用户名: 密码: 验证码:
秦川牛肉质理化特性分析及其正向调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以秦川牛为研究对象,采用物理、化学、组织形态学、免疫组化、RT-PCR、分子克隆及表达等方法,研究了秦川牛胴体不同部位肉质理化特性指标;秦川牛不同月龄肉质理化指标及组织学特性变化;结缔组织、脂肪组织、肌纤维直径对秦川牛肉嫩度的影响;不同营养水平对秦川牛肉质的影响;μ-Calpain在秦川牛肌细胞中的定位及其对牛肉嫩度和显微结构的影响;乳酸发酵对秦川牛肉品质的影响;秦川牛瘦素受体基因功能区蛋白表达及其结合瘦素特性。以期为生产高档和高营养价值秦川牛肉提供理论基础和技术路线。试验主要结果如下:
     1、研究秦川牛胴体不同部位肉质物理、化学特性,比较不同胴体部位肉的商品和营养价值。通过低温(4℃)吊挂、质构仪、蒸煮、索氏抽提、GC-MS、微量凯氏定氮、氨基酸分析仪、电感耦合等离子体原子发射光谱仪(ICP—AES)等方法,测定牛肉滴水损失、剪切力、熟肉率、肌内脂肪含量及其脂肪酸组成、粗蛋白及必需氨基酸含量、微量矿质元素(Ca、Fe、Zn)含量,并进行比较。结果表明:上脑、肋条、牛腩、牛胸的物理特性(滴水损失、剪切力、熟肉率)和粗脂肪含量优于尾龙扒、牛领、米龙;尾龙扒、牛领、米龙粗蛋白和必需氨基酸含量高于上脑、肋条、牛腩、牛胸;各部位肌内脂肪酸(主要为C18∶1和C16∶0 )、必需氨基酸和微量矿质元素(Ca、Fe、Zn)组成结构基本相似。结论:秦川牛牛胸、肋条、上脑、牛腩滴水损失、剪切力、熟肉率、肌内脂肪含量均较为理想,商品价值高;牛领、尾龙扒、米龙粗蛋白含量较高,肌内脂肪含量相对较低,具有较高的营养价值;粗脂肪含量与其营养价值呈负相关;粗蛋白含量与其营养价值呈正相关;脂肪酸中的多不饱和脂肪酸(PUFA)具有较高的营养价值;秦川牛肉的大理石花纹及多不饱和脂肪酸含量有待进一步提高。
     2、研究秦川牛不同月龄肉质理化及组织学特性变化。测定不同月龄牛肉剪切力、加压失水率、蒸煮损失、水分含量、肌内脂肪及各组成脂肪酸含量、蛋白质及各组成氨基酸含量、肉色(L﹡﹡a﹡﹡b﹡)﹡通过H.E染色石蜡切片观察肌纤维间结缔组织变化;肌纤维电镜扫描,测定肌纤维直径。结果表明:随着牛龄的增加,牛肉剪切力值呈显著上升趋势(p<0.05)﹡牛肉加压失水率、蒸煮损失、含水量均呈显著下降趋势(p<0.05)﹡肌内脂肪、蛋白质含量均显著上升(p<0.05)﹡饱和脂肪酸含量呈上升趋势,不饱和脂肪酸含量呈下降趋势;必需氨基酸含量成增加趋势;L﹡值(亮值)显著下降(p<0.05),a﹡值(红值)显著上升(p<0.05)﹡肌纤维间距逐渐增大,肌纤维间结缔组织增加;肌纤维直径显著增大(p<0.05)。结论:随着牛龄的增加,牛肉脂肪、蛋白质含量显著上升(p<0.05),加压失水率、蒸煮损失显著下降(p<0.05),牛肉商品价值上升;必氨基酸含量增加,蛋白质营养价值上升;不饱和脂肪酸含量下降,脂肪酸营养价值下降;肌纤维直径增大是影响牛肉嫩度的首要因素。
     3、以秦川牛背最长肌、半腱肌为模型,研究结缔组织、脂肪组织、肌纤维直径对牛肉嫩度的影响,总结分析影响牛肉嫩度的主要因素,为肉牛生产及品质改善提供基础理论。通过理化分析法、肌肉组织学结构、RT-PCR法比较研究结缔组织对牛肉嫩度影响。结果表明:背最长肌嫩度、肌内脂肪含量显著高于半腱肌(p<0.05);背最长肌间结缔组织主要为脂肪组织,结构疏松;半腱肌肌间结缔组织为主要组成成分是胶原蛋白(胶原纤维),结构致密,硬度大;半腱肌胶原蛋白含量显著高于背最长肌,脂肪则相反(p<0.05);背最长肌和半腱肌Ⅰ型胶原蛋白含量无显著差异(p>0.05);背最长肌纤维直径大于半腱肌(p<0.05);肌纤维膜影响牛肉的感官嫩度。结论:秦川牛不同部位结缔组织的种类和含量不同,肌间结缔组织中胶原蛋白和脂肪比例对肉嫩度的贡献大于肌纤维直径,总体来看胶原蛋白和脂肪含量比例是影响牛肉嫩度的主要因素。
     4、研究不同营养水平对秦川牛肉品质的影响。试验犊牛采取分组集中饲养,分别饲喂低、中、高三种不同营养水平的饲料。采用穆斯林屠宰法,取其背最长肌,分别测定各组肉样相关的物理和化学指标,并进行了组织形态学的显微分析。结果表明:随着日粮营养水平的提高,高营养水平组的牛肉其嫩度、肌内脂肪含量显著增高、大理石花纹丰富度(肌间脂肪)增加;肌内脂肪含量、大理石花纹丰富度与牛肉嫩度呈正相关,与系水力失水率测定结果一致;pH显著降低(p<0.05);肌膜显著变厚;牛肉脂肪酸含量及组成、蛋白质含量及AA组成、矿质元素含量及其他理化特性无显著变化(p>0.05)。结论:随着日粮营养水平的提高,可明显改善牛肉的嫩度,丰富大理石花纹(p<0.05),提高牛肉的商品价值。但其营养价值仍有待提高。
     5、研究确认μ-Calpain在肌细胞定位及其在秦川牛肉后熟过程中对牛肉嫩化作用效果,为活化μ–calpain对进行牛肉嫩化提供理论依据。通过免疫组化石蜡切片染色法定位μ-Calpain在肌纤维中的位置;用不同浓度Ca2+(μM和mM)对秦川牛肉进行注射,真空包装后于4℃下成熟72 h ,利用质构仪测定牛肉剪切力;利用石蜡切片染色法观察不同浓度Ca2+对肌纤维显微结构的影响;利用原子力显微镜观察肌原纤维碎片(MF)和肌原纤维变化;利用蛋白质免疫印记法(Western blot)分析不同浓度处理μ-Calpain降解活化;利用环境扫描电镜观察不同浓度Ca2+处理后肌纤维膜的变化。结果表明:μ–calpain在肌纤维中主要存在于细胞膜和细胞浆中;μmol浓度Ca2+肉样嫩度无显著改善(p>0.05)、肌纤维显微结构变化不大、肉样出现一定量的肌原纤维碎片、肌原纤维膜破裂,肌丝清晰可见、外源μmol/L浓度CaCl2可激活μ-Calpain酶原、μ-Calpain对肌纤维膜结构的降解作用较小。结论:μ–calpain主要存在于细胞膜和细胞浆中;μ-calpain对牛肉肌原纤维有一定的降解作用,但其水解活性远低于m-calpain。
     6、研究秦川牛肉在乳酸发酵过程中品质变化。以肉样酸度、挥发性盐基氮(TVB-N)和剪切力为测定指标,探讨了不同浓度NaCl(10 g.L-1、20 g.L-1、30 g.L-1、40 g.L-1、50 g.L-1)对牛肉酸度和TVB-N的影响;不同乳酸菌发酵剂添加量(1 g.L-1、2 g.L-1、3 g.L-1)和不同发酵时间(1 h、2 h、3 h、4 h)对牛肉TVB-N、嫩度和酸度的影响。结果表明:在2~3 g.L-1乳酸菌、30 g.L-1NaCl、发酵2~3 h的条件下,酸牛肉品质(TVB-N≤5.0 mg.100g-1、剪切力≤4.00 kg、酸度≥1.0 g.kg-1)较为理想,牛肉的香气成份更加丰富。结论:乳酸发酵可极显著(p﹤0.01)改善牛肉品质,并极显著(p﹤0.01)抑制牛肉腐败,乳酸发酵是改善牛肉加工和食用品质的有效途径之一。
     7、克隆、表达秦川牛瘦素受体基因的蛋白功能区,分析表达蛋白对瘦素结合特性,为调节瘦素受体对瘦素结合提供理论基础。通过RT-PCR法从秦川牛肌肉组织mRNA扩增获得Leptin Receptor(Lepr)基因的cDNA序列,克隆至pMD18-T载体获得重组质粒,并进行序列测定,将测序正确的cDNA序列定向克隆到pET30a (Nde1/Xho1)构建表达载体,并转化BL21(DE3)大肠杆菌,IPTG诱导后进行SDS-PAGE分析,Western blot分析表达蛋白的特异性,镍柱亲和层析法分离纯化融合蛋白,高效液相色谱-迎头法分析重组表达蛋白对廋素结合功能。结果表明:成功构建了秦川牛Lepr基因高效表达载体,表达出特异性的Lepr蛋白;高效液相色谱-迎头分析法进一步表明重组表达蛋白具有结合瘦素的功能。结论:体外表达的外源性Lepr蛋白仍然具有结合瘦素的功能,为通过调节瘦素受体对瘦素结合,抑制能量代谢,促进秦川牛脂肪沉积奠定了基础。
With Qinchuan cattle as the subject, the present dissertation studies physical and chemical properties of carcass different part meats of Qichuan cattle; the properties indexes change of physical, chemical and histological of Qinchuan cattle beef in different month; connective tissue, adipose tissue, and muscle fiber diameter on tenderness of Qinchuan cattle beef; influence of different nutritional levels on Qinchuan beef quality;μ-Calpain localization in the muscle cell and influence on Qinchuan beef tenderness and microstructure; influence of lactic acid fermentation on Qinchuan beef quality; cloning, prokaryotic expression of Qinchuan cattle leptin receptor gene function (protein combinding) domain and the expressed protein combinding 1eptin property by the employment of physical, chemical, histological, immunohistochemical, RT-PCR, molecular cloning and expression methods, and so on, so as to provide theoretical basis and technical routes for production of high-grade and high nutritional value Qinchuan beef. The exprement results are presented in the follows:
     1. The objective of this research was to determine the difference in physical and chemical properties of Qinchuan cattle carcass different parts beef and to provide a theoretical basis for the production of high-grade and high nutritional value of Qinchuan cattle beef. Drip loss, shear force, cooked rate, intramuscular fat content and fatty acids composition, crude protein and essential amino acid(EAA) content, and microelements(Ca, Fe, and Zn) were determined by low temperature(4℃) hanging, texture analyzer, cooking, Soxhlet extraction, micro-Kjeldahl, GC-MS, amino acid analyzer, and ICP—AES methods respectively. The results were compared with each other. The results showed that the physical properties(drip loss, shear force, and cooked rate)and fat content of longissimus dorsi, serratus ventralis, rectus abdominis, and pectoralis profundus were more desirable than that of gluteus medius, trapezius, and semitendinousus(SD); The crude protein and EAA of gluteus medius, trapezius, and semitendinousus were higher than that of longissimus dorsi(LD), serratus ventralis, rectus abdominis, and pectoralis profundus; The structure of intramuscular fat acids, essential amino acids (EAA), and the microelements of different parts beef was silimar. The physical properties and fat content of pectoralis profundus, serratus ventralis, longissimus dorsi, rectus abdominis are more desirable; consequently, their commercial value are higher. The crude protein and EAA content of trapezius, semitendinosus, gluteus medius are higher, and the intramuscular fat is lower, so, they have higher nutritional value. Crude fat content is negatively correlated with the beef nutritional value; while crude protein is the opposite; and the nutritional value of polyunsaturated fatty acids (PUFA) of intramuscular fatty acid is desirable. The marbling abundance and PUFA content of Qinchuan beef should be further promoted.
     2. Physical, chemical and histological properties of Qinchuan cattle beef in different month were explored in order to provide a theoretical basis for the production of high-grade Qinchuan beef. Shear force, pressurized water loss rate, cooked loss, water content, intramuscular fat content and fatty acids composition, crude protein and amino acids(AA) content, meat colour value(L﹡﹡ a﹡﹡ b﹡) were determined. The muscle intramuscular connective tissue in paraffin-dyed sections were measured by muscle fiber gap. The muscle fiber diameter was measured by scanning electron microscope. The results showed that the different month beef shear force increased significantly(p<0.05), pressurized water loss rate, cooking loss, and water content were reduced significantly(p<0.05), the content of intramuscular fat and crude protein increased significantly(p<0.05), the of content saturated fatty acid(SFA) and essential amino acid(EAA) increased, unsaturated fatty acids(USFA) content reduced, L﹡ value reduced significantly(p<0.05), a﹡ value increased significantly(p<0.05), the muscle fiber gap and the muscle intramuscular connective tissue increased, the muscle fiber diameter increased significantly(p<0.05). With the age increasement of Qinchuan cattle, the content of intramuscular fat and crude protein increased significantly(p<0.05), pressurized water loss rate, cooked loss, water content were reduced significantly(p<0.05), and the beef commerical value increase; EAA content increase, and protein nutritional value increase; USFA content reduced, and their nutritional value reduce; With the age increasement of Qinchuan cattle, the muscle fiber diameter is the primary factor for beef tenderness.
     3. Studies on connective tissue, adipose tissue, and muscle fiber diameter on tenderness of Qinchuan cattle beef, and analysis the main factors on beef tenderness of Qinchuan cattle, in order to provide a basic theory for beef production and quality improvement. Influence of connective tissue, adipose tissue, and muscle fiber diameter on beef tenderness was analysed by physical and chemical analysis, muscle histology, RT-PCR, and so on. The results showed that the tenderness and intramuscular fat of longissimus dorsi were higher than that of semitendinosus(p<0.05). The connective tissue of longissimus dorsi are main fatty tissue, with loose structure. The connective tissue of semitendinosus is main collagen protein (collagen fibers), with compact structure and hardness. The collagen protein of semitendinosus is higher than that of longissimus dorsi, while the content of fat was the opposite. The collagenⅠc ontent was not significant difference between longissimus dorsi and semitendinosus(p>0.05). Muscle fiber diameter longissimus dorsi is bigger than that of semitendinosus. Muscle fiber membrane impact the sensory tenderness of beef. The kind and content of intramuscular connective tissue in different parts of Qinchuan cattle carcass are different. In general, the ratio between collagen protein and intramuscular fat to the tenderness has greater contribution than that of muscle fiber diameter, and it is a key fator for beef tenderness.
     4. Influence of different nutritional levels on Qinchuan beef quality in order to provide a basic theory for the production of high-grade beef. The calf were divided, and were fed in three different nutritional levels, i.e. low, middle and high. Muslim Slaughter was used, and longissimus dorsi was choosed. Different nutritional levels on beef quality were analysed by physical and chemical analysis, and muscle histology. The results showed with the enhancement of the energy level, the tenderness, the intramuscular fat content, and the marbling(intermuscular fat) abundance of high energy level group beef was significantly higher than other groups(p<0.05); the marbling abundance and the intramuscular fat content were positively correlated with the beef tenderness, it is the same as that of water holding capacity(WHC), and water loss rate; pH significantly decreased(p<0.05); sarcolemma significantly thickened; there were no significant change on fat content and fatty acid composition, protein content and amino acid(AA) composition, and microelements(p>0.05), and other chemical and histological properties. With the enhancement of nutritional levels, the beef can be significantly improved in tenderness (p<0.05), marbling abundance, and commercial value. But the beef nutritional value will be further improved.
     5. Study onμ-Calpain localization in muscle cell, and its tenderization effect on beef were explored by activation ofμ-calpain to provide a theoretical basis for beef tenderizing in postmortem.μ-Calpain position in muscle cell was located by paraffin-dyed sections of immunohistochemistry; Qinchuan beef was injected different concentration calcium chloride solution(μM and mM), meat samples were vacuum-packed at 4℃for 72 h, shear force was measured by texture analyzer, muscle fiber microstructure change was observed by paraffin-dyed sections, myofibril fragmentation(MF) and myofibril was observed by atomic force microscope, activation and degradation ofμ-Calpain were analysed via western blot, change of muscle fiber membrane was observed by environmental scanning electron microscope. The results showed thatμ-Calpain mainly exists in the cell membrane and the cytoplasma; tenderness of meat samples was no significant improvement(p>0.05); little change was in microstructure of muscle fiber;there was some amount myofibril fragmentation; myofibril membrane ruptured,and muscle wire is clearly visible; Exogenousμmol / L concentration CaCl2 can activateμ-Calpain zymogen;μ-Calpain has little degradation effect on the muscle fiber membrane structure.μ-Calpain mainly exists in the cell membrane and the cytoplasma;μ-calpain have a certain degradation activation on beef myofibrils, but its hydrolytic activity is far lower than that of m-calpain.
     6. Qin chuan beef qulity change was studied in lactic acid fermentation. Dip Qin chuan beef into different concentration of NaCl(10 g.L-1, 20 g.L-1, 30 g.L-1, 40 g.L-1, 50 g.L-1) and mensurate beef acidity and TVB-N. Add lactobacillus (1 g.L-1, 2 g.L-1, 3 g.L-1) and ferment respectively(1 h, 2 h, 3 h, 4 h) and mensurate beef acidity and TVB-N and shear force. The results showed lactic acid fermentation can improve Qin chuan beef quality and protect beef from rancidity very significant(p﹤0.01) and the optimum fermentation conditions were 30 g.L-1NaCl and 2~3 g.L-1 Lactobacillus and 2~3 h fermentation. The beef quality index of lactic acid fermentation were as following, TVB-N≤5.0mg.100g-1, shear force≤4.00 kg, acidity≥1.0 g.kg-1. Beef flavor ingredients are more rich. Lactic acid fermentation can be very significant (p <0.01) on improvement of beef quality, and very significant (p <0.01) on inhibition of beef corruption. Lactic acid fermentation may improve the eating and processing quality of beef.
     7. Cloning and expression of Qinchuan catlle leptin receptor gene function (protein combinding) domain, and analysis of the expressed protein combinding leptin properties, in order to provide theoretical basis for regulation leptin receptor on leptin combinding. The cDNA of leptin receptor gene was amplified from muscle mRNA of Qinchuan cattle by PCR. PCR product was cloned into the T vector pMD18-T to construct plasmid for sequencing. Then the cDNA was subcloned into the prokaryotic expressing plasmid vector pET30a (Nde1/Xho1) and transformed into host Escherichia coli strain BL2l(DE3) for expression. The expression of leptin receptor function protein was induced by IPTG, and was identified by SDS-PAGE. The protein was purified by Ni-NTA column. Combinding leptin function of the expressed recombinant protein via high performance liquid chromatography-frontal analysis(HPLC-FA). The results showed that leptin receptor function gene was highly expressed in Escherichia coli;and the expression product was observed with soluble protein and inclusion body; Western blot showed that the recombinant protein was recognized by his antibody specifically; The expressed recombinant protein has combinding leptin function. In vitro expressed exogenous Lepr gene function protein has combinding leptin function, and the study laid the foundation for inhibitting Qinchuan cattle energy metabolism, and fat deposition through regulation of leptin receptor on combinding leptin.
引文
马美蓉.2002.影响猪肉品质的营养因素及对策[J].金华职业技术学院学报,2(4):49-52.
    孟庆翔,李艳玲.2002.影响牛肉品质的饲料与饲养因素探讨.饲料广角,(l):26-29.
    冯仰廉.2001.论生产优质牛肉的科学饲养(续).饲料广角,(23):4-7.
    邓跃林,冯定远.2001.影响猪肉品质的因素及营养调控[J].畜禽业,135(7):26-28.
    邓桂馨.2003.肉牛CAST基因和HFABPL基因多态性及其与肉品质性状关系的研究.[硕士学位论文].北京:中国农业科学院畜牧所.
    党瑞华,魏伍川,陈宏,等.2005.IGFBP3基因多态性与鲁西牛和晋南牛部分屠宰性状的相关性.中国农学通报,21(3):19-22.
    杜玮.2007.不同能量水平和不同营养调控剂对淘汰西门塔尔、荷斯坦奶牛育肥性能和肉品品质影响的比较研究.[硕士学位论文].新疆:新疆农业大学.
    唐卓,戴如春,廖二元.2008.原子力显微镜在骨微纳观结构与功能研究中的应用.中国医学物理学杂志,25(6):911-915.
    汤晓艳,周光宏,徐幸莲.2007.肉嫩度决定因子及牛肉嫩化技术研究进展.中国农业科学,12.
    刘丽,周光宏.2001.饲养水平、年龄及体重对牛产肉性能影响的研究.黄牛杂志, 27(3):10-14.
    刘丽.2000.黄牛及其改良牛产肉性能和肉品质量分析及中国牛肉等级标准的研究与制度.[博士学位论文].南京:南京农业大学.
    罗欣.2006.电刺激和延迟冷却对牛肉食用品质的影响及其作用机理研究.[博士学位论文].南京:南京农业大学.
    李武峰,许尚忠,曹红鹤,等.2004.3个杂交牛种H-FABP基因第二内含子的遗传变异与肉品质的相
    关分析.畜牧兽医学报,35(3):252-255.
    李武峰.2002.肉牛H-FABP基因和CAPN4基因分子多态性与肉品质性状的相关分析.[硕士学位论文].山西太谷:山西农业大学动物科技学院.
    李君灵,许尚忠,李武峰.2006.杂种牛CAPN4基因第六内含子的遗传变异与牛肉嫩度的关联分析.山西农业大学学报,26(3):247-249.
    刘波,陈宏,蓝贤勇,等.2006.秦川牛及其杂种牛生长性能及杂种优势研究.中国畜牧杂志,42(15):1-4.
    李林强,昝林森,刘静,等.2008.乳酸发酵对秦川牛肉品质的影响.江西农业大学学报,30(6): 960-966.
    李林强,昝林森,张宝珣.2009.秦川牛肉在乳酸发酵过程中品质变化研究.食品科学, 30(7):131-134.
    李林强,昝林森,张宝珣.2009.超声辅助氯化钙浸泡处理对牛肉嫩度的影响.农业工程学报,25(6):290-295.
    李林强,昝林森.2008.牛肉肌纤维间距与嫩化效果关系的研究.食品工业科技,29(12):102-103.
    李林强,昝林森,张宝珣.2009.秦川牛肉在乳酸发酵过程中品质变化研究.食品科学,7.
    李林强,昝林森,刘静,等.乳酸发酵对秦川牛肉品质的影响.江西农业大学学报,6.
    李宗军,江汉湖.2004.中国传统酸肉发酵过程中微生物的消长变化.微生物学通报, 31(4):9-13.
    卢灵霞.2008.鸭肉嫩度差异机制及其影响因素.[硕士学位论文].甘肃:甘肃农业大学.
    雷治海,王红星,樊明欣,等.2002.猪丘脑、小脑和延髓内leptin长形受体mRNA的分布定位.解剖学杂志,25(4): 320~324.
    胡宝利.2001.不同年龄秦川牛胴体性状与肉质性状的研究[硕士学位论文].杨凌:西北农林科技大学.
    昊乃科,张荣勋.2003.杂交肉牛不同年龄,能量水平的肥育效果研究.黄牛杂志, 22(003):22-26.
    蒋洪茂,徐丽君,史利民,等.1993.我国秦川牛等四品种黄牛屠宰试验报告.中国牛业科学,63(2):17-22.
    许梓荣,冯杰.1998.甜菜碱对肥育猪胴体组成的影响及其作用机理的探讨.畜牧兽医学报, 29(5):397-405.
    徐秀容,高雪,许尚忠,等.2006.牛DGAT1基因的K232A取代等位基因分布频率及对部分胴体性状
    的影响.中国农业大学学报,11(4):11-15
    张伟力.2006.猪文化与猪肉品质改进理念.猪业科学,23(4):28-30.
    周贵.2001.加拿大的优质牛肉生产模式.黄牛杂志, 27(1):72-74.
    赵改名,王艳玲.2000.影响牛肉嫩度的因素及其机制.国外畜牧科技,27(2):35-40.
    张克英,陈代文.2002.影响猪肉品质的主要因素.四川农业大学学报,20(1):67-74.
    周利梅,周光宏.2003.类胡萝卜素与畜禽产品着色.中国畜牧兽医,30(3):30-31.
    周国利,朱奇,郭善利.2005.鲁西黄牛H—FABP基因的多态性及其与肉质性状关系的分析.西北农业学报,14(3):5-7.
    吴慧光.2006.肉牛Calpain 1基因的SNPs筛查及其与肉质相关性分析.[博士学位论文].河北保定:河北农业大学.
    张宝珣,昝林森,李林强,等.2008.乳酸对不同年龄秦川牛肉的嫩化效果.西北农林科技大学学报(自然科学版),37(3):30-34.
    张宝珣.2008.不同处理对秦川牛肉品质影响的研究.[硕士学位论文].陕西:西北农林科技大学.
    周永昌.1997.肉牛产业化生产发展战略关于肉牛屠宰加工的探讨.中国畜产与食品,(5):229.
    张根生,沈春燕,岳晓燕.2006.乳酸发酵香辣牛肉干的研制.食品科学,27(11):623-627.
    陈润生.1981.关于改善猪肉品质研究的进展.国外畜牧科技,(3):32-35.
    陈润生.2002.优质猪肉的指标及其度量方法.养猪业,3:1-5.
    陈红跃,左福元.2004.肥育因素对牛肉肉质的影响(综述).安徽农业大学学报, 31(3):382-384.
    陈刚.2000.leptin受体与肥胖.国外医学内分泌学分册,20(6):305-308.
    昝林森.2007.牛生产学.第二版.北京:中国农业出版社:8-26.
    昝林森,刘永峰.2006.中国肉牛产业化理论与实践.届中国牛业发展大会论文集.
    昝林森,张发展.1997.世界肉牛业发展趋势世界农业,11.
    昝林森,张举,李斌成,等.2009.秦川牛早期起源的形态学初探.中国牛业科学,35(1): 52-56.
    昝林森.2002.论秦川牛走向世界.中国农学通报,18(增刊):1-5.
    昝林森,李林强,张富新,王迪.2008.不同因素对秦川牛肉嫩化效果的影响.西北农林科技大学学报(自然科学版),36(12): 48-52.
    张海军,尹君亮,陈宁,等.2008.牛肉品质的营养调控研究进展.中国草食动物,2.
    臧大存.2007.鸭肉嫩度影响因素及变化机制的研究. [博士学位论文].南京:南京农业大学.
    丛琳.2001.肥胖蛋白受体.国外医学卫生学分册,28(4):232-234.
    宋洛文.2007.肉牛业的现状和发展对策.河南畜牧兽医,2007,28(3):5-7.
    宋永,王红云.2002.饲料营养与牛肉品质的关系.饲料博览,(3):35-35.
    孙德文,詹勇.2002.畜禽肉质改进剂的研究进展.饲料博览, (2): 9-11.
    孙志宏,孟和,孙天松.2006.分子标记技术用于乳酸菌分类鉴定研究进展.中国乳品工业,34(5):35-38.
    袁鸿锦,杨棣华.1987.动物性食品卫生学.下册,长春:兽医大学出版社: 305-310.
    汪以真,许梓荣.2000.甜菜碱对猪肉品质的影响及机理探讨.中国农业科学,33(l): 94-99.
    王桂瑛,廖国周,文际坤.2003.微营养素调控肉品质的研究进展.饲料工业,4(8):3 9-42.
    王作强.1998.影响猪胴体品质的一些饲料因素.国外畜牧学,(4):46-47.
    王同勋,施巧婷,徐照学.H-FABP基因多态性及其与肌内脂肪关联的研究进展.草食家畜,143 (2):1-3.
    吴坚,邹大进.2000.瘦素受体的研究进展.生理科学进展,31(2):143-146.
    王金浩,文生萍,饶华,等.2008.影响牛肉品质的主效基因.云南农业大学学报,5.
    邬楠,谭焕然.2004.瘦素受体的分子生物学研究进展.大连医科大学学报,26(2):148-150.
    王佑民,黄志明,曹筱佩,等.2001.含长细胞内区大鼠瘦素受体基因片段的CDNA克隆.中华内分泌代谢杂志,17(4):251-252.
    王红星,雷治海,菲,等.2002.用原位杂交法研究猪下丘脑内瘦素长形受体mRNA的分布定位.南京农业大学学报,25(1):80-84.
    Alhasl H A, Fox K A. 2004. Do we need additional markers of myocyte necrosis: the potential value of heart fatty-acid-binding protein[J]. An International Journal of Medicine, 97(4): 187-198.
    Ando S, Xue X H, Tibbts G F, et al. 1998. Cloning and sequencing of complementary DNA for fatty acid binding protein from rainbow trout heart. Comp Biochem Physiol B Biochem Mol Bil, 119(1): 213-217.
    AOAC. 1999. Official Methods of Analysis, 16th Ed. Association of Analytical Chemists, Washington, DC.
    AOAC,1984. Official Methods of Analysis, 13th Ed. Association of Analytical Chemists, Washington, DC.
    APGS. 1995. Report of Business for Animal Products Grading.Animal Products Grading
    System.Korea: National Livestock Co-operatives Federation, Seoul. Andreas Bosselmann, et al. 1995. Pyridinoline Cross-links bovine muscle collagen. Journal of Food Science, 160(5): 953.
    Awad A B, Chattopadhyay J P. 1986. Effect of dietary saturated fatty acids on intracellular free fatty acids and kinetic properties of hormone-sensitive lipase of rat adipocytes. Journal of Nutrition, 116(6): 1095~1100.
    Angela G, Douglas A L, Alan W. 2002. Cuttingtothe chase:calpain proteases in cell motility. Trends in Cell Biology, 12(1): 46-54.
    Aktas N, Kaya M. 2001. Influence of weak organic acid and salts on the denaturation characteristics of intramuscular connective tissue. A differential scanning calorimetry study. Meat Science, 58 (4): 413~419.
    Boccard R L, NaudēR T, Cronje D E, et al. 1979. The influence of age, sex and breed of cattle on muscle characteristics. Meat Science, 3(4): 261~280.
    Bosselmann A, Moller C, Steinhart H, et al. 1995. Pyridinoline cross-links in bovine muscle collagen. Journal of Food Science, 60(5): 953~955.
    Brooks J C, Savell J W. 2004. Perimysium thickness as an indicator of beef tenderness. Meat Science, 67: 329~334.
    Burke R M, Monahan F J. 2003. The tenderization of shin beef using a citrus juice marinade. MeatScience, 63: 161~168.
    Boleman S J, Boleman S L, Miller R K, et al. 1997. Consumer evaluation of beef of known tenderness levels. Journal of Animal Science, 75: 1521-1524.
    Brandstetter A M, Sauerwein H, Veerkamp J H, et al. 2002. Effects of muscle type, castration,age and growth rate on H-FABP expression in bovine skeletal muscle. Livestock Production Science, 75(2): 199-208.
    Buchanan F C, Fitzsimmons C J, Van Kessel A G,et al. 2002. Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels.Genet Sel Evol, 34: 105-116
    Berge P, Sanchez A, Sebastian I, et al. 1998. Lamb meat texture as influenced by animal age and collagen characteristics. Proceedings of the 44th International Congress on Meat : 304~305.
    Brady D E. 1937. A study of the factors influencing tenderness and texture of beef.Proceeding of American Social Animal Production, 30: 246-250.
    Bailey A J, Light N D. 1999. Connective Tissue in Meat and Meat Products. London: Elsevier Applied Science.
    Barnoy S, GlaserT, Kosower N S. 1999. Association of calpain(Ca2+-dependent thiol protease)with its endogenous inhibitor calpastatin myoblasts. Cell Biochem, 74: 522-531.
    Binning G C, Quate F, Gerber C, et al. 1986. Atomic Force Microscope. Physics Review Letter, (4): 930-933.
    Berge P, Ertbjerg P, Larsen L M , et al. 2001. Tenderization of beef by lactic acid injected at different times post mortem. Meat Science, 57(4): 347~357.
    Cross H R, Crouse J D, MacNeil M D. 1984. Influence of breed, sex, age and electrical stimulation on carcass and palatability traits of three bovine muscles. Journal of Animal Science, 58: 1358-1365.
    Cross H R, Carpenter Z L, Smith G C. 1972. Palatability of individual muscles from bovine leg steaks related to chemical and histological traits. Food Sci, 1972, 37: 282.
    Cross H R, Hunt M C, Hedrick H B. 1977. Profile of fiber types and related properties of five bovine muscles. Food Sci, 1977, 42: 513.
    Cross H R, Carpenter Z L, Smith G C. Effects of intramuscular collagen and elastin on bovine muscle tenderness. Journal of Food Science, 1973, 38: 998-1003.
    Campo M M, Sanudo C, Panea B, AlbertíP,et al. 1999. Breed type and aging time effects on sensory characteristics of beef strip loin steaks. Meat Science, 51: 383~390.
    Cottin P, Thompson V F, Sathe S K, et al. 2001. Autolysis ofμ- and m-calpain from bovine skeletal muscle. Biological Chemistry, 382(5): 767–776.
    Crouse J D, Cundief L V, Koch R M, et al. 1989. Comparisons of Bos indicus and Bos Taurus inheritance for carcass beef characteristics and meat palatability. Journal of Animal Science, 67: 2661-2668.
    Chen Y J, Zhou G H, Zhu X D, Xu X L, Tang X Y, Gao F. 2007. Effect of low dose gamma irradiation on beef quality and fatty acid composition of beef intramuscular lipid. Meat Science, 73: 423-431.
    Cameron P J, Zembayashi M, Lunt D K, Mitsuhashi T, Mitsumoto M, Ozawa S, Smith S B. 1994. Relationship between Japanese beef marbling standard and intramuscular lipid in the M.longissimus thoracis of Japanese Black and American Wagyu Cattle. Meat Science, 38: 361-364.
    Chen Jie, Yang Xiaojing, Tong Hui, et al. 2004. Expression of FAS and HSL mRNA in Longissimus
    Dorsi Muscle and Their Relation to Intramuscular Fat Contents in Pig. Journal of Agricultural Biotechnology, 4: 422~426.
    Clarke S D, Armstrong M K, Jump D B. 1990. Nutrition control of rats liver fatty acid synthase and S14 mRNA abundance. Journal of Nutrition, 120 (2): 218~224.
    Carpenter L R, Farruggella T J, Symes A, et al. 1998. Enhancing leptin response by preventing SH2-containing phosphatase 2 interactionwith ob receptor. Proc Natl Acad Sci USA, 95: 6061~6066.
    Doekerty T R. 1970. Careass development in beef cattle subsequent to interrupted growth. [D]. Ohio state University.
    Doty D M, Pierce J C. 1961. Beef Muscle Characterics as Related to Carcass Grade,Carcass Weight, and Degree of Aging: US Dept of Agriculture.
    Dorothy E C, Gerorge N D. 1991. Calcium activated neutral protease sysem: structure, function, and regulation[J]. Physiological review, (71): 26-30.
    Davies Andrew. 1998. The microbiology of meat and poultry. London: Blackie Academic and Professional: 288-320.
    Enser M, Hallett K G, Hewett B, Fursey A J, Wood J D, Harrington G. 1998. Fatty acid content and composition of UK beef and lamb muscle in relation to production system and implication for human nutrition. Meat Science, 49: 329-341.
    Ertbjerg P, Mielche M M, Larsen L M, Mùller A J. 199. Relationship between proteolytic changes and tenderness in prerigor lactic acid marinated beef. Journal of the Science of Food and Agriculture, 79: 970~978.
    Etlinger J D, Zak R,Fischmanm D A. 1976. mpositional studies of myofibrils from rabbit striated muscle. Cell Biology, 68: 123-141.
    Erikson J, Hollopeter G, Palmiter R. 1996. Attenuation of the obesity syndrome of ob/ob mice by the loss neuropeptide Y. Science, 274: 1704.
    Frank G, Schaap, Bernfried Specht, et al. 1998. Fatty acid binding protein in the heart. Molecular and Celluler Biochemistry, 180(1-2): 43-51.
    Fransen N G, O’Connell M B, Arendt E K. 1997. A modified agar medium for the screening of proteolytic activity of starter cultures for meat fermentation purposes intern. Food Microb, 36: 235-239. Fan W E. 1997. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature, 385: 165~168.
    Gault, N F S. 1985. The relationship between water-holding capacity and cooked meat tendeness in some beef muscles as influenced by acidic conditions below the ultimate pH. Meat science, 15(1): 15-30. Gerhardy H. 1995. Quality of beef from commercial fattening system in Northern Germany. Meat Science, 40: 103~120.
    Gastón Torrescano, Armida Sánchez-Escalante1, Bego?a Giménez, et al. 2003. Shear values of raw samples of 14 bovine muscles and their relation to muscle collagen characteristics. Meat Science, 64(1): 85-91.
    Gerbens F, Verbur F J, Van H T, et al.2001. Associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs. Journal of Animal Science, 79(2): 347-354.
    Geary T W, Mcfadin E L, Macneil M D, et al. 2003. Leptin as a predictor of carcass composition in beef cattle. Journal of Animal Science, 81:1-8.
    Goodson K J, Morgan W W, Reagan J O, et al. 2002. Beef customer satisfaction: Factors affecting consumer evaluations of clod steaks[J]. Animal Science, 80(2): 401~408.
    Goll D E, Hoekstra W G, Bray R W. 1964. Age-associated changes in bovine muscle connective tissue.Ⅰ.Rate of hydrolysis by collagenase. Journal of Food Science, 29: 608-614.
    Goll D E, Hoekstra W G, Bray R W. 1964. Age-associated changes in bovine muscle connective tissue.Ⅱ. Exposure to increasing temperature.Journal of Food Science, 29: 615-621.
    Goll D E, Hoekstra W G, Bray R W. 1964. Age-associated changes in bovine muscle connective tissue.Ⅲ. Rate of solubilization at 100℃. Journal of Food Science, 29: 622-628.
    Goodson K J, Morgan W W, Reagan J O, et al. 2002. Beef customer satisfaction: Factors affecting consumer evaluations of clod steaks. Animal Science, 80(2): 401~408.
    Gerelt B, Ikeuchi Y, Nishiumi T, et al. 2002. Meat tenderization by calcium chloride after osmotic dehydration. Meat science, 60: 237-244.
    Geert L G, Mohammad K. 1999. Effect of calpastatin on degradation of myofibrillar proteins by μ-calpain under postmortem conditions. Animal Science, 77: 2685-2692.
    Hoagland R, Mcbryde C M, Powick W C. 1917. Changes in fresh beef during cold storage above freezing. Agr, Bull, 433: 100.
    Herring H K, Cassens R G, Briskey E J. 1965. Sarcomere length of free and restrained bovine muscles at low temperature as related to tenderness. Journal of the Science Food Agriculture, 16(7): 379-384.
    Hendricks H B, Lafferty D T, Aberle E D. 1971. Relation of porcine muscle fiber type and size to postmortem shortening. Anim Sci, 32: 57-61.
    Harper G S. 1999. Trends in skeletal muscle biology and the understanding of toughness in beef. Australian Journal of Agricultural Research, 50: 1105~1129.
    Hwan S F, Bandman E. 1989. Studies of desmin andα-actinin degradation in bovine semitendinosus muscle. Jounral of Food Science, 54: 1426~1430.
    Hertog J A, Smulders F J M, Houben J H, et al. 1987. The effect of dietary vitamin E supplementation on drip loss of bovine longissimus lumborum,psoas major and semitendinosus muscles. Meat Science, 45(2): 153-160.
    Houseknecht K L, Baile C A, Matteri R L, et al. 1998. The biology of leptin:A review. Journal of Animal Science, 76(5): 1405-1420.
    Hossner K L. 1998. Cellular molecular and physiological aspects of leptin: Potential applications in animal production[J]. Journal of Animal Science, 78(4): 463-472.
    Harper G S. 1999. Trends in skeletal muscle biology and the understanding of toughness in beef[J]. Australian Journal of Agricultural Research, 50: 1105~1129.
    Huang J, Neil E F. 1998. Role of calpain in skeletal-muscle protein degradation. Proc. Natl. Acad. Sci. USA, 95: 12100-12105.
    Horgan D J, Kurth L B, KuypersR . 1991. pH effect on thermal transition temperature of collagen. Journal of Food Science, 56(5): 1203~1208.
    Huszar D, Lynch C, Victoria F, et al. 1997. Targeted disruption of the melanocortin-4 receptor result in obesity in mice. Cell, 88:131.
    Inomata M, Imahori K, Kawashima S.1986. Autolytic activation of calcium-activated neutral protease. Biochem Biophys Res Commun, 138(2): 638-643.
    Indurain G, Beriain M J, Goni M V, Arana A, Purroy A. 2006. Composition and estimation of intramuscular and subcutaneous fatty acid composition in Spanish young bulls. Meat Science, 73: 326-334.
    Ihle J N. 1996. STATS: Signal transducers and activators of transcription. Cell, 84: 311~334. Jing Huang, Neil E, Forsberg, et al. 1998. Role of calpain in skeletal-muscle protein degradation. PNAS, 95 (21): 12100-12105.
    Jacques H. 1995. Cytoplasmic fatty acid binding proteins:their structures and genes. Progress in lipid Research, 34(1): 17-52.
    Jan F C, Glatz1 G J. Vusse V D. 1990. Nomenclature of fatty acid-binding proteins. Molecular and Cellular Biochemistry, 98(1-2): 231-235.
    Jeffery M, Friedman, Jeffrey L. 1998. Leptin and the regulation of body weight in mammals. Nature, 395: 763-770.
    JMGA. 1998. New Beef Carcass Grading Standards. Tokyo: Japan Meat Grading Association, 1988. Jeremiah L E. 1996. The influence of subcutaneous fat thickness and marbling on beef: Palatability and consumer acceptability. Food Research International, 29: 513-520.
    Jeremiah L E, Dugan M E R, Aalhus J L, et al. 2003. Assessment of the relationship between chemical components and palatability of major beef muscles and muscle groups. Meat Science, 65: 1013-1019.
    Jones S D M, Jeremiah L E, Tong A K W, et al. Stimulation,and postmortem aging on the cooking and palatability properties of beef rib-eye steaks. Canadian Journal of Animal Science, 1991, 71: 1037-1043. Kim C J, Lee E S. 2003. Effects of quality grade on the chemical,physical and sensory characteristics of Hanwoo(Korean native cattle) beef. Meat science, 63(3): 397-405.
    Koohmaraie M. 1996. Biochemical factors regulating the toughening and tenderization process of meat. Meat Science, 43: 193-201.
    Keane M G, Allen P. 1998. Effects of production system intensity on performance,carcass composition and meat quality of beef cattle. Livestock production Science, 56(3): 203-214.
    Kevin P, Claffey, Victoria L, et al. 1987. Cloning and tissue distribution rat of heart fatty acid binding protein mRNA:identical forms in heart and skeletal muscle[J]. Biochemstry, 26 (24): 7900-7904.
    Kazala E C, Jennifer L P, Fred J L, et al. 2003. Hormone-sensitive lipase activity in relation to fat content of muscle in Wagyu hybrid cattle. Livestock Production Science, 79: 87~96.
    Koohmaraie M, Whipple G, Grouse J D. 1990. Acceleration of postmortem tenderization in lamb and Brahmancross beef carcasses through infusion of calcium chloride. Animal Science, 68(5): 1278-1283.
    Koomaraie M, Shackelford S D. 1991. Effect of calcium chloride infusion on tenderness of lambs fed aβ-adrenergic agonist. Animal Science, 69(6): 2463-2471.
    Kijowski J, Mast M G. 1993. Tenderization of spent fowl drumsticks by marination in weak organic solutions. International Journal of Food Science and Technology, 28: 337~342.
    Kotula K L, Thelappurath R. 1994. Microbiological and sensory attributes of retail cuts of beef treated with acetic and lactic acid solutions. Journal of Food Protection, 57: 665~670.
    Kenneally P M. 1999. Effects of environmental conditions on microbial proteolysis in a pork myofibril model system. Appl MICROB, 87: 794-803.
    Lindahl G, Lundstrom K, Thrnberg E. 2001. Contribution of pigment content,myoglobin forms and internal reflctance to the colour of pork loin and ham from pure breed pigs. Meat Science, 59(2): 141-151.
    Larick D K, Hedrick H B, Bailey M E, et al. 1987. Flavor constituents of beef as influenced byforage-and-grain-feeding. Food Sci, 52(2): 245-251.
    Li J, J Tan, F A Martz, et al. 1999. Image texture features as indicators of beef tenderness. Meat Science, 53: 17-22.
    Loveday H D, Dikeman M E. 1980. Diet energy and steer type effects on adipose composition,lipogenesis and carcass composition. J.Anim. Sci, 51: 78-88.
    Mcormick R J. 1999. Extracellular modifications to muscle collagen: Implications for meat quality. Poultry Science, 78(5): 785~791.
    Mcormick R J. 1994. The flexibility of the collagen compartment of muscle. Meat Science, 36(1-2): 79-91.
    Maddock K R, Huff-Lonergan E, Rowe L J, et al. 2005. Effect of pH and ionic strength onμ- and m-calpain inhibition by calpastatin. Journal of Animal Science, 83: 1370-1376.
    Montgomery J L, King M B, Gentry J G., et al. 2004. Supplemental vitamin D3 concentration and biological type of steers. II. Tenderness, quality, and residues of beef. Journal of Animal Science, 82(7): 2092-2104.
    Minton J E, Bindeld J, Droullard J S, et al. 1998. Serum leptin is associated with carcass traits in finishing cattle. Journal of Animal Science, 76:231.
    Marina R S, Fortes,Rogério A. Curi, et al. 2009. Bovine gene polymorphisms related to fat deposition and meat tenderness. Genetics and Molecular Biology, 32 (1): 75-82.
    Moon S S, Yang H S, Park G B, et al. 2006. The relationship of physiological maturity and marbling judged according to Korean grading system to meat quality traits of Hanwoo beef females. Meat Science, 74: 516-521.
    Mougios V, Matsakas A, Petridou A, et al. Effect of supplementation with conjugated linoleic acid on human serum lipids and body fat[J]. The Journal of Nutritional Biochemistry, 2001, 12: 585-594.
    Mcdonald T P, Chen Y R. 1991. Visual characterization of marbling in beef ribeyes and its relationship to taste parameters. Trans of ASAE, 34: 2499.
    Mildner A M, Carke S D. 1991. Porcine fatty acid synthase: cloning of a complementary DNA, tissue distribution of its mRNA and suppression of expression by somatropin and dietary protein[J]. Journal of Nutrition, 121 (6): 900~907.
    Macdougald O A, Clarke S D, Jump D B. 1992. Tissue specificity of S14 and fatty acid synthase in vitro transcription[J]. Biochemical and Biophysical Research Communications, 182(2): 631~637.
    Moller A J, Vestergarrd T, Wismer-Pederson J. 1973. Myofibril fragmentation in bovine longissimus dorsi as an index of tenderness.Journal of Food Science, 38(5): 824~825.
    Matsuoka S, Ogawa Y, Hosoda K, et al. 1997. Human leplin receptor gene in obese Japanese snbjects: Evidence against either obesity-causing mutation or association of sequence variants with obesity. Dia betologia, 40(10): 1204-1210.
    Norman J L, Berg E P, Heymann H. 2003. Pork loin color relative to sensory and instrumental tenderness and consumer acceptance[J]. Meat Science, 65(2): 927-933.
    Nishimura T K, Ojima A, Liu A,et al. 1996. Structural changes in the intramuscular connective tissue during development of bovine semitendinosus muscle. Tissue Cell, 28: 527~536.
    NY/T676. 2003. 10.牛肉质量分级.
    Neath K E, Del Barrio A N, Lapitan R M, et al. 2007. Difference in tenderness and pH decline between water buffalo meat and beef during postmortem aging. Meat science, 75: 499-505.
    Naes H, Holck A L, Blom H. 1995. Accelerated ripening of dry fermented sausage by the addition of a Lactobacillus proteinase intern. Food Sci & Tech, 29: 651-659.
    0′Sullivan M G, Byrne D V, Martens H, et al.2003. Evaluation of pork colour:Prediction of visual sensory quality of meat from instrumental and computer vision merhods of colour analysis[J]. Meat Scienee, 65(2): 909-918.
    Purchas R W, Burnham D L. 2002. Effects of growth potential and growth path on tenderness of beef longissimus muscle from bulls and steers. Journal of Animal Science, 2002, 80: 3211-3221.
    Plessis I D, Hoffman L C. 2007. Effect of slaughter age and breed on the carcass traits and meat quality of beef steers finished on natural pastures in the arid subtropics of South Africa. South African Journal of Animal Science, 37(3) : 143-153.
    Paul P C, Mandigo R W, Arthaud V H. 1970. Textural and histologic difference among 3 muscles in the same cut of beef. Journal of Food Science, 35: 505.
    Powell T H, Hunt M C, Dikeman M E. 2000. Enzymatic assay to determine collagen thermal denaturation and solubilization. Meat Science, 54: 307~311.
    Peeters R A ,Veerkamp J H, Geurtsvan K A, et al. 1991. Cloning of the cDNA encoding human skeletalmuscle fatty acid binding protein,its peptide sequence and chromosomal localization. Journal Biochemistry, (276): 203-207.
    Purslow P P. 1999. The intramuscular connective tissue matrix and cell/matrix interactions in relation to meat toughness. Proceedings of the 45th International Congress on Meat: 210-219.
    Renand G, Picard B, Touraille C, Berge P, Lepetit J. Relationships between muscle characteristics and meat quality traits of young Charolais bulls[J]. Meat Science, 2001, 59: 49~60.
    Roux M, Nizou A, Forestier L, et al. 2006. Characterization of the bovine PRKAG3 gene: structure, polymorphism, and alternative transcripts. Mamm Genome, 17 (1): 83-92.
    Reagan J O, Carpenter Z L, Smith G C. 1976. Age-related traits affecting the tenderness of the bovine longissmus muscle. Journal of Animal Science, 43: 1198-1205.
    Ramsbottom J M, Strandine E J, Koonz C H. 1945. Comparative tenderness of representative beef muscle. Food Research, 10:497.
    Rhee M S, Wheeler T L, Shackelford S D, Koohmaraie M. 2004. Variation in palatability and biochemical traits within and among eleven beef muscles. Journal of Animal Science, 82: 534-550.
    Ramsey C B, Tribble L F, Wu C, et al. 1990. Effects of grains, marbling and sex on pork tenderness and composition. Journal of AnimalScience, 68: 148-154.
    Seideman S C, Crouse J D. 1986. The effects of sex condition, genotype and diet on bovine muscle fiber characteristics[J]. Meat Science, 17(1): 55-72.
    Solomon M B, Montgomery. 2006. Comparison of methods for quantifying fiber types in skeletal muscle tissue. Journal of Food Science, 973-974.
    Sa?udoa C, Maciea E S, Olletaa J L. 2004. The effects of slaughter weight, breed type and ageing time on beef meat quality using two different texture devices. Meat Science, 66(4): 925-932.
    Silva J A, Patarata L, Martins C.1999. Influence of ultimate pH on bovine meat tenderness during aging. Meat Science, 52: 453~459.
    Schenkel F S, Miller S P, Ye X, et al. 2005. Association of single nucleotide polymorphisms in the leptin gene with carcass and meat quality traits of beef cattle[J]. Animal Genetics, 83: 2009-2020.
    Shackelford S D, Wheeler T L, Meade M K, et al. 2001. Consumer impressions of tender select beef. American society of animal Science, 79(10): 2605~2614.
    Strandine E J, Koonz C H, Ramsbottom J M. 1949. A study of variation in muscle of beef and chicken. Journal of Animal Science, 8: 483-494.
    Shimokomaki M, Bailey A J. 1972. Meat tenderness: Age related changes in bovine intramuscular collagen. Food Sci,(37): 892~896.
    Stich V, Harant I, De Glisezinski, et al. 1997. Adipose tissue lipolysis and hormone-sensitive lipase expression during very-low-calorie diet in obese female identical twins. Journal of Clinical Endocrinology Metabolism, 82(3): 739~744.
    Sztalryd C, Kraemer F. 1994. Regulation of hormone-sensitive lipase during fasting. American Journal of Physiology, 266(2 Pt 1): E179~185.
    Sorimachi H, Ono Y, Suzuki K. 1997. Structure and physiological function of calpains. Biochem J, 328: 721-732.
    Seuss I, Martin M. 1993. The influence of marinating with food acids on the composition and sensory properties of beef. Fleisch-wirtschaft, 73: 292~295.
    Takahashi K, Kim O H, Yano K. 1987. Calcium-induced weaking of Z-disks in postmortem skeletal muscle[J]. Journal of Biochemistry, 101(3): 767-773.
    Takahashi K. 1996. Structural weakening of skeletal muscle tissue during post-mortem aging of meat:the non enzymatic mechanism of meat tenderization. Meat Science, 43(1): 67~80.
    Takahashi K, Hattori A. 1989.α-actinin is a component of the Z-filament, a structural backbone of skeletal muscle Z-disks. Journal of Biochemistry, 105: 529~536.
    Tank P A, Pomp D. 1995. Rapid communication: polymorphism in a bovine heart-fatty acid binding protein-like (H-FABPL) DNA sequence. Journal of Animal Science, 73: 919.
    Tanzer M L. 1973. Cross-linking of collagen.Endogenous alde-hydes in collagen react in severalway s to form a variet of unique covalent cross-links. Science,(180): 561~566.
    Toussant M J, Wilson M D, Clarke S D. 1981. Coordinate suppression of liver acetyl-CoA carboxylase and fatty acid synthetase by polyunsaturated fat. Journal of Nutrition, 111(1) : 146~153.
    Takahashi K, Fukazawa T, Yasui T, et al. 1967. Formation of myofibrillar fragments and reversible contraction of sarcomeres in chicken pectoral muscle. Journal of food science, 32(4): 409~413.
    Taylor G, Geesink H, Thompson, et al. 1995. Is Z-disk degradation responsible for postmortem tenderization. Anim Sci, 73: 1351~1367.
    Tullio R. 1999. Changes in intracellular localization of calpastatin during calpain activation. Biochem, 343: 467-472.
    Tartaglia L A. 1997. The leptin receptor. Biol Chem, 272: 6093-6096.
    Tartaglia L A,Dembski M,Weng X, et al. 1995. Identification and expression cloning of a leptin receptor, OB-R. Cell, 83(7): 1263~1271.
    USDA. 1997. Official United States Standards for Grades of Carcass Beef. Washington, D C: Agricultural Marketing Service, USDA.
    Ulbricht T L, Southgate D A T. 1991. Coronary heart disease:seven dietary factors. The Lancet, 338:985-992.
    United Kingdom Department of Health and Social Security. 1994. Diet and cardiovascular disease. Report on Health and Social Subjects. London, UK: Her Majesty’s Stationery Office. Veerkamp J H. 1993. Cytoplasmic fatty acid binding proteins: their structures and genes. Prostaglandins, Leukotrienes and Essential Fatty Acids, 49(6): 887-906.
    Veerkamp J H, Peeters R A, Maatman R G, et al. 1991. Structural and functional features of different types of cytoplasmic fatty acid-binding proteins. Biochim Biophys Acta, 1081(1): 1-24.
    Veiseth V, Shackelford S D, Wheeler T L, et al. 2001. Effect of postmortem storage onμ-calpain and m-calpain in ovine skeletal muscle. Anim.Sci, 79: 1502-1508.
    Wang W J, Wang S P, Gong Y S. 1998. Effects of vitamin A supplementation on growth performance, carcass characteristics and meat quality in Limosin×Luxi crossbreed steers fed a wheat straw-based diet. Meat Science, 77(4): 450-458.
    Wulf D M, Tatum J D, Green R D, et al. 1996. Genetic influences on beef longissimus palatability in charolais and limousin-sired steers and heifers. Anim Sci, 74: 2394-2405.
    Woodward B W, Fernández M I. 1999. Comparison of conventional and organic beef production systems II.Carcass characteristics. Livestock Production Science, 61: 225-231.
    Wheeler T L, Cundiff L V, Koch R M. 1994. Effect of marbling degree on beef palatability in Bos taurus and Bos indicus cattle. Journal of Animal Science, 72: 3145-3151.
    Wicker C, Puigserver A. 1990. Expression of rat pancreatic lipase gene is modulated by a lipid-rich diet at a transcriptional level. Biochemical and Biophysical Research Communications, 166: 358~364.
    Wilson J, Kim S, Allen K G., et al. 1997. Hepatic fatty acid synthase gene transcription is induced by a dietary copper deficiency. American Journal of Physiology, 272(6): 1124~1129.
    Wang K. 1982. Purification of titin and nebulin. Methods in Enzymology, 85: 264-274.
    Wabitsch M, Jensen P, Blum W, et al. 1996. Insulin and cortisol promote leptin in cultured human fat cell. Diabetes, 45: 1435~1438.
    Wood G C, Cooper P F. 1970. The application of gel filtration to the study of protein-binding of small molecules. Chromatogr Rev, 12(1): 88-107.
    Young O A, Braggins T J. 1993. Tenderness of bovine Semimembranosus: its collagen concentration or solubility the critical factor? . Meat Science, 35: 213~222.
    Yang A, Brewster M J, Lanari M C, et al. 2002. Effect of vitamin E supplementation onα-tocopherol andβ-carotene concentrations in tissues from pasture and grain-fed cattle. Meat Science, 60 (1): 35-40.
    Yoshikawa F, Toraichi K, Wada K, Ostu N, Nakai H, Mitsumoto M, Katagishi K. 2000. On a grading system for beef marbling. Pattern Recognition Letters, 21: 1037-1050.
    Yin D, Clarke S D, and Etherton T D. 2001. Transcriptional regulation of fatty acid synthase gene by somatotropin in 3T3-F442A adipocytes. Journal of Animal Science, 79(9): 2336~2345

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700