶对肉仔鸡消化道食糜停留时间和营养消化率的影响. [J].中国农学通报. 2006,09:18~20.
    11.高民,卢德勋.酶制剂在反刍动物中的应用.中国饲料, 2004(20): 5-7.
    12.韩晓芳,郑连爽.产木聚糖酶嗜碱细菌的筛选及产酶条件研究. [J].环境污染治理技术与设备, 2002, 3 (11) :25~27.
    13.怀文辉,何秀萍,郭文洁,张博润.微生物木聚糖降解酶研究进展及应用前景.微生物学通报, 2000, 27 (2 ) :137 - 139.
    14.李俊波,吕武兴,舒剑成,朴香淑,贺建华. 2009.膨化陈化早籼稻糙米添加外源酶对生长猪表观养分消化率及消化酶活性的影响.中国畜牧杂志, 45(1):29-33.
    15.李秀婷,李里特,江正强.嗜热真菌耐热木聚糖酶的产酶条件和酶谱分析.微生物学通报. 2004, 31 (2): 49-54.
    16.李用芳,李学梅,张建新,聂国兴,黄艳琴,赵利霞.木聚糖酶产生菌的选育及发酵条件研究.生物技术, 2004, 14(1): 61-63.
    17.廖细古,冯定远,于旭华,汝应俊.木聚糖酶对生长肉鸭生产性能影响的研究.[J].饲料工业,2006,27(18) :44~45
    18.刘芳,潘晓亮.用外源纤维素酶提高反刍动物对饲料的利用.饲料研究,2007(1):49-51.
    19.刘强,冯学琴.非淀粉多糖酶制剂的研究与应用进展.动物营养学报, 1999,11(02):6-11.
    20.刘庆华,聂芙蓉,李梦云,李艳红. 2009.添加复合酶和制粒对肉鸡次粉-杂粕-植酸酶型日粮主要养分利用率的影响.西北农林科技大学学报(自然科学版), 37(1): 5-10.
    21.刘铀,林红英,罗东君等.热应激对肉鸡血液生化指标及内分泌机能的影响.湛江海洋大学学报, 1999, 19: 61-64
    22.刘育新,管宁,巩红玲,陈红歌.木聚糖酶产生菌的筛选及酶学性质研究.饲料研究, 2009, 5: 22-24
    23.龙瑞军,董世魁,王元素,等.反刍动物采食量的概念与研究方法.[J].草业学报, 2003 ,12 (5) :8217.
    24.倪学勤, Joshua Gong, Hai Yu,等.采用PCR-DGGE技术分析蛋鸡肠道细菌种群结构及多样性[J].畜牧兽医学报,2008,39(7):955-961.
    25.聂国兴,王修启,明红,李春喜,李用芳,周洪琪.黑曲霉产木聚糖酶稳定性的研究.华北农学报, 2004, 19(1): 112-115.
    26.潘宝海.扬奇青霉菌发酵生产α-半乳糖苷酶的研究[博士学位论文].北京:中国农业大学,2002.
    27.沈德艳,郁建平,张训海,王旋,时维静,蔡立,杨文锟.几种单糖-寡糖TLC条件的确立及草石蚕寡糖中水苏糖含量测定.食品工业科技, 2009, 9(30):306-310
    28.石军,陈国安.木聚糖酶的应用研究进展.中国饲料, 2002, 4:10-12.
    29.史良.奶牛日粮中粗蛋白与中性洗涤纤维间组合效应的研究.中国农业科学院硕士学位论文.北京:中国农业科学院, 2007:56-57.
    30.宋凯,单安山,李锋,程宝晶. 2008.液体发酵制备木聚糖酶及其对育肥猪生长性能与血液生化指标的影响.东北农业大学学报, 39(1):90-94.
    31.孙鹤龄.真菌鉴定手册.北京:科学出版社, 1987:156 - 158.
    32.谭权,张克英,丁雪梅,张慎忠.木聚糖酶对不同能量饲料的体外酶解效果研究.动物营养学报, 2007, 19(5): 293-295
    33.汪儆, Tapio J.木聚糖酶制剂对生长肥育猪次粉日粮饲养效果的影响.中国饲料, 1997 (3 ):17 - 19.
    34.汪世华,胡开辉.木聚糖酶高产菌株的诱变育种及产酶条件研究. [J]江西农业大学学报, 2005, 27(4): 74-94.
    35.王玢,袁方曜.凝胶过滤层析分离纯化纤维素酶的研究. 2003.山东教育学院学报, 6:88-90
    36.王海.外源酶在肉仔鸡不同类型日粮中的使用效果及机理的研究[D].博士学位论文.北京:中国农业大学, 2007
    37.王力生,朱洪龙,孙长春,奚立钱,杨海.复合酶制剂饲喂犊牛效果研究.中国草食动物. 2007,27(3)
    38.王修启.小麦中的抗营养因子及木聚糖酶提高小麦日粮利用效率的作用机理研究.南京:南京农业大学, 2003.
    39.吴克,刘斌,张洁,杨智,蔡敬民,潘仁瑞.绿色木霉木聚糖酶的纯化和性质. [J].生物学杂志, 2001, (06) .31~35.
    40.邢壮,张有貌,莫放,张晓明,王运亨,白士祥.外源酶制剂对犊牛日粮营养物质表观消化率的影响.饲料研究. 2008 (8) : 62-64.
    41.许君.碱性木聚糖酶产生菌的筛选与产酶条件. [J].生物技术, 2004, 14 (3) : 52~54.
    42.许梓荣,卢建军.稻谷型日粮添加非淀粉多糖酶对生长猪消化道结构和功能的作用研究.中国农业科学, 2003, 36 : 201-207.
    43.杨振海,蔡辉益.饲料添加剂使用规范.北京:中国农业科学出版社, 2003. 187~200
    44.于旭华.真菌性和细菌性木聚糖酶对肉鸡生长性能的影响及机理研究.华南农业大学. 2004.广州.博士学位论文.
    45.翟明仁,唐志强,卢德勋,呼和.反刍动物酶制剂适宜配比及添加量的研究.饲料工业, 2005,6 (14) : 31-33
    46.占纪勋,刘廷志,田胜燕,王德培,丁友昉.黑曲霉S13所产木聚糖酶的性质及应用研究. [J].北京工商大学学报(自然科学版), 2003, (02) .25~29
    47.张纪忠.微生物分类学.上海:复旦大学出版社, 1990: 354 - 356.
    48.张建新,李学梅,姜丽娜,聂国兴,张霞,李向力.黑曲霉固态发酵木聚糖酶中试条件的研究.微生物学杂志, 2003, 23(4): 20-22.
    49.张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999.
    50.张晓晖,郭春华,江晓霞.饲用木聚糖酶生产菌株的筛选及部分酶学性质的研究.兽药与饲料添加剂, 2007, 12 (2): 4-6.
    51.朱伟云,姚文,毛胜勇.变性梯度凝胶电泳法研究断奶仔猪粪样细菌区系变化.[J].微生物学报, 2003, 43 (4) : 503-508.
    52.朱元招,韩定忠,刘亚力.补饲不同配方酶制剂对犊牛断奶后生产性能的影响.黄牛杂志, 2001, 27(3) : 29-31
    53.高培基.纤维素酶降解机制及纤维素酶分子结构与功能研究进展.自然科学进展. 2003, 13 (1) : 21-30.
    54.阎伯旭.内切葡聚糖昔酶的纯化和内源荧光研究.生物化学杂志, 1997, 13: 580.
    55.尹娟,袁兴中,汤琳.生物传感器检测纤维素酶活性及基因表达.中国生物工程杂志. 2009, 29 (1) :86-92
    56. Ahn, J.H., Y.J.Kim, and H.J.Kim. 2003. Effects of fibrolytic enzyme addition on ruminal fermentation, milk composition of dairy cows. Journal of Animal ScienceTechnol.45:131-142.
    57. Akin D E, Benner R. Degradation of polysaccharides and lignin by ruminal bacteria and fungi. [J]. Applied and Environmental Microbiology, 1988, 54: 1117-1125.
    58. Akin D E , Gordon GL R ,Hogan J P. Rumen bacterial and fungal degradation of Di gi taria pentz i i growth with or without sulfur [J] . Applied and Environmental Microbiology, 1983, 46: 738-748.
    59. Akin D E, Rigsby L L. Mixed fungal populations and lignocellulosic tissue degradation in the bovine rumen. [J]. Applied and Environmental Microbiology, 1987, 53: 1987-1995.
    60. Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) .Basic local alignment search tool. J Mol Biol 215:403–410
    61. Alvareza G,Pinos-Rodrigueza J M,Herrerac J G,et a1. Effects of exogenous fibrolytic enzymes on ruminal digestibility in steers fed high fiber rations. Livest Sci,2009,121:150~154.
    62. Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143–169.
    63. Ampe, F., N. ben Omar, C. Moizan, C. Wacher, and J. P. Guyot. 1999. Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, fermented maize dough, demonstrates the need for cultivation in dependent methods to investigate traditional fermentations. Appl. Environ. Microbiol. 65:5464–5473.
    64. Anthony, Thangamani R, Krishnan C, Rajendran, Ayyappan, Gunasekaran P. Inhibition of proteases during fermentation improves xylanase production by alkali tolerant Aspergillus fumigatus ARl. Journal of bioscience and bioengineering. 2003, 96 (4) 3:94-406
    65. Badhan A K, Chadha B S, Kaur J, Saini H S, Bhat M K. Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Bioresource Technology. 2007, 98 (3) : 504-510.
    66. Bataillon M, Nunes Cardinali A P , Duchiron F. Production of xylanases from a newly isolated alkalophilic thermophilic Bacillus sp [ J ] .Biotechnology Letters , 1998 , 20 ( 11) : 1067-1071.
    67. Bailey, M.J., P.Bielyy, and K.Poutanen.1992.Interlaboratory testing of methods for assay of xylanase activity .J. Biotechnol.23:257-270.
    68. Ballard, C.S.,M.P.Carter, K.W.CTach, C.J.Sniffen ,T.Sato,K.Uchida, A.Teo,U.D.Nhan, and T.H.Meng.2003.Feeding fibrolytic enzymes to enhance DM and nutrient digestion and milk production by dairy cows. Journal of Dairy Science. 86(supple.1):150. (Abstr.)
    69. Beauchemin K A, Jones S D M, Rode L M, Sewalt V J H. Effects of fibrolytic enzymes incornor barley diets on performance and carcass characteristics of feedlot cattle. Canada of Journal of Animal Sciences, 1997, 77: 645-653.
    70. Beauchemin K A, Rode L M and Sewalt V J H. Fibrolytic enzymes increase fiber digestibility and growth rate of steers fed dry forages. Canada of Journal of Animal Sciences, 1995.75:641(R) 644.
    71. Beauchemin K A, Rode L M, Maekawa M, Morgavi D P and Kampen R. Evaluation of a nonstarch polysaccharidase feed enzyme in dairy cow diets. Journal of Dairy Science,2000,83:543-553
    72. Beauchemin K A, Rode L M, Yang W Z and McAllister T A.1998.Use of feed enzymes in ruminant nutrition. The 33rd Pacific Northwest Nutrition Conference, Vancouver, British Columbia.1998: 121-135.
    73. Beauchemin, K. A.,W. Z. Yang, and L. M. Rode. 1999. Effects of grain source and enzyme additive on site and extend of nutrient digestion in dairy cows. J.Dairy Sci. 82:378-390.
    74. Beauchemin, K.A., L. M. Rode and V.J.H. Sewalt. 1995. Fibrolytic enzymes increase fiber digestibility and growth rate of steers fed dry forages. Can.Journal of Animal Science76:245-252.
    75. Boucells F, J. F. Perez, J. Morales, et al. Effect ofα-galactosidase supplementation of creal -soybean -pen diets on production performances, digestibility and lower gut fermentation in growing and finishing pigs[J]. Anima. Sci., 2000, 7l: 157-164.
    76. Bowman, G.R., K. A. Beauchemin, and J.A.Shelford.2002.The proportion of feed to which a fibrolytic enzyme additive is applied affects nutrient digestion by lactating dairy cows. Journal of Dairy Science. 85:3240-3429.
    77. Bun, S.,呙于明,张炳坤,袁建敏,胡骁飞,张立斌. 2009.豆粕和棉粕日粮中添加β粕半乳糖苷酶对肉仔鸡生长性能的影响.中国畜牧杂志, 45(15) : 25 - 28.
    78. Calsamiglia, S., A. Ferret, J.Plaixats, and M.Devant. 1999. Effect of pH and pH fluctuations on microbial fermentation in a CTinuous culture system. Journal of Dairy Science. 82:83
    79. Chenost M, Deverre F, Aufrere J, Demarquilly C. The use of gas-test technique for predicting the feeding value forage plants. In: In vitro techniques for measuring nutrient supply to ruminants. Proceedings of Occasional Meeting of the British Society of Animal Science, 8-10 July 1997, University of reading, UK
    80. Choct M, Hughes R J, Wang J. Feed enzymes eliminate the anti-nutritive effect of nonstarch polysaccharides and modify fermentation in broilers. [R]. Australian Poultry Science Symposium, 1995, 71: 121 - 125
    81. Colina A, Sulbaran D, Ferrer B, Aiello C. Xylanase production by Trichoderma reesei rut C- 30 on rice straw. Application Biochem Biotechnol, 2003, 105: 715-724.
    82. Colombatto, D., F.L. Mould, M.K. Bhat, D.P. Morgavi, K.A. Beauchemin, and E. Owen. 2003. Influence of fibrolytic enzymes on the hydrolysis and fermentation of pure cellulose and xylan by mixed ruminal microorganisms in vitro. Journal of Animal Science81:1040-1050.
    83. Colombatto, D., F.L. Mould, M.K. Bhat, D.P. Morgavi, K.A. Beauchemin, and E. Owen. 2003. Use of fibrolytic enzymes to improve the nutritive value of ruminant diets: Abiochemical and in vitro rumen degradation assessment.Animal Feed Science and Technology. 107: 201-209.
    84. David J.Schingoethe, Gene A.Stegeman, and Royce J. Treacher.1999.Response of lactating dairy cows to a cellulose and xylanase enzyme mixture applied to forages at the time of feeding. Journal of Dairy Science. 82:996-1003.
    85. Dean, D.B., A. T. Adesogan, N. Krueger, and R.C.Littell.2005.Effect of fibrolytic enzymes on the fermentation characteristics, aerobic stability, and digestibility of Bermuda grass silage. Journal of Dairy Science. 88:994-1003.
    86. Dean, D.B., A.T. Adesogan, C.R. Staples, S.C.Kim, and R.Littell.2006.Effect of method of adding a fibrolytic enzyme to a dairy cow diet on ruminal fermentation and TMR degradation.Journal of Dairy Science. 89(Suppl.1):405. (Abstr.)
    87. Dehority B A, Orpin CG. Development of, and natural fluctuations in, rumen microbial populations [A]. In: Hobson P N, Stewart CS. The Rumen Microbial Ecosystem[C]. London, U K: Blackie Academic & Professional, 1997. 197-235.
    88. Deng L F,Wang J Q,Bu D P,et a1.Effect of Bacillus subtilis natto on milk performance,ruminal fermentation,and microbial profile of dairy cows. Journal of Animal Science, 2009, 92 (E Suppl.1) : 286.
    89. Feng P, Hunt C W, Pritchard G T and Julien W E. Effect of enzyme preparations on in situ and in vitro degradation and in vivo digestive characteristics of mature cool-season grass forage in beef steers. Journal of Animal Science, 1996, 74:1349-1357
    90. Fontes, C. M. G. A., J. Hall, B. H. Hirst, G. P. Hazelwood, and H.J.Gilbert.1995.The resistance of cellulases and xylanases to proteolytic inactivation.Appl.Microbiol.Biotechnol.43:52-57.
    91. Forsberg, C. W., K. J. Cheng and B. A. White. 1997. Polysaccharide degradation in the rumen and large instestine. Pages 319–379 in Gastrointestinal Microbiology: Volume 1, astrointestinal Ecosystems and Fermentations. R. I. Mackie and B. A. White, ed. Chapman & Hall, New York, NY.
    92. Forsman, P., A. Tilsala-Timisjarvi, and T. Alatossava. 1997. Identification of staphylococcal and streptococcal causes of bovine mastitis using 16S-23S rRNA spacer regions. Microbiology 43: 3491–3500.
    93. Gong J H, Si W, Forster R J, etal. 16S rRNA genebased analysi s of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. [J]. FEMS Microbiology Ecology, 2007, 59: 147-157.
    94. Gonzdlez Garcia Et Albanell E, Caja G, et a1. In vitro fermentstive characteristics of ruminant diets supplemented with fibrolytic enzymes and ranges of optimal endo-1,4-glucanase activity. Journal of Animal Physioloy and Nutrition, 2009. Published Online.
    95. Gordon G L.R, Phillips M W. Removal of anaerobic fungi f rom the rumen of sheep by chemical t reatment and the effect on feed consumption and in vivo fibre digestion[J]. Letters in Applied Microbiology. 1993, 17: 220-223.
    96. Gwayumba, W., and D.A. Christensen. 1997. The effect of fibrolytic enzymes on protein and carbohydrate degradation fractions in forages. Canada Journal of Animal Science. 77: 541–542.
    97. H J, Yu B, Zhang K Y, Ding X M, Chen D W. Expression of endo-1, 4-beta-xylanase from Trichoderma reesei in Pichia pastoris and functional characterization of the produced enzyme. BMC biotechnology. 2009, 9(1):56.
    98. Harris, P.J, A.B. Blakeney, R.J. Henry, and B.A. Stone. 1988. Gas chromatographic determination of the monosaccharide composition of plant cell wall preparations. [J]. AOAC 71: 272–275.
    99. Hew L I, Ravindran V, Mollah Y, Bryden W L. Influence of exogenous Xylanase supplementation on apparent metabolisable energy and amino acid digestibility in wheat for broiler chickens. Animal Feed Science and Technology. 1998, 75:283-292.
    100. Hristov, A.N., L.M. Rode, K.A. Beauchemin, and R.L. Wuerfel. 1996. Effect of a commercial enzyme preparation on barley silage in vitro and in sacco dry matter degradability. Proc. West. Section, Am.Soc.Anin.Sci.47:282-284.
    101. Hristov, A.N., T.A.Mcallister, and K.J. Cheng. 1998. Effect of dietary or abomasal supplementation of exogenous polysaccharide-degrading enzymes on rumen fermentation and nutrient digestibility. Journal of Animal Science. 76: 3146-3156.
    102. Hristov, A.N., T.A.Mcallister, and K.J. Cheng. 2000. Intraruminal supplementation with increasing rates of exogenous polysaccharide-degrading enzymes: Effects on nutrient digestion in cattle fed a barley grain diet.Journal of Animal Science. 78: 477-487.
    103. Hristov, A.N., T.A.Mcallister, and K.J. Cheng. Stability of exogenous polysaccharide-degrading enzymes in the rumen. Animal. Feed Science and Technology. 76: 161–168.
    104. Hugenholtz, P., B. M. Goebel, and N. R. Pace. 1998. Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180:4765–4774.
    105. Kim J C, Sands J S, Mullan B P, et al. Performance and total-tract digestibility responses to exogenous xylanase and phytase in diets for growing pig. [J]. Animal Feed Science and Technology, 2008, 142: 163-172
    106. Kim S W, Mavromichalis I, Easter R A, et al. Supplementation of apha-1,6 galactosidase and beta-1,4-mannosidase to improve soybeanmeal utilization by growing-finishing pigs. Journal of Animal Science. 2001, 79(2): 84.
    107. Kim S W. Effect of Alpha-1, 6-galactosidase, beta-1,4-mannanase and beta-1, 4 -mannosidaseon intestinal morphology and the removal of dietary antinutritional factors in young pigs. Journal of Animal Science, 2002, 80:39.
    108. Klingerman C M, Hu W, McDonell E E,et a1. An evaluation of exogenous enzymes with amylolytic activity for dairy cows. Journal of Dairy Science. 2009. 92 (3): 1050~1059
    109. Knowlton, K.F., J. M. Mckinney, and C. Cobb. 2002. Effect of a direct-fed fibrolytic enzyme formulation on nutrient intake, partitioning, and excretion in early and late lactation Holstein cows. Journal of Dairy Science. 85:3328-3335.
    110. Krause, M.,K. A. Beauchemin, L. M. Rode, B. I. Farr and P. Nrgaard. 1998. Fibrolytic enzyme treatment of barley grain andsource of forage in high-grain diets fed to growing cattle.Journal of Aninal Science. 76:2912–2920.
    111. Kubata B K, Takamizawa K, Kawai K, et al. Xylanase IV, an endoxylanase of Aeromonas caviae ME21 which produces xylotetraose as the only low molecular weight oligosaccharide from xylan [J]. App Environ Microbiol, 1995, 61: 1666-1668.
    112. Kung L, Treacher R J, Nauman G A, Smagala A M, Endres K M, and Cohen M A. The effect of treating forages with fibrolytic enzymes on its nutritive value and lactation performance of dairy cows. Journal of Dairy Science. 2000, 83: 115-122.
    113. Kung, L., M.A. Cohen, L. M. Rode, and R.J.Treacher. 2002. The effect of fibrolytic enzymes sprayed onto forages and fed in a total mixed ration to lactating dairy cows. Journal of Dairy Science. 85: 2396-2402.
    114. L′opez C , Blanco A , Javier Pastor F I . Xylanase production by a new alkalitolerant isolate of Bacillus. [J]. Biotechnology Letters, 1998, 20(3): 243 246.
    115. Lassiter C A, Fries G F, Huffman C F, et a1. Effect of pepsin On the growth and health of young dairy calves fed various milkreplacer rations. Journal of Dairy Science, 1959 (42): 666-670.
    116. Lewis, G.E., C.W. Hunt, W.K. Sanchez, R. Treacher, G.T. Pritchard, and P. Feng. 1996. Effect of direct-fed fibrolytic enzymes on the digestive characteristics of a forage-based diet fed to beef steers. Journal of Animal Science. 74:3020-3028.
    117. Li X T, Li L T, Jiang Z Q. Demography and production of a thermo stable Xylanase from Thermomyces Lanuginosus. Microbiology, 2004, 31(2): 49-54
    118. Luo, D.Y., F.X. Yang, J.H. Yao, B.J.Shi, and Z.F.Zhou. 2009. Effects of xylanase on performance, blood parameters, intestinal mophology, Microflora and digestive enzyme activities of broilers fed wheat-based diets. Asian-Aust. Journal of Animal Science, 22(9):1288-1295.
    119. Lv, M.B., D.F. Li, L.M. Gong, Y.J. Ru, and V.Ravindran. 2009. Effects of supplemental microbial phytase and xylanase on the performance of broilers fed diets based on corn and wheat. Journal of Poultry Science. 46 (3) : 217-223.
    120. Malathi V, Debegowda. In vitro evaluation of nonstarch polysaccharide digestibility of feed ingredients by enzymes. Poultry Science, 2001, (80): 302-305
    121. Montesi A, Garcia-Albiach R, Pozuelo MJ, Pintado C, Goni I, Rotger R. Molecular and microbiological analysis of caecal microbiota in rats fed with diets supplemented either with prebiotics or probiotics. Intl J Food Microbiol. 2005; 98: 281–9.
    122. Morgavi D P, Beauchemin K A, Nsereko V L, Rode L M, Iwaasa A D, Yang W Z, Maallister T A, Wang Y. Synergy between ruminal fibrolytic enzymes and enzymes from Trichoderma Longibrachiatum. Journal of Dairy Science, 2000, 83: 1310-1321
    123. Morgavi, D.P., C.J. Newbold, D.E. Beever, and R.J.Wallace. 2000b. Stability and stabilization of potential feed additive enzymes in rumen fluid. Enzym.Microbiol.Technol. 26:171-177.
    124. Murakami M.T, Ruller R, Ward R.J, Arni R.K. Crystallization and preliminary X-ray crystallographic studies of the mesophilic xylanase A from Bacillus subtilis 1A1. Acta Crystallographica. Section F, Structural Biology & Crystallization Communications. 2005, 61 (Pt 2):219-220.
    125. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695–700.
    126. Nair, Suprabha G, Sindhu R, Shashidhar, Shankar. Purification and biochemical characterization of two xylanases from Aspergillus sydowii SBS 45. Applied Biochemistry & Biotechnology. 2008, 149(3):229-43.
    127. National Research Council. Nut rient requirement s of dairy cattle (2001) [M].孟庆翔译.北京:中国农业出版社, 2002. 394-406.
    128. Nolen J V, Leng R A. Dynamic aspects of ammonia and urea metabolism in sheep. British Journal of Nutrition, 1972, 27:177-183
    129. Ogasawara W, Shida Y, Furukawa T, Shimada R, Nakagawa S, Kawamura M, Yagyu T, Kosuge A, Xu J, Nogawa M, Okada H, Morikawa Y. Cloning, functional expression and promoter analysis of xylanase III gene from Trichoderma reesei. Applied Microbiology & Biotechnology, 2006, 72(5): 995-1003.
    130. Ogier, J.C, Lafarge, V., Girard, V., Rault, A., Maladen, V., Gruss, A., Leveau, J.Y. Molecular fingerprinting of dairy microbial ecosystems by use of Temporal Temperature and Denaturing Gradient gel electrophoresis. 2004. Applied and environmental microbiology. 70: 5628-5643.
    131. OmPraba G, Velmurugan D, Arumugam P, Govindasamy V, Kalaichelvan P T. Homology model of a novel thermostable xylanase from Bacillus subtilis-AK1. Journal of Biomolecular Structure & Dynamics. 2007, 25(3): 311-20.
    132. Orpin C G. The role of ciliate protozoa and fungi in the rumen digestion of plant cell walls [J] .Animal Feed Science Technology, 1983, 10: 121-143.
    133. Park K H, Kim TJ , Cheong T K, et al . Structure, specificity and function of cyclomalto dextrinase, a multispecific enzyme of theα-amylase family [J]. Biochim Biophy Acta, 2000 , 1478(2) :165-185
    134. Pason P, Kosugi A, Waeonukul R, Tachaapaikoon C, Ratanakhanokchai K, Arai T, Murata Y, Nakajima J, Mori Y. Purification and characterization of a multienzyme complex produced by Paenibacillus curdlanolyticus B-6. Applied microbiology and biotechnology. 2009, 25(3): 309-316
    135. Patra A K, Saxena J. Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Antonie Van Leeuwenhoek, 2009, 96(4): 363~375.
    136. Pereiraa P S , Mesquitaa A , Duartea J C , etal . Rapid production of thermostable cellulose free xylanase by a strain of Bacillus subtilis and its properties.[J]. Enzyme and Microbial Technology, 2002, 30: 924-933.
    137. Perry T W, Purkhiser E D, Beeson W M. Effects of supplemental enzymes on nitrogen balance, digestibility of energy and nutrients and Oil growth and feed elficiency of cattle. Journal of Animal Science, 1966(25): 760-764.
    138. Pinor-Rodriguez, J.M., S.S. Gonzalez, G.D. Mendoza, R.Barcena, M.A. Cobos, A. Hernandez, and M.E. Ortega. 2002. Effect of exogenous fibrolytic enzyme on ruminal fermentation and digestibility of alfalfa and rye-grass hay fed to lambs. Journal of Animal Science, 80: 3016-3020.
    139. Preston TR, Leng KA. Matching ruminant production system with available resources. The Tropics and Sub-tropics penambul books. University of New England, Armidale, Australia. 1987: 20-25
    140. Reddish M.A. and L. Kung Jr. 2007. The effect of feeding a dry enzyme mixture with fibrolytic activity on the performance of lactating cows and digestibility of a diet for sheep. Journal of Dairy Science. 90: 4724-4729.
    141. Rode, L.M., W.Z.Yang, and K. A. Beauchemin. 1999. Fibrolytic enzyme supplements for dairy cows in early lactation. Journal of Dairy Science. 82: 2121-2126.
    142. Rolleke S, Gurtner C, Drewello U, Drewello R, Lubitz W, Weissmann R. Analysis of bacterial communities on historical glass by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. J Microbiol Meth, 1999, 36: 107–14.
    143. Russell J B, Wilson D B. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH. Journal of Animal Science, 1996,79:1503-1509
    144. Senthil k, Sundar R, Ashok k, Balasubramaniem, Raj, Krishnan C, Gunasekaran, Paramasamy. Purification and characterization of a low molecular weight endoxylanase from solid-state cultures of alkali-tolerant Aspergillus fischeri. Biotechnology Letters. 2004, 26(16):1283-1287.
    145. Simpson J M, McCracken V J, Gaskins H R,etal .Denaturing gradient gel electrophoresis analysis of 16 S ribosomal DNA amplicons to monitor changes in fecal bacterial populations of weaning pigs after introduction of Lactobacillus reuteri strain MM53[J]. Applied and Environmental Microbiology, 2000, 66(11):4705-4714.
    146. Somogyi, M. 1952. Notes on sugar determination. J. Biol. Chem.195:19–23.
    147. Tajima k, Aminov R I, Nagamine T, Ogata K, Nakamura M, Matsui H,Benno Y. Rumen bacterialdiversity as determined by sequence analysis of 16SrDNA libraries. FEMS Microbiology Ecology, 1999, 29: 159-169.
    148. Tanaka H, Nakamura T, Hayashi, S, Ohta K. Purification and properties of an extracellular endo-1,4-beta-xylanase from Penicillium citrinum and characterization of the encoding gene. Journal of Bioscience & Bioengineering. 2005, 100(6):623-630.
    149. Theodorou M K, Gill M, King Spooner C, et al. Enumeration of anaerobic chyt ridiomycetes as thallus forming units: Novel method for quantification of fibrolytic fungal populations from the digestive tract ecosystem [J]. Applied and Environmental Microbiology, 1990, 56:1073-1078.
    150. Thomson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    151. Thrune M, Bach A, Ruiz-Moreno M, et a1. Effects of Saccharomyces cerevisiae on ruminal pH and microbial fermentation indairy cows Yeast supplementation on rumen fermentation. Livest. Sci, 2009, 124: 261~265.
    152. Titi, H.H. 2003. Evaluation of feeding a fibrolytic enzyme to lactating dairy cows on their lactational performance during early lactation. Asian-australas.Journal of Animal Science, 16: 677-684.
    153. V. L. Nsereko, K. A. Beauchemin, D. P. Morgavi, L. M. Rode, A. F. Furtado, T. A. McAllister, A. D. Iwaasa, W. Z. Yang, and Y. Wang. Effect of a fibrolytic enzyme preparation from Trichoderma longibrachiatum on the rumen microbial population of dairy cows. Canada. Journal. Of Microbiologe. 2002,48(1):14–20
    154. Van der Klis J D, Versteegh H A J, Simons P C M, et al. The efficacy of phytase in corn-soybean meal based diets for laying hens [J]. Poultry Science, 1997, 76: I 535-I542.
    155. Walter, J., G. W. Tannock, A. Tilsala-Timisjarvi, S. Rodtong, D. M. Loach, K. Munro, and T. Alatossava. 2000. Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl. Environ. Microbiol. 66: 297–303.
    156. Webb K E. Intestinal absorption of protein hydrolysis products. Journal of Animal Science, 1990, 68: 3011-3022
    157. Wing JM, Wilcox CJ. Effect of supplementary digestive enzymes on growth of dairy heifers. Journal of Dairy Science, 1960 (43): 1655-1656.
    158. Woyengo T A, Guenter W, Sands J S, et al. Nutri-ent utilisation and performance responses of broilers fed a wheat-based diet supplemented with phytase and xylanase alone or in combination [J]. Animal feed Science and Technology. 2008. 146: 113-123
    159. Yang, W. Z., K. A. Beauchemin, and L.M.Rode. 2000. Effects of barley grain processing on extent of digestion and milk production of lactating cows. Journal of Dairy Science. 83: 554-568.
    160. Yang, W. Z., K. A. Beauchemin, and L. M. Rode. 1999. Effects of an enzyme feed additive on extent of digestion andmilk production of lactating dairy cows. Journal of Dairy Science. 82:391–403.
    161. Yu P, Wang J Q, Bu D P. Probiotie effect of Bacillus subtilis (natto) on rumen bacterial diversity of weaning Holstein calves. J Anita Sci. 2009, 92 (E-Suppl.1): 508.
    162. Yung, J., J.H. Yao, F.X. Yang, X.D. Yang, X.J. Wan, J.C. Han, Y.J. Wang, X.K. Chen, Y.R. Liu, Z.F. Zhou, N.B. Zhou, and X.Y. Feng. 2008. Effects of supplementing different levels of a commercial enzyme complex on performance, nutrient availability, enzyme activity and gut mophology of broilers. Asian-Aust.Journal of Animal Science 21 (5): 692-700.
    163. Zhang H T, Bu D P, Wang J Q. Effects of Bacillus subitilis natto on performance and morphological features of ruminal papillae in dairy calves. J Anim Sci, 2008, 9l (E-Suppl.1):7.
    164. Zheng, W., D.J. Schingoethe, G.A.Stegeman, A.R.Hippen, and R.J.Treachert. 2000. Determination of when during the lactation cycle to start feeding a cellulose and xylanase enzyme mixture to dairy cows. Journal of Dairy Science. 83:2319-2325.
    165. Zhou J P, Huang H Q, Meng K, Shi P J, Wang Y R, Luo H Y, Yang P L, Bai Y G, Zhou Z G, Yao B. Molecular and biochemical characterization of a novel xylanase from the symbiotic Sphingobacterium sp. TN19. Applied microbiology and biotechnology. 2009, 73:291-299.
    166. Zhou, Y., Z. Jiang, D. Lv, and T. Wang. 2009. Improved energy-utilizing efficient by enzyme preparation supplement in broiler diets with different metabolizable energy levels. Poultry Science 88 (2): 316-322.
    167. Zhu W Y, Williams B A, Konstantinov S R, Tamminga S, Devos W M, Akkermans ADL. Analysis of 16S rDNA reveals bacterial shift during in vitro fermentation of fermentable carbohydrate using piglet faeces as inoculum. Anaerobe 2003; 9: 175-80.
    168. Sunna A, Antranikian G. Xylanolytic enzymes from fungi and bacteria. Critical Rev Biotech, 1997, 17(1): 39-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700