用户名: 密码: 验证码:
猪TPO、TG、GNAS、TTF-1和TTF-2基因的分子特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲状腺激素的作用遍及机体各处,几乎机体的每个细胞都是甲状腺激素作用的靶细胞,其可以促进组织分化、生长和成熟,促进物质与能量代谢。甲状腺过氧化物酶(TPO)是一种糖基化血红素蛋白,是催化甲状腺激素合成的关键酶。它参与了两个重要的反应:甲状腺球蛋白(TG)酪氨酸残基的碘化和碘化酪氨酸的偶联作用。TG是甲状腺激素合成的基本原料和场所,甲状腺素正常的生物合成途径依赖于TG结构的完整性。甲状腺转录因子-1,-2(TTF-1,-2)通过结合到TG和TPO基因的启动子特异性区域来调控其转录,另外TTF-1,-2在甲状腺胚胎发育的过程中起至关重要的作用。刺激性G蛋白α亚基(GNAS)基因上的失活性突变可导致假性甲状旁腺功能减退症,影响甲状腺的功能,继而对机体的生长发育造成影响。
     本研究克隆了猪TG、GNAS、TTF-1和TTF-2完整CDS的mRNA序列;分别对TPO、TTF-1和TTF-2基因进行了染色体定位;通过荧光定量PCR研究了在猪十六个组织中的组织表达谱和在初生、20、45、60、90、120和150日龄甲状腺组织内的发育表达谱;寻找了TPO基因的SNP座位和转录剪切本:分析了TG基因的启动子区域;并探讨了阉割对GNAS基因启动子区甲基化的影响。结果如下:
     (1)基于EST序列的电子克隆技术及人和小鼠同源性较高区域对目的基因设计引物,以金华猪甲状腺cDNA为模板扩增、克隆并测序,拼接后克隆获得了包含完整CDS的猪TG (GenBank GQ261999)、GNAS (GenBank GU126691)以及TTF-1和TTF-2基因的部分CDS序列。并利用Clustal W、ORF Finder、Signal P2.0、PSORTⅡ等软件对TG、GNAS、TTF-1和TTF-2基因的结构、编码蛋白结构、功能等特征进行了预测和分析。
     (2)根据猪目的基因相应的内含子序列设计引物,利用猪辐射杂种克隆板(ImpRH)将猪TPO基因定位于SSC3q22-27,连锁标记为SWR201(LOD值3.59)和SW590(LOD值2.33);TTF-1基因定位于SSC7q22,连锁标记为NFKB (LOD值11.89)和SW1959(LOD值5.65);TTF-2基因定位于SSClq28,连锁标记为SSC11E11 (LOD值4.44)。
     (3)应用real-time Q-PCR方法研究了猪TPO、TG、GNAS、TTF-1和TTF-2在金华猪16种组织中的表达谱,结果表明:GNAS呈广泛表达;TTF-1基因在甲状腺中表达量最高,肺其次、垂体次之,其他组织基本不表达;TPO、TG和TTF-2基因仅在甲状腺组织中特异表达。在甲状腺组织不同生长阶段的发育表达谱表明TPO、TTF-1和GNAS基因在不同生长阶段表达的差异不显著;而TG和TTF-2在不同生长阶段表达的差异较明显。
     (4)通过对基因池的"PCR-测序”,我们发现了猪TPO基因的多态座位:C/T63,G/T156,G/C268,C/T333,A/G624,A/G642以及C/T705,在TPO基因的3’非翻译区未发现多态座位。应用PCR-RFLP方法,在猪A/G642座位对国内外猪种多态性进行分析,结果表明国内猪种(金华猪、岔路黑猪、嘉兴黑猪)A基因的频率高于国外猪种(大白、长白、杜洛克);遗传效应分析表明,在JPF2代猪中,AA基因型个体的后腿重显著高于AG和GG基因型。另外,我们还发现金华猪TPO基因存在两种新的转录本:转录本TPO-2缺少外显子8;而TPO-3缺少外显子8、14、15和16。
     (5)利用生物信息学软件对TG基因的启动子序列进行预测,并成功克隆了长度为938 bp的TG基因的启动子序列。将其插入到载体PGL3-Basic报告基因荧光素酶蛋白的上游,利用脂质体将所构建的TG promoter-PGL3-Basic载体转入兔胎儿成纤维细胞。结果表明我们所构建的TG启动子载体能高效特异地启动下游基因的表达。
     (6)阉割对金华猪GNAS基因启动子区域的甲基化状态影响表明阉割猪的甲基化水平高于非阉割猪,但差异不显著。
Almost every cell in our body is the target cell of thyroid hormone, which can accelerate the differentiation, growth and maturity, increase the material and energy metabolism. Thyroid peroxidase (TPO) is a thyroid specific glycosylated hemoprotein that plays a key role in the thyroid hormone synthesis by catalyzing the iodination and coupling of iodotyrosine residues in thyroglobulin (TG) to produce thyroid hormone. TG functions as the matrix for thyroid hormone synthesis and in the storage of the inactive form of thyroid hormone. Synthesis of T3 and T4 follows a metabolic pathway that depends on the integrity of the TG structure. Transcription of the TG and TPO genes are regulated by thyroid-specific transcription factors (TTF-1 and TTF-2). TTF-1,-2 have important roles in the development and differentiation of thyroid. Inactivating mutations in the human GNAS (Guanine nucleotide-binding protein alpha-stimulating activity polypeptide) gene are associated with the inherited disorder "pseudohypoparathyroidism", which can affect the function of thyroid and lead to somatic and developmental abnormalities.
     In this study, the complete CDS of TG, GNAS, TTF-1 and TTF-2 were cloned; the TPO, TTF-1 and TTF-2 genes were mapped; their expression level were conducted in sixteen tissues and the development pattern were determined in thyroid grand at the age of 1,20,45, 60,90,120 and 150 days; the single nucleotide polymorphism and alternative splicing form of TPO gene were searched; the TG promoter region was studied as well as the effect of castration on methylation of GNAS promoter.
     (1) The complete CDS of TG, GNAS and partial CDS of TTF-1, TTF-2 were obtained by electronic cloning and comparative genomic technology. The sequences of TG and GNAS were deposited in GenBank (GenBank accession NO.GQ261999 and GU126691). Additionally we analyzed the gene structure, protein structure, conserved motifs by using Clustal W and some related bioinformatics softwares.
     (2) Using the ImpRH panel, we determined that pig TPO was closely linked with microsatellite markers SWR201 and SW590 on SSC3q22-27; TTF-1 was closely linked with NFKB and SW1959 on SSC7q22; while TTF-2 was closely linked with SSC11E11 on SSC1q28.
     (3) Real-time Q-PCR was performed to analyze the tissue and development expression pattern of porcine TPO, TG, GNAS, TTF-1 and TTF-2. The results showed that the GNAS gene was expressed ubiquitously; TTF-1 gene expression was highest in the thyroid, lung followed, then the pituitary, no expression in other tissues; while TPO, TG and TTF-2 were only expressed at thyroid. Developmental expression pattern showed that TPO, TTF-1 and GNAS gene expression were relatively stable; while the TG and TTF-2 expression fluctuated more significantly at different growth stages.
     (4) Gene-pool and sequencing revealed seven SNPs in porcine TPO, C/T63, G/T156, G/C268, C/T333, A/G624, A/G642, C/T705, while none were found in the 3'-untranslated region. Genotyping results of one SNP (A/G642) in the fourteenth exon of TPO gene showed great variation in allele frequency between Chinese indigenous and introduced commercial breeds. The ham weight trait of pigs with AA genotype was significantly higher than that of AG and GG genotype (P<0.05). Two novel transcript variants in porcine TPO gene were found:the splicing variant TPO-2 lacked exon 8, while TPO-3 lacked exon 8 and exon 14,15,16.
     (5) After prediction the promoter of TG by bioinformatics software, we get the proximal promoter region of 938 bp. The promoter region was ligated into PGL3-Basic vector, and then the recombinant TG promoter-PGL3-Basic was transiently transfected into rabbit embryonic fibroblasts by liposome transfection. The results showed that TG promoter vector we constructed can originate the expression of the downstream target gene efficiently and specially.
     (6) The methylation status analysis of GNAS gene promoter region at different growth stages in castrated and uncastrated Jinhua pigs demonstrated that the methylation degree of GNAS promoter in castrated pigs was higher than that of uncastrated pigs, but the difference was not significant.
引文
Aldred, M. A. and Trembath, R. C. Activating and inactivating mutations in the human GNAS1 gene. Human Mutation,2000.16 (3):183-89.
    Arnone, M. I., Zannini, M., and Di Lauro, R. The DNA binding activity and the dimerization ability of the thyroid transcription factor I are redox regulated. J Biol Chem,1995.270 (20):12048-55.
    Baas, F., Bikker, H., Geurts van Kessel, A., Melsert, R., Pearson, P. L., de Vijlder, J. J., and van Ommen, G. J. The human thyroglobulin gene:a polymorphic marker localized distal to C-MYC on chromosome 8 band q24. Hum Genet,1985.69 (2):138-43.
    Beeckmann, P., Schroffel, J., Moser, G., Bartenschlager, H., Reiner, G., and Geldermann, H. Linkage and QTL mapping for Sus scrofa chromosome 3. Journal of Animal Breeding and Genetics,2003.120: 20-27.
    Blatt, C., Eversolecire, P., Cohn, V. H., Zollman, S., Fournier, R. E. K., Mohandas, L. T., Nesbitt, M., Lugo, T, Jones, D. T., Reed, R. R., Weiner, L. P., Sparkes, R. S., and Simon, M. I. Chromosomal Localization of Genes Encoding Guanine Nucleotide-Binding Protein Subunits in Mouse and Human. Proceedings of the National Academy of Sciences of the United States of America, 1988.85 (20):7642-46.
    Brocas, H., Christophe, D., Pohl, V., and Vassart, G Cloning of human thyroglobulin complementary DNA. FEBS Lett,1982.137 (2):189-92.
    Cabrera-Vera, T. M., Vanhauwe, J., Thomas, T. O., Medkova, M., Preininger, A., Mazzoni, M. R., and Hamm, H. E. Insights into G protein structure, function, and regulation. Endocrine Reviews, 2003.24 (6):765-81.
    Caraccio, N., Giannini, R., Cuccato, S., Faviana, P., Berti, P., Galleri, D., Dardano, A., Basolo, F., Ferrannini, E., and Monzani, F. Type Ⅰ Interferons modulate the expression of thyroid peroxidase, sodium/iodide symporter, and thyroglobulin genes in primary human thyrocyte cultures. Journal of Clinical Endocrinology and Metabolism,2005.90 (2):1156-62.
    Castanet, M., Park, S. M., Smith, A., Bost, M., Leger, J., Lyonnet, S., Pelet, A., Czernichow, P., Chatterjee, K., and Polak, M. A novel loss-of-function mutation in TTF-2 is associated with congenital hypothyroidism, thyroid agenesis and cleft palate. Human Molecular Genetics,2002.11 (17) 2051-59.
    Chen, M., Gavrilova, O., Liu, J., Xie, T., Deng, C. X., Nguyen, A. T., Nackers, L. M., Lorenzo, J., Shen, L., and Weinstein, L. S. Alternative Gnas gene products have opposite effects on glucose and lipid metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2005.102 (20):7386-91.
    Chiovato, L., Bassi, P., Santini, F., Mammoli, C., Lapi, P., Carayon, P., and Pinchera, A. Antibodies Producing Complement-Mediated Thyroid Cytotoxicity in Patients with Atrophic or Goitrous Autoimmune-Thyroiditis. Journal of Clinical Endocrinology& Metabolism,1993.77 (6) 1700-05.
    Civitareale, D., Castelli, M. P., Falasca, P., and Saiardi, A. Thyroid Transcription Factor-1 Activates the Promoter of the Thyrotropin Receptor Gene. Molecular Endocrinology,1993.7 (12):1589-95.
    Civitareale, D., Lonigro, R., Sinclair, A. J., and Dilauro, R. A Thyroid-Specific Nuclear-Protein Essential for Tissue-Specific Expression of the Thyroglobulin Promoter. Embo Journal,1989.8 (9) 2537-42.
    Clifton-Bligh, R. J., Wentworth, J. M., Heinz, P., Crisp, M. S., John, R., Lazarus, J. H., Ludgate, M., and Chatterjee, V. K. Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. Nature Genetics,1998.19 (4):399-401.
    D'Andrea, B., Di Palma, T., Mascia, A., Motti, M. L., Viglietto, G., Nitsch, L., and Zannini, M. The transcriptional repressor DREAM is involved in thyroid gene expression. Experimental Cell Research,2005.305 (1):166-78.
    Da Costa, V. M., Moreira, D. G., and Rosenthal, D. Thyroid function and aging:gender-related differences. J Endocrinol,2001.171 (1):193-8.
    Damante, G. and Di Lauro, R. Thyroid-specific gene expression. Biochim Biophys Acta,1994.1218 (3): 255-66.
    Dathan, N., Parlato, R., Rosica, A., De Felice, M., and Di Lauro, R. Distribution of the titf2/foxel gene product is consistent with an important role in the development of foregut endoderm, palate, and hair. Developmental Dynamics,2002.224 (4):450-56.
    Davies, S. J. and Hughes, H. E. Imprinting in Albright's hereditary osteodystrophy. J Med Genet, 1993.30 (2):101-3.
    Defelice, M., Damante, G., Zannini, M., Francislang, H., and Dilauro, R. Redundant Domains Contribute to the Transcriptional Activity of the Thyroid-Transcription-Factor-1. Journal of Biological Chemistry,1995.270 (44):26649-56.
    Derwahl, M., Seto, P., and Rapoport, B. Complete Nucleotide-Sequence of the Cdna for Thyroid Peroxidase in Frtl5 Rat-Thyroid Cells. Nucleic Acids Research,1989.17 (20):8380-80.
    Devijlder, J. J. M., Dinsart, C., Libert, F., Vankessel, A. G., Bikker, H., Bolhuis, P. A., and Vassart, G. Regional Localization of the Gene for Thyroid Peroxidase to Human-Chromosome 2pter-]P12. Cytogenetics and Cell Genetics,1988.47 (3):170-72.
    Devijlder, J. J. M., Vanvoorthuizen, W. F., Vandijk, J. E., Rijnberk, A., and Tegelaers, W. H. H. Hereditary Congenital Goiter with Thyroglobulin Deficiency in a Breed of Goats. Endocrinology, 1978.102 (4):1214-21.
    Doi, S., Shifrin, S., Santisteban, P., Montali, R. J., Schiller, C., Bush, M., and Grollman, E. F. Familial Goiter in Bongo Antelope (Tragelaphus-Eurycerus). Endocrinology,1990.127 (2):857-64.
    Endo, T., Kaneshige, M., Nakazato, M., Ohmori, M., Harii, N., and Onaya, T. Thyroid transcription factor-1 activates the promoter activity of rat thyroid Na+/I- symporter gene. Molecular Endocrinology,1997.11 (11):1747-55.
    Estienne, V., Blanchet, C., Niccoli-Sire, P., Duthoit, C., Durand-Gorde, J. M., Geourjon, C., Baty, D., Carayon, P., and Ruf, J. Molecular model, calcium sensitivity, and disease specificity of a conformational thyroperoxidase B-cell epitope. Journal of Biological Chemistry,1999.274 (50) 35313-17.
    Falconer, I. R. Studies of Congenitally Goitrous Sheep-Iodinated Compounds of Serum and Circulating Thyroid-Stimulating Hormone. Biochemical Journal,1966.100 (1):190-&.
    Fang, X. M., Chu, X. H., Zhao, X. F., Guo, X. L., and Xu, N. Y. Mapping CACNA1S to chromosome 10 in swine using radiation hybrid mapping. Animal Genetics,2005.36 (5):437-37.
    Ferrand, M., Le Fourn, V, and Franc, J. L. Increasing diversity of human thyroperoxidase generated by alternative splicing-Characterization by molecular cloning of new transcripts with single-and multispliced mRNAs. Journal of Biological Chemistry,2003.278 (6):3793-800.
    Francislang, H., Price, M., Polycarpouschwarz, M., and Dilauro, R. Cell-Type-Specific Expression of the Rat Thyroperoxidase Promoter Indicates Common Mechanisms for Thyroid-Specific Gene-Expression. Molecular and Cellular Biology,1992.12 (2):576-88.
    Franco, G. R., Adams, M. D., Soares, M. B., Simpson, A. J. G., Venter, J. C., and Pena, S. D. J. Identification of New Schistosoma-Mansoni Genes by the Est Strategy Using a Directional Cdna Library. Gene,1995.152 (2):141-47.
    Frey, U. H., Hauner, H., Joeckel, K. H., Manthey, I., Brockmeyer, N., and Siffert, W. A novel promoter polymorphism in the human gene GNAS affects binding of transcription factor upstream stimulatory factor 1, G alpha s protein expression and body weight regulation. Pharmacogenetics and Genomics,2008a.18 (2):141-51.
    Frey, U. H., Michalsen, A., Merse, S., Dobos, G. J., and Siffert, W. A Functional Gnas Promoter Polymorphism Is Associated with Altered Weight Loss during Short-Term Fasting. European Journal of Medical Research,2008b.13 (12):576-78.
    Gardas, A., Lewartowska, A., Sutton, B. J., Pasieka, Z., McGregor, A. M., and Banga, J. P. Human thyroid peroxidase (TPO) isoforms, TPO-1 and TPO-2:analysis of protein expression in Graves' thyroid tissue. J Clin Endocrinol Metab,1997.82 (11):3752-7.
    Gehring, W. J. Homeo Boxes in the Study of Development. Science,1987.236 (4806):1245-52.
    Guazzi, S., Price, M., Defelice, M., Damante, G., Mattei, M. G., and Dilauro, R. Thyroid Nuclear Factor-I (Ttf-1) Contains a Homeodomain and Displays a Novel DNA-Binding Specificity. Embo Journal,1990.9 (11):3631-39.
    Hahn, S., Frey, U. H., Siffert, W., Tan, S., Mann, K., and Janssen, O. E. The CC genotype of the GNAS T393C polymorphism is associated with obesity and insulin resistance in women with polycystic ovary syndrome. European Journal of Endocrinology,2006.155 (5):763-70.
    Hamdan, H., Liu, H. B., Li, C. G., Jones, C., Lee, M., deLemos, R., and Minoo, P. Structure of the human Nkx2.1 gene. Biochimica Et Biophysica Acta-Gene Structure and Expression,1998.1396 (3) 336-48.
    Hayward, B. E., Barlier, A., Korbonits, M., Grossman, A. B., Jacquet, P., Enjalbert, A., and Bonthron, D. T. Imprinting of the G (s) alpha gene GNAS1 in the pathogenesis of acromegaly. Journal of Clinical Investigation,2001.107 (6):R31-R36.
    Hayward, B. E., Moran, V., Strain, L., and Bonthron, D. T. Bidirectional imprinting of a single gene: GNAS1 encodes maternally, paternally, and biallelically derived proteins. Proceedings of the National Academy of Sciences of the United States of America,1998.95 (26):15475-80.
    Hishinuma, A., Furudate, S., Oh-Ishi, M., Nagakubo, N., Namatame, T., and Ieiri, T. A novel missense mutation (G2320R) in thyroglobulin causes hypothyroidism in rdw rats. Endocrinology, 2000.141 (11):4050-55.
    Hishinuma, A., Ohyama, Y., Kuribayashi, T., Nagakubo, N., Namatame, T., Shibayama, K., Arisaka, O., Matsuura, N., and Ieiri, T. Polymorphism of the polyalanine tract of thyroid transcription factor-2 gene in patients with thyroid dysgenesis. European Journal of Endocrinology,2001.145 (4):385-89.
    Huang, Y., Prasad, M., Lemon, W. J., Hampel, H., Wright, F. A., Kornacker, K., LiVolsi, V, Frankel, W., Kloos, R. T., Eng, C., Pellegata, N. S., and de la Chapelle, A. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proceedings of the National Academy of Sciences of the United States ofAmerica,2001.98 (26):15044-49.
    Ikeda, K., Clark, J. C., Shawwhite, J. R., Stahlman, M. T., Boutell, C. J., and Whitsett, J. A. Gene Structure and Expression of Human Thyroid Transcription Factor-I in Respiratory Epithelial-Cells. Journal of Biological Chemistry,1995.270 (14):8108-14.
    Javaux, F., Bertaux, F., Donda, A., Francis-Lang, H., Vassart, G., DiLauro, R., and Christophe, D. Functional role of TTF-1 binding sites in bovine thyroglobulin promoter. FEBS Lett,1992.300(3): 222-6.
    Kambe, F. and Seo, H. Mediation of the hormone-and serum-dependent regulation of thyroglobulin gene expression by thyroid-transcription factors in rat thyroid FRTL-5 cells. Journal of Endocrinology, 1996.150 (2):287-98.
    Kambe, F. and Seo, H. Thyroid-specific transcription factors. Endocr J,1997.44 (6):775-84.
    Katoh, R., Kawaoi, A., Miyagi, E., Li, X., Suzuki, K., Nakamura, Y., and Kakudo, K. Thyroid transcription factor-1 in normal, hyperplastic, and neoplastic follicular thyroid cells examined by immunohistochemistry and nonradioactive in situ hybridization. Mod Pathol,2000a.13(5):570-6.
    Katoh, R., Miyagi, E., Nakamura, N., Li, X., Suzuki, K., Kakudo, K., Kobayashi, M., and Kawaoi, A. Expression of thyroid transcription factor-1 (TTF-1) in human C cells and medullary thyroid carcinomas. Hum Pathol,2000b.31(3):386-93.
    Kehlenbach, R. H., Matthey, J., and Huttner, W. B. Xl-Alpha-S Is a New-Type of G-Protein. Nature, 1994.372 (6508):804-09.
    Khoor, A., Whitsett, J. A., Stahlman, M. T., Stephenson, M., and Cagle, P. T. Thyroid transcription factor-1 (TTF-1) differentiates adenocarcinoma of the lung from malignant mesothelioma. Laboratory Investigation,1997.76 (1):975-75.
    Kim, P. S., Hossain, S. A., Park, Y. N., Lee, I., Yoo, S. E., and Arvan, P. A single amino acid change in the acetylcholinesterase-like domain of thyroglobulin causes congenital goiter with hypothyroidism in the cog/cog mouse:A model of human endoplasmic reticulum storage diseases. Proceedings of the National Academy of Sciences of the United States of America,1998.95 (17) 9909-13.
    Kimura, S., Hong, Y. S., Kotani, T., Ohtaki, S., and Kikkawa, F. Structure of the Human Thyroid Peroxidase Gene-Comparison and Relationship to the Human Myeloperoxidase Gene. Biochemistry,1989.28 (10):4481-89.
    Kimura, S., Kotani, T., McBride, O. W., Umeki, K., Hirai, K., Nakayama, T., and Ohtaki, S. Human thyroid peroxidase:complete cDNA and protein sequence, chromosome mapping, and identification of two alternately spliced mRNAs. Proc Natl Acad Sci U S A,1987.84(16):5555-9.
    Kotani, T., Umeki, K., Yamamoto, I., Takeuchi, M., Takechi, S., Nakayama, T., and Ohtaki, S. Nucleotide-Sequence of the Cdna-Encoding Mouse Thyroid Peroxidase. Gene,1993.123 (2) 289-90.
    Kozasa, T., Itoh, H., Tsukamoto, T., and Kaziro, Y. Isolation and Characterization of the Human Gs-Alpha Gene. Proceedings of the National Academy of Sciences of the United States of America, 1988.85 (7):2081-85.
    Lee, B. J., Cho, G. J., Norgren, R. B., Junier, M. P., Hill, D. F., Tapia, V, Costa, M. E., and Ojeda, S. R. TTF-1, a homeodomain gene required for diencephalic morphogenesis, is postnatally expressed in the neuroendocrine brain in a developmentally regulated and cell-specific fashion. Molecular and Cellular Neuroscience,2001.17 (1):107-26.
    Levis, M. J. and Bourne, H. R. Activation of the Alpha-Subunit of G (S) in Intact-Cells Alters Its Abundance, Rate of Degradation, and Membrane Avidity. Journal of Cell Biology,1992.119 (5): 1297-307.
    Li, C. G., Cai, J. X., Pan, Q. P., and Minoo, P. Two functionally distinct forms of NKX2.1 protein are expressed in the pulmonary epithelium. Biochemical and Biophysical Research Communications, 2000.270 (2):462-68.
    Libert, F., Ruel, J., Ludgate, M., Swillens, S., Alexander, N., Vassart, G., and Dinsart, C. Thyroperoxidase, an Auto-Antigen with a Mosaic Structure Made of Nuclear and Mitochondrial Gene Modules. Embo Journal,1987.6 (13):4193-96.
    Macchia, P. E., Mattei, M. G, Lapi, P., Fenzi, G., and Di Lauro, R. Cloning, chromosomal localization and identification of polymorphisms in the human thyroid transcription factor 2 gene (TITF2). Biochimie,1999.81 (5):433-40.
    Magnusson, R. P., Chazenbalk, G. D., Gestautas, J., Seto, P., Filetti, S., Degroot, L. J., and Rapoport, B. Molecular-Cloning of the Complementary Deoxyribonucleic-Acid for Human Thyroid Peroxidase. Molecular Endocrinology,1987a.1 (11):856-61.
    Magnusson, R. P., Gestautas, J., Taurog, A., and Rapoport, B. Molecular-Cloning of the Structural Gene for Porcine Thyroid Peroxidase. Journal of Biological Chemistry,1987b.262 (29):13885-88.
    Mantovani, G., Ballare, E., Giammona, E., Beck-Peccoz, P., and Spada, A. The Gs alpha gene: Predominant maternal origin of transcription in human thyroid gland and gonads. Journal of Clinical Endocrinology& Metabolism,2002.87 (10):4736-40.
    Meijerink, P. H. S., Yanakiev, P., Zorn, I., Grierson, A. J., Bikker, H., Dye, D., Kalaydjieva, L., and Baas, F. The gene for the human Src-like adaptor protein (hSLAP) is located within the 64-kb intron of the thyroglobulin gene. European Journal of Biochemistry,1998.254 (2):297-303.
    Mendive, F. M., Rivolta, C. M., Moya, C. M., Vassart, G., and Targovnik, H. M. Genomic organization of the human thyroglobulin gene:the complete intron-exon structure. European Journal of Endocrinology,2001.145 (4):485-96.
    Mendive, F. M., Rivolta, C. M., Vassart, G., and Targovnik, H. M. Genomic organization of the 3'region of the human thyroglobulin gene. Thyroid,1999.9 (9):903-12.
    Miyazaki, A., Shimura, H., Endo, T., Haraguchi, K., and Onaya, T. Tumor necrosis factor-alpha and interferon-gamma suppress both gene expression and deoxyribonucleic acid-binding of TTF-2 in FRTL-5 cells. Endocrinology,1999.140 (9):4214-20.
    Mizuno, K., Gonzalez, F. J., and Kimura, S. Thyroid-Specific Enhancer-Binding Protein (T/Ebp) Cdna Cloning, Functional-Characterization, and Structural Identity with Thyroid Transcription Factor Ttf-1. Molecular and Cellular Biology,1991.11 (10):4927-33.
    Moldvay, J., Jackel, M., Bogos, K., Soltesz, I., Agocs, L., Kovacs, G., and Schaff, Z. The role of TTF-1 in differentiating primary and metastatic lung adenocarcinomas. Pathol Oncol Res,2004.10 (2) 85-8.
    Moya, C. M., Mendive, F. M., Rivolta, C. M., Vassart, G., and Targovnik, H. M. Genomic organization of the 5'region of the human thyroglobulin gene. European Journal of Endocrinology,2000.143 (6): 789-98.
    Moya, C. M., Varela, V, Rivolta, C. M., Mendive, F. M., and Targovnik, H. M. Identification and characterization of a novel large insertion/deletion polymorphism of 1464 base pair in the human thyroglobulin gene. Thyroid,2003.13 (4):319-23.
    Napolitano, G., Montani, V, Giuliani, C., Di Vincenzo, S., Bucci, I., Todisco, V., Laglia, G., Coppa, A., Singer, D. S., Nakazato, M., Kohn, L. D., Colletta, G., and Monaco, F. Transforming growth factor-beta 1 down-regulation of major histocompatibility complex class I in thyrocytes: Coordinate regulation of two separate elements by thyroid-specific as well as ubiquitous transcription factors. Molecular Endocrinology,2000.14 (4):486-505.
    Niccoli-Sire, P., Fayadat, L., Siffroi-Fernandez, S., Malthierry, Y., and Franc, J. L. Alternatively spliced form of human thyroperoxidase, TPOzanelli:Activity, intracellular trafficking, and role in hormonogenesis. Biochemistry,2001.40 (8):2572-79.
    Niccoli, P., Fayadat, L., Panneels, V, Lanet, J., and Franc, J. L. Human thyroperoxidase in its alternatively spliced form (TPO2) is enzymatically inactive and exhibits changes in intracellular processing and trafficking. Journal of Biological Chemistry,1997.272 (47):29487-92.
    Oguchi, H., Pan, Y. T., and Kimura, S. The Complete Nucleotide-Sequence of the Mouse Thyroid-Specific Enhancer-Binding Protein (T/Ebp) Gene-Extensive Identity of the Deduced Amino-Acid-Sequence with the Human Protein. Biochimica Et Biophysica Acta-Gene Structure and Expression,1995.1261 (2):304-06.
    Oliveira, A. M., Tazelaar, H. D., Myers, J. L., Erickson, L. A., and Lloyd, R. V. Thyroid transcription factor-1 distinguishes metastatic pulmonary from well-differentiated neuroendocrine tumors of other sites. Am J Surg Pathol,2001.25 (6):815-9.
    Ordonez, N. G. Value of thyroid transcription factor-1 immunostaining in distinguishing small cell lung carcinomas from other small cell carcinomas. Am J Surg Pathol,2000a.24 (9):1217-23.
    Ordonez, N. G. Value of thyroid transcription factor-1, E-cadherin, BG8, WT1, and CD44S immunostaining in distinguishing epithelial pleural mesothelioma from pulmonary and nonpulmonary adenocarcinoma. Am J Surg Pathol,2000b.24 (4):598-606.
    Ortiz, L., Aza-Blanc, P., Zannini, M., Cato, A. C. B., and Santisteban, P. The interaction between the forkhead thyroid transcription factor TTF-2 and the constitutive factor CTF/NF-1 is required for efficient hormonal regulation of the thyroperoxidase gene transcription. Journal of Biological Chemistry,1999.274 (21):15213-21.
    Park, Y. N. and Arvan, P. The acetylcholinesterase homology region is essential for normal conformational maturation and secretion of thyroglobulin. Journal of Biological Chemistry, 2004.279 (17):17085-89.
    Pasolli, H. A., Klemke, M., Kehlenbach, R. H., Wang, Y. Z., and Huttner, W. B. Characterization of the extra-large G protein alpha-subunit XL alpha s-Ⅰ. Tissue distribution and subcellular localization. Journal of Biological Chemistry,2000.275 (43):33622-32.
    Peters, J., Wroe, S. F., Wells, C. A., Miller, H. J., Bodle, D., Beechey, C. V., Williamson, C. M., and Kelsey, G. A cluster of oppositely imprinted transcripts at the Gnas locus in the distal imprinting region of mouse chromosome 2. Proceedings of the National Academy of Sciences of the United States of America,1999.96 (7):3830-35.
    Plagge, A., Gordon, E., Dean, W., Boiani, R., Cinti, S., Peters, J., and Kelsey, G. The imprinted signaling protein XL alpha s is required for postnatal adaptation to feeding. Nature Genetics,2004.36 (8) 818-26.
    Plagge, A., Kelsey, G., and Germain-Lee, E. L. Physiological functions of the imprinted Gnas locus and its protein variants G alpha(s) and XL alpha(s) in human and mouse. Journal of Endocrinology, 2008.196 (2):193-214.
    Poleev, A., Fickenscher, H., Mundlos, S., Winterpacht, A., Zabel, B., Fidler, A., Gruss, P., and Plachov, D. PAX8, a human paired box gene:isolation and expression in developing thyroid, kidney and Wilms' tumors. Development,1992.116 (3):611-23.
    Ricketts, M. H., Vandenplas, S., van der Walt, M., van Jaarsveld, P. P., Bester, A. J., and Boyd, C. D. Afrikander cattle congenital goiter:size heterogeneity in thyroglobulin mRNA. Biochem Biophys Res Commun,1985.126 (1):240-6.
    Rivolta, C. M. and Targovnik, H. M. Molecular advances in thyroglobulin disorders. Clinica Chimica Acta,2006.374 (1-2):8-24.
    Rossi, D. L., Acebron, A., and Santisteban, P. Function of the homeo and paired domain proteins TTF-1 and Pax-8 in thyroid cell proliferation. JBiol Chem,1995.270 (39):23139-42.
    Sequeira, M., Al-Khafaji, F., Park, S., Lewis, M. D., Wheeler, M. H., Chatterjee, V. K. K., Jasani, B., and Ludgate, M. Production and application of polyclonal antibody to human thyroid transcription factor 2 reveals thyroid transcription factor 2 protein expression in adult thyroid and hair follicles and prepubertal testis. Thyroid,2003.13 (10):927-32.
    Stahlman, M. T., Gray, M. E., and Whitsett, J. A. Expression of thyroid transcription factor-1 (TTF-1) in fetal and neonatal human lung. Journal of Histochemistry& Cytochemistry,1996.44 (7) 673-78.
    Stenszky, V, Kozma, L., Balazs, C., Rochlitz, S., Bear, J. C., and Farid, N. R. The Genetics of Graves-Disease-Hla and Disease Susceptibility. Journal of Clinical Endocrinology& Metabolism,1985.61 (4):735-40.
    Sterk, A., Vandijk, J. E., Veenboer, G. J. M., Moorman, A. F. M., and Devijlder, J. J. M. Normal-Sized Thyroglobulin Messenger Ribonucleic-Acid in Dutch Goats with a Thyroglobulin Synthesis Defect Is Translated into a 35,000 Molecular-Weight N-Terminal Fragment. Endocrinology, 1989.124 (1):477-83.
    Stratil, A., Knoll, A., Horak, P., Bilek, K., Bechynova, R., Bartenschlager, H., Van Poucke, M., Peelman, L. J., Svobodova, K., and Geldermann, H. Mapping of the porcine FBN2, YWHAQ, CNN3, DCN, POSTN, SPARC, RBM39 and GNAS genes, expressed in foetal skeletal muscles. Animal Genetics,2008.39 (2):204-05.
    Stratil, A., Van Poucke, M., Bartenschlager, H., Knoll, A., Yerle, M., Peelman, L. J., Kopecny, M., and Geldermann, H. Porcine OGN and ASPN:mapping, polymorphisms and use for quantitative trait loci identification for growth and carcass traits in a Meishan x Pietrain intercross. Animal Genetics,2006.37 (4):415-18.
    Sunahara, R. K., Tesmer, J. J. G., Gilman, A. G., and Sprang, S. R. Crystal structure of the adenylyl cyclase activator G (S alpha).Science,1997.278 (5345):1943-47.
    Suzuki, K., Kobayashi, Y., Katoh, R., Kohn, L. D., and Kawaoi, A. Identification of thyroid transcription factor-1 in C cells and parathyroid cells. Endocrinology,1998.139 (6):3014-7.
    Tassi, V. P. N., Dilauro, R., Vanjaarsveld, P., and Alvino, C. G. 2 Abnormal Thyroglobulin-Like Polypeptides Are Produced from Afrikander Cattle Congenital Goiter Messenger-Rna. Journal of Biological Chemistry,1984.259 (16):507-10.
    Taylor, B. A. and Rowe, L. The Congenital Goiter Mutation Is Linked to the Thyroglobulin Gene in the Mouse. Proceedings of the National Academy of Sciences of the United States of America, 1987.84 (7):1986-90.
    Tomer, Y., Concepcion, E., and Greenberg, D. A. A C/T single-nucleotide polymorphism in the region of the CD40 gene is associated with Graves' disease. Thyroid,2002.12 (12):1129-35.
    Tomer, Y, Greenberg, D. A., Barbesino, G., Concepcion, E., and Davies, T. F. CTLA-4 and not CD28 is a susceptibility gene for thyroid autoantibody production. Journal of Clinical Endocrinology& Metabolism,2001.86 (4):1687-93.
    Umezu, M., Kagabu, S., Jiang, J. Y, and Sato, E. M. Evaluation and characterization of congenital hypothyroidism in rdw dwarf rats. Laboratory Animal Science,1998.48 (5):496-501.
    van de Graaf, S. A., Ris-Stalpers, C., Pauws, E., Mendive, F. M., Targovnik, H. M., and de Vijlder, J. J. Up to date with human thyroglobulin. J Endocrinol,2001.170 (2):307-21.
    Vanheuverswyn, B., Leriche, A., Vansande, J., Dumont, J. E., and Vassart, G. Transcriptional Control of
    Thyroglobulin Gene-Expression by Cyclic-Amp. Febs Letters,1985.188 (2):192-96.
    Weinstein, L. S., Gejman, P. V., Friedman, E., Kadowaki, T., Collins, R. M., Gershon, E. S., and Spiegel, A. M. Mutations of the Gs Alpha-Subunit Gene in Albright Hereditary Osteodystrophy Detected by Denaturing Gradient Gel-Electrophoresis. Proceedings of the National Academy of Sciences of the United States of America,1990.87 (21):8287-90.
    Weinstein, L. S., Xie, T., Qasem, A., Wang, J., and Chen, M. The role of GNAS and other imprinted genes in the development of obesity. Int J Obes (Lond),34 (1):6-17.
    Weinstein, L. S., Xie, T., Zhang, Q. H., and Chen, M. Studies of the regulation and function of the G (s) alpha-gene Gnas using gene targeting technology. Pharmacology& Therapeutics,2007.115 (2) 271-91.
    Weinstein, L. S., Yu, S. H., Warner, D. R., and Liu, J. Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting. Endocrine Reviews,2001.22 (5) 675-705.
    Williamson, C. M., Ball, S. T., Nottingham, W. T., Skinner, J. A., Plagge, A., Turner, M. D., Powles, N., Hough, T., Papworth, D., Fraser, W. D., Maconochie, M., and Peters, J. A cis-acting control region is required exclusively for the tissue-specific imprinting of Gnas. Nature Genetics,2004.36 (8):894-99.
    Yu, S. H., Yu, D. W., Lee, E., Eckhaus, M., Lee, R., Corria, Z., Accili, D., Westphal, H., and Weinstein, L. S. Variable and tissue-specific hormone resistance in heterotrimeric G (s) protein alpha-subunit (G (s) alpha) knockout mice is due to tissue-specific imprinting of the Gs alpha gene. Proceedings of the National Academy of Sciences of the United States of America,1998.95 (15) 8715-20.
    Zanelli, E., Henry, M., Charvet, B., and Malthiery, Y. Evidence for an Alternate Splicing in the Thyroperoxidase Messenger from Patients with Graves-Disease. Biochemical and Biophysical Research Communications,1990.170 (2):735-41.
    Zannini, M., Avantaggiato, V., Biffali, E., Arnone, M. I., Sato, K., Pischetola, M., Taylor, B. A., Phillips, S. J., Simeone, A., and DiLauro, R. TTF-2, a new forkhead protein, shows a temporal expression in the developing thyroid which is consistent with a role in controlling the onset of differentiation. Embo Journal,1997.16 (11):3185-97.
    Zannini, M., Francis-Lang, H., Plachov, D., and Di Lauro, R. Pax-8, a paired domain-containing protein, binds to a sequence overlapping the recognition site of a homeodomain and activates transcription from two thyroid-specific promoters. Mol Cell Biol,1992.12 (9):4230-41.
    Zhang, L. Q., Whitsett, J. A., and Stripp, B. R. Regulation of Clara cell secretory protein gene transcription by thyroid transcription factor-1. Biochimica Et Biophysica Acta-Gene Structure and Expression,1997.1350 (3):359-67.
    黄磊,甲状腺转录因子-2转基因小鼠模型建立及其对腭融合的影响,四川大学博士学位论文,2005.
    缪明主编,内分泌学,上海:高等教育出版社,1992.
    雷雪芹,陈宏.牛羊多胎性状的分子标记研究.黄牛杂志.2002(3):24-27.
    邢岩.TPO基因及其应用研究.国外医学 放射医学核医学分册.2002,26(6):249-252.
    易祥华,张容轩,史景云,高文等.甲状腺转录因子1和表面活性蛋白在肺硬化性血管瘤中表达的意义.中华结核和呼吸杂志2003,26(12):776-780
    张志祥,郑岚,徐树进,官靖华.TPO-Ab在甲状腺自身免疫性疾病中的应用.放射免疫学杂志.2008,21(2):108-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700