用户名: 密码: 验证码:
斑马鱼三个母源因子的表达及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原始生殖细胞(Primordial germ cells, PGCs)是多细胞生物体中生殖细胞的祖先,同时也是研究细胞迁移的一个重要的模型。在果蝇、线虫和小鼠等物种中,nanos在PGCs迁移过程中发挥作用,干涉该基因后,PGCs的迁移不正常。尽管Nanos蛋白在脊椎动物和无脊椎动物的PGCs的迁移中起着举足轻重的作用,然而在斑马鱼中,Nanos如何调节PCGs的迁移的分子机制目前还不清楚。为了探讨这一问题,我们以全长的Nanos为诱饵蛋白,通过酵母双杂交系统筛选了一个新的与Nanos相互作用的蛋白,即肌球蛋白轻链2(Myosin light chain II, Mylz2); Nanos的锌指结构域和C末端的14个氨基酸残基是Nanos-Mylz2相互作用所必需,缺少这两个部分中的任何一个,Nanos都不能与Mylz2相互作用。采用免疫共沉淀和GST pull-down方法,在体内、外证明了Nanos蛋白与Mylz2蛋白能形成一个稳定的复合体。用Mylz2磷酸化的抗体检测,进一步证明了Nanos在人的293T细胞中下调Mylz2蛋白的磷酸化。结果分析Nanos可能通过调控Mylz2的磷酸化来调节斑马鱼PGCs的发育和迁移。
     Pumilio和Nanos相互作用最早在果蝇中发现,其功能是调控胚胎的背、腹轴形成。随后研究同样发现,人的Pumilio2与Nanos的同源蛋白Nanos 1相互作用,在生殖细胞的发育和维持中发挥作用。在斑马鱼中,pumilio2的研究未见报道。本文通过序列比对,在斑马鱼EST数据库中,发现了一个与pumilio2同源的EST序列。采用3’和5’末端快速扩增cDNA (RACE)方法,从斑马鱼卵巢中获得了该基因的cDNA;通过测序和分析,该基因与pumilio2同源,因此命名为pum-like。斑马鱼pum-like的cDNA含有3861个碱基,编码1106个氨基酸,通过与斑马鱼基因组数据库比对,发现其定位于第25号染色体上,含有21个外显子和20个内含子。同时将斑马鱼pum-like与人、果蝇等物种pumilio基因进行比对构建进化树,结果表明,pum-like与其他物种pumilio2的同源性高于pumiliol。Pum-like的C端含有pumilio基因家族的5个PUF (Pumilio-family RNA binding repeat)结构域。免疫组织化学显示,Pum-like在卵母细胞中进行表达。整胚原位杂交结果证明,pum-like mRNA在2细胞和4细胞的分裂沟中表达,随着胚胎发育,其mRNA主要集中在脑和神经管中。因此,我们推测pum-like可能参与早期胚胎的细胞分裂,并与神经系统的发育和形成有关。
     卵黄膜是位于卵母细胞外的一层膜结构,在动物的受精和胚胎发育过程中起着十分重要的作用。通过NCBI的数据库和电子差减杂交的方法,在GeneBank斑马鱼卵巢的cDNA文库中获得一条EST序列(XM_001340234.1);利用其EST序列,进行3’、5’RACE,获得该基因的cDNA全长;通过PCR和测序验证该基因的cDNA全长为2720bp,它编码761个氨基酸。通过蛋白比对,发现该蛋白与已知的卵黄膜蛋白没有同源性,因此我们认为它是一个新的卵黄膜蛋白,命名为斑马鱼卵黄膜蛋白zvep (zebrafish vitelline envelope protein)。通过RT-PCR和western blot检测,zvep在卵巢和脑中表达,在其他组织中不表达。采用组织原位杂交和免疫组织化学证明zvep mRNA在卵母细胞的Ⅰ期,Ⅱ期,Ⅲ期转录,蛋白在Ⅲ期卵母细胞的卵黄膜上特异性的表达(阳性信号为2条细线)。以上结果表明,ZVEP在早期卵母细胞中合成,是卵黄膜中的一个新成员,在卵黄膜形成过程中发挥了重要作用。
Primordial germ cells (PGCs) are the progenitors of reproductive cells in metazoans and are an important model for the study of cell migration in vivo. Previous reports have suggested that the protein Nanos plays critical roles in the migration and survival of PGCs in vertebrates and invertebrates. The molecular mechanisms by which Nanos governs PGCs migration are largely unknown. In this study, we report a novel interaction between zebrafish Nanos and myosin light chainⅡ(Mylz2). This stable complex, which is formed through the RNA-binding zinc finger domain and fourteen amino acids at the C-terminus of Nanos, was confirmed both in vitro and in vivo. Both of these two parts are required for the interaction with Mylz2, but nity-one amio acids at N-terminus of Nanos are not required. Using a phospho-myosin light chain 2 (Serl9) antibody, we demonstrate that Nanos regulate the phosphorylation of the Mylz2. We discuss the biological roles of this Nanos-regulated phosphorylation of the Mylz2 in PGCs and soma. Based on these data, we suggest that the interaction between Nanos and Mylz2 and the Nanos regulated phosphorylation of the Mylz2 may play an essential role in germ cell development and PGC migration in zebrafish.
     NOS1 interacting with Pumilio2 has been found in drosophila and human. Using the zebrafish EST database from NCBI, we found an EST which has more homology to pumilio2. The full-length cDNA of this transcript was obtained by 3'and 5' RACE and further confirmed by PCR and sequencing, and it was named pum-like. The full-length cDNA of this gene is 3861bp and encodes a protein of 1106 amino acids, which locating at the twenty-fifth chromosome and containing twenty-one extrons and twenty introns. It shows much more homology to pumilio2 than pumiliol by phylogenetic construction, and contains five PUF repeats at the C-terminal. RT-PCR and western blot analysis showed that pum-like's mRNA transcribed at the early stage of oocyte, and its protein located in the cytoplasm of oocyte which may be a component of the yolk. Whole-mount in situ hybridization at the 2-cell and 4-cell stage of embryos revealed the remarkable signals in the cleavage furrows which formed distinct dots. It suggested that the gene regulated the cell divisions at the early stage of embryo. Along with the development of the embryo, its expression was found mainly in caudal spinal chord and brain. So we guessed it had some functions in the nervous system.
     Egg envelope is a specialized extracellular matrix that surrounds and protects the oocyte and plays significant roles in animal reproductive and developmental processes. Using the NCBI digital differential display program we identified an EST sequence (XM_001340234.1) acquired from zebrafish ovary cDNA libraries in GeneBank. The full-length cDNA of this transcript was obtained by 3'and 5' RACE and further confirmed by PCR and sequencing. The full-length cDNA of the novel gene is 2720bp and encodes a protein of 761 amino acids. RT-PCR and western blot analysis showed its expression in ovary and brain but not in other tissues. In situ hybridization demonstrates that the mRNA is transcribed in ooplasm of stage I, II and III oocytes. Interestingly, immunohistochemistry on zebrafish ovarian sections showed that protein expression in the vitelline envelope was located to two thin positive lines in the stage III oocytes. These ovarian expression patterns show that this is a new component of the vitelline envelope that is synthesized during early developing oocytes. This protein was named ZVEP (zebrafish vitelline envelope protein) and it did not have any homology with other known vitelline envelope genes. Thus, we found that zvep is a novel gene related to the vitelline envelope in zebrafish.
引文
1. Cerda, J., et al., Genomic resources for a commercial flatfish, the Senegalese sole (Solea senegalensis):EST sequencing, oligo microarray design, and development of the Soleamold bioinformatic platform. BMC Genomics,2008.9:p.508.
    2. Wallace, R.A., Selman, K.,, Cellular and dynamic aspects of oocyte growth in teleosts. Am. Zool,1981.21:p.325-343.
    3. Wallace, R.A. and K. Selman, Ultrastructural aspects of oogenesis and oocyte growth in fish and amphibians. J Electron Microsc Tech,1990.16(3):p.175-201.
    4. Baron, D., et al., Large-scale temporal gene expression profiling during gonadal differentiation and early gametogenesis in rainbow trout. Biol Reprod,2005.73(5):p. 959-66.
    5. Miura, C. , T. Higashino, and T. Miura, A progestin and an estrogen regulate early stages of oogenesis in fish. Biol Reprod,2007.77(5):p.822-8.
    6. Britt, K.L. and J.K. Findlay, Estrogen actions in the ovary revisited. J Endocrinol, 2002.175(2):p.269-76.
    7. Gilchrist, R.B., L.J. Ritter, and D.T. Armstrong, Oocyte-somatic cell interactions during follicle development in mammals. Anim Reprod Sci,2004.82-83:p.431-46.
    8. Juengel, J.L., et al., Physiology of GDF9 and BMP15 signalling molecules. Anim Reprod Sci,2004.82-83:p.447-60.
    9. Moore, R.K. and S. Shimasaki, Molecular biology and physiological role of the oocyte factor, BMP-15. Mol Cell Endocrinol,2005.234(1-2):p.67-73.
    10. Liu, L. and W. Ge, Growth differentiation factor 9 and its spatiotemporal expression and regulation in the zebrafish ovary. Biol Reprod,2007.76(2):p.294-302.
    11. Halm, S., et al., Molecular characterisation of growth differentiation factor 9 (gdf9) and bone morphogenetic protein 15 (bmp15) and their patterns of gene expression during the ovarian reproductive cycle in the European sea bass. Mol Cell Endocrinol, 2008.291(1-2):p.95-103.
    12. Khoo, K.H., The histochemistry and endocrine control of vitellogenesis in goldfish ovaries. Can. J. Zool,1979.57:p.617-626.
    13. Breton, B., M. Govoroun, and T. Mikolajczyk, GTH Ⅰ and GTH Ⅱ secretion profiles during the reproductive cycle in female rainbow trout:relationship with pituitary responsiveness to GnRH-A stimulation. Gen Comp Endocrinol,1998.111(1):p. 38-50.
    14. Santos, E.M., M. Rand-Weaver, and C.R. Tyler, Follicle-stimulating hormone and its alpha and beta subunits in rainbow trout (Oncorhynchus mykiss):purification, characterization, development of specific radioimmunoassays, and their seasonal plasma and pituitary concentrations in females. Biol Reprod,2001.65(1):p.288-94.
    15. Swanson, P., Dickey, J.T., Campbell, B.,, Biochemistry and physiology of fish gonadotropins. Fish Physiol. Biochem.,2003.28:p.53-59.
    16. Swanson, P., et al., Isolation and characterization of two coho salmon gonadotropins, GTH Ⅰ and GTH Ⅱ. Biol Reprod,1991.44(1):p.29-38.
    17. Swanson, P., Bernard, M., Nozaki, M., Suzuki, K., Kawauchi, H., Dickhoff, W.W.,, Gonadotropins Ⅰ and Ⅱ in juvenile coho salmon. Fish Phys. Biochem,1989.7:p. 169-176.
    18. Campbell, B., et al., Previtellogenic oocyte growth in salmon:relationships among body growth, plasma insulin-like growth factor-1, estradiol-17beta, follicle-stimulating hormone and expression of ovarian genes for insulin-like growth factors, steroidogenic-acute regulatory protein and receptors for gonadotropins, growth hormone, and somatolactin. Biol Reprod,2006.75(1):p.34-44.
    19. von Schalburg, K.R., et al., A comprehensive survey of the genes'involved in maturation and development of the rainbow trout ovary. Biol Reprod,2005.72(3):p. 687-99.
    20. von Schalburg, K.R., et al., Expression of morphogenic genes in mature ovarian and testicular tissues:potential stem-cell niche markers and patterning factors. Mol Reprod Dev,2006.73(2):p.142-52.
    21. Luckenbach, J.A., et al., Identification of differentially expressed ovarian genes during primary and early secondary oocyte growth in coho salmon, Oncorhynchus kisutch. Reprod Biol Endocrinol,2008.6:p.2.
    22. Selman, S., Wallace, R.A., Sarka, A., Qi, X.,, Stages of oocyte development in the zebrafish, Brachydanio rerio. J. Morphol,1993.218:p.203-224.
    23. Modig, C., Westerlund, L., Olsson, P.-E.,, Oocyte zona pellucida proteins. In:Babin, P.J., Cerda, J., Lubzens, E. (Eds.), The Fish Oocyte:From Basic Studies to Biotechnological Applications. Springer, Dordrecht,2007:p.113-139.
    24. Modig, C., et al., Molecular characterization and expression pattern of zona pellucida proteins in gilthead seabream (Sparus aurata). Biol Reprod,2006.75(5):p.717-25.
    25. Le Menn, F., Cerda, J., Babin, P.J.,, Ultrastructural aspects of the ontogeny and differentiation of ray-finned fish ovarian follicles. In:Babin, P.J. (Ed.), The Fish Oocyte:From Basic Studies to Biotechnological Application. Springer, The Netherlands,2007:p.1-37.
    26. Cerda, J., et al., Cadherin-catenin complexes during zebrafish oogenesis:heterotypic junctions between oocytes and follicle cells. Biol Reprod,1999.61(3):p.692-704.
    27. Chang, Y.S., et al., Molecular cloning, structural analysis, and expression of carp ZP3 gene. Mol Reprod Dev,1996.44(3):p.295-304.
    28. Mold, D.E., et al., Cluster of genes encoding the major egg envelope protein of zebrafish. Mol Reprod Dev,2001.58(1):p.4-14.
    29. Hyllner, S.J., et al., Cloning of rainbow trout egg envelope proteins:members of a unique group of structural proteins. Biol Reprod,2001.64(3):p.805-11.
    30. Berg, A.H., L. Westerlund, and P.E. Olsson, Regulation of Arctic char (Salvelinus alpinus) egg shell proteins and vitellogenin during reproduction and in response to 17beta-estradiol and cortisol. Gen Comp Endocrinol,2004.135(3):p.276-85.
    31. Braat, A.K., J.E. Speksnijder, and D. Zivkovic, Germ line development in fishes. Int J Dev Biol,1999.43(7):p.745-60.
    32. Knaut, H. and A.F. Schier, Clearing the path for germ cells. Cell,2008.132(3):p. 337-9.
    33. Raz, E., Primordial germ-cell development:the zebrafish perspective. Nat Rev Genet, 2003.4(9):p.690-700.
    34. Tsunekawa, N., et al., Isolation of chicken vasa homolog gene and tracing the origin of primordial germ cells. Development,2000.127(12):p.2741-50.
    35. Saito, T., et al., The germ line lineage in ukigori, Gymnogobius species (Teleostei: Gobiidae) during embryonic development. Int J Dev Biol,2004.48(10):p.1079-85.
    36. Takeuchi, Y., et al., Mass isolation of primordial germ cells from transgenic rainbow trout carrying the green fluorescent protein gene driven by the vasa gene promoter. Biol Reprod,2002.67(4):p.1087-92.
    37. Braat, A.K., et al., Characterization of zebrafish primordial germ cells:morphology and early distribution of vasa RNA. Dev Dyn,1999.216(2):p.153-67.
    38. Olsen, L.C., R. Aasland, and A. Fjose, A vasa-like gene in zebrafish identifies putative primordial germ cells. Mech Dev,1997.66(1-2):p.95-105.
    39. Yoon, C., K. Kawakami, and N. Hopkins, Zebrafish vasa homologue RNA is localized to the cleavage planes of 2-and 4-cell-stage embryos and is expressed in the primordial germ cells. Development,1997.124(16):p.3157-65.
    40. Knaut, H., et al., Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. J Cell Biol,2000. 149(4):p.875-88.
    41. Cox, D.N., et al., A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev,1998.12(23):p.3715-27.
    42. Cox, D.N., A. Chao, and H. Lin, piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development,2000. 127(3):p.503-14.
    43. Kuramochi-Miyagawa, S., et al., Two mouse piwi-related genes:miwi and mili. Mech Dev,2001.108(1-2):p.121-33.
    44. Tan, C.H., et al., Ziwi, the zebrafish homologue of the Drosophila piwi: co-localization with vasa at the embryonic genital ridge and gonad-specific expression in the adults. Mech Dev,2002.119 Suppl 1:p. S221-4.
    45. Houwing, S., et al., A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell,2007.129(1):p.69-82.
    46. Li, C., et al., Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell,2009.137(3):p.509-21.
    47. St Johnston, D., D. Beuchle, and C. Nusslein-Volhard, Staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell,1991.66(1):p.51-63.
    48. Micklem, D.R., et al., Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation. EMBO J,2000.19(6):p.1366-77.
    49. Wickham, L., et al., Mammalian staufen is a double-stranded-RNA-and tubulin-binding protein which localizes to the rough endoplasmic reticulum. Mol Cell Biol,1999.19(3):p.2220-30.
    50. Kiebler, M. A., et al., The mammalian staufen protein localizes to the somatodendritic domain of cultured hippocampal neurons:implications for its involvement in mRNA transport. J Neurosci,1999.19(1):p.288-97.
    51. Marion, R.M., et al., A human sequence homologue of Staufen is an RNA-binding protein that is associated with polysomes and localizes to the rough endoplasmic reticulum. Mol Cell Biol,1999.19(3):p.2212-9.
    52. Saunders, P.T., et al., Mouse staufen genes are expressed in germ cells during oogenesis and spermatogenesis. Mol Hum Reprod,2000.6(11):p.983-91.
    53. Monshausen, M., et al, Two rat brain staufen isoforms differentially bind RNA. J Neurochem,2001.76(1):p.155-65.
    54. Bateman, M.J., et al., Expression of the zebrafish Staufen gene in the embryo and adult. Gene Expr Patterns,2004.5(2):p.273-8.
    55. Ramasamy, S., et al., Zebrafish Staufenl and Staufen2 are required for the survival and migration of primordial germ cells. Dev Biol,2006.292(2):p.393-406.
    56. Reichman-Fried, M., S. Minina, and E. Raz, Autonomous modes of behavior in primordial germ cell migration. Dev Cell,2004.6(4):p.589-96.
    57. Weidinger, G, et al., Identification of tissues and patterning events required for distinct steps in early migration of zebrafish primordial germ cells. Development, 1999.126(23):p.5295-307.
    58. Weidinger, G, et al., Regulation of zebrafish primordial germ cell migration by attraction towards an intermediate target. Development,2002.129(1):p.25-36.
    59. Blaser, H., et al., Transition from non-motile behaviour to directed migration during early PGC development in zebrafish. J Cell Sci,2005.118(Pt 17):p.4027-38.
    60. Lehmann, R. and C. Nusslein-Volhard, The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. Development,1991.112(3):p. 679-91.
    61. Curtis, D., J. Apfeld, and R. Lehmann, nanos is an evolutionarily conserved organizer of anterior-posterior polarity. Development,1995.121(6):p.1899-910.
    62. Curtis, D., et al., A CCHC metal-binding domain in Nanos is essential for translational regulation. EMBO J,1997.16(4):p.834-43.
    63. Asaoka, M., et al., Maternal Nanos regulates zygotic gene expression in germline progenitors of Drosophila melanogaster. Mech Dev,1998.78(1-2):p.153-8.
    64. Kobayashi, S., et al., Essential role of the posterior morphogen nanos for germline development in Drosophila. Nature,1996.380(6576):p.708-11.
    65. Deshpande, G, et al., Novel functions of nanos in downregulating mitosis and transcription during the development of the Drosophila germline. Cell,1999.99(3):p. 271-81.
    66. Subramaniam, K. and G Seydoux, nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development,1999.126(21):p.4861-71.
    67. Kraemer, B., et al., NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans. Curr Biol,1999.9(18):p.1009-18.
    68. Tsuda, M., et al., Conserved role of nanos proteins in germ cell development. Science, 2003.301(5637):p.1239-41.
    69. Suzuki, H., et al., Nanos3 maintains the germ cell lineage in the mouse by suppressing both Bax-dependent and-independent apoptotic pathways. Dev Biol,2008.318(1):p. 133-42.
    70. Koprunner, M., et al., A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev,2001.15(21):p.2877-85.
    71. Kedde, M., et al., RNA-binding protein Dndl inhibits microRNA access to target mRNA. Cell,2007.131(7):p.1273-86.
    72. Raz, E. and M. Reichman-Fried, Attraction rules:germ cell migration in zebrafish. Curr Opin Genet Dev,2006.16(4):p.355-9.
    73. Weidinger, G, et al., dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr Biol,2003.13(16):p. 1429-34.
    74. Horvay, K., et al., Xenopus Dead end mRNA is a localized maternal determinant that serves a conserved function in germ cell development. Dev Biol,2006.291(1):p. 1-11.
    75. Zamore, P.D., J.R. Williamson, and R. Lehmann, The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins. RNA, 1997.3(12):p.1421-33.
    76. Wharton, R.P., et al., The Pumilio RNA-binding domain is also a translational regulator. Mol Cell,1998.1(6):p.863-72.
    77. Murata, Y. and R.P. Wharton, Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in Drosophila embryos. Cell,1995.80(5):p.747-56.
    78. Wreden, C., et al., Nanos and pumilio establish embryonic polarity in Drosophila by promoting posterior deadenylation of hunchback mRNA. Development,1997.124(15): p.3015-23.
    79. Sonoda, J. and R.P. Wharton, Recruitment of Nanos to hunchback mRNA by Pumilio. Genes Dev,1999.13(20):p.2704-12.
    80. Asaoka-Taguchi, M., et al., Maternal Pumilio acts together with Nanos in germline development in Drosophila embryos. Nat Cell Biol,1999.1(7):p.431-7.
    81. Lin, H. and A.C. Spradling, A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development,1997.124(12): p.2463-76.
    82. Forbes, A. and R. Lehmann, Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development,1998.125(4):p. 679-90.
    83. Dalby, B. and D.M. Glover, Discrete sequence elements control posterior pole accumulation and translational repression of maternal cyclin B RNA in Drosophila. EMBO J,1993.12(3):p.1219-27.
    84. Nakahata, S., et al., Biochemical identification of Xenopus Pumilio as a sequence-specific cyclin B1 mRNA-binding protein that physically interacts with a Nanos homolog, Xcat-2, and a cytoplasmic polyadenylation element-binding protein. J Biol Chem,2001.276(24):p.20945-53.
    85. Spassov, D.S. and R. Jurecic, Cloning and comparative sequence analysis of PUM1 and PUM2 genes, human members of the Pumilio family of RNA-binding proteins. Gene,2002.299(1-2):p.195-204.
    86. Jaruzelska, J., et al., Conservation of a Pumilio-Nanos complex from Drosophila germ plasm to human germ cells. Dev Genes Evol,2003.213(3):p.120-6.
    87. Bleul, C.C., et al., The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature,1996.382(6594):p.829-33.
    88. Doitsidou, M., et al., Guidance of primordial germ cell migration by the chemokine SDF-1. Cell,2002.111(5):p.647-59.
    89. Chong, S.W., et al., Expression pattern of two zebrafish genes, cxcr4a and cxcr4b. Mech Dev,2001.109(2):p.347-54.
    90. Blaser, H., et al., Migration of zebrafish primordial germ cells:a role for myosin contraction and cytoplasmic flow. Dev Cell,2006.11(5):p.613-27.
    91. Knaut, H., et al., A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor. Nature,2003.421(6920):p.279-82.
    92. Molyneaux, K.A., et al., The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development,2003.130(18):p. 4279-86.
    93. Stebler, J., et al., Primordial germ cell migration in the chick and mouse embryo:the role of the chemokine SDF-1/CXCL12. Dev Biol,2004.272(2):p.351-61.
    94. Boldajipour, B., et al., Control of chemokine-guided cell migration by ligand sequestration. Cell,2008.132(3):p.463-73.
    95. Goldstein, J.L. and M.S. Brown, Regulation of the mevalonate pathway. Nature,1990. 343(6257):p.425-30.
    96. Van Doren, M., et al., HMG-CoA reductase guides migrating primordial germ cells. Nature,1998.396(6710):p.466-9.
    97. Santos, A.C. and R. Lehmann, Isoprenoids control germ cell migration downstream of HMGCoA reductase. Dev Cell,2004.6(2):p.283-93.
    98. Thorpe, J.L., et al., Germ cell migration in zebrafish is dependent on HMGCoA reductase activity and prenylation. Dev Cell,2004.6(2):p.295-302.
    99. Wehrle-Haller, B. and B.A. Imhof, Actin, microtubules and focal adhesion dynamics during cell migration. Int J Biochem Cell Biol,2003.35(1):p.39-50.
    100. Pollard, T.D. and GG Borisy, Cellular motility driven by assembly and disassembly of actin filaments. Cell,2003.112(4):p.453-65.
    101. Rafelski, S.M. and J.A. Theriot, Crawling toward a unified model of cell mobility: spatial and temporal regulation of actin dynamics. Annu Rev Biochem,2004.73:p. 209-39.
    102. Small, J.V. and G.P. Resch, The comings and goings of actin:coupling protrusion and retraction in cell motility. Curr Opin Cell Biol,2005.17(5):p.517-23.
    103. Moussavi, R.S., C.A. Kelley, and R.S. Adelstein, Phosphorylation of vertebrate nonmuscle and smooth muscle myosin heavy chains and light chains. Mol Cell Biochem,1993.127-128:p.219-27.
    104. Matsumura, F., Regulation of myosin II during cytokinesis in higher eukaryotes. Trends Cell Biol,2005.15(7):p.371-7.
    105. Goeckeler, Z.M. and R.B. Wysolmerski, Myosin light chain kinase-regulated endothelial cell contraction:the relationship between isometric tension, actin polymerization, and myosin phosphorylation. J Cell Biol,1995.130(3):p.613-27.
    106. Kuo, J.C., et al., The tumor suppressor DAPK inhibits cell motility by blocking the integrin-mediated polarity pathway. J Cell Biol,2006.172(4):p.619-31.
    107. Shohat, G, et al., The DAP-kinase family of proteins:study of a novel group of calcium-regulated death-promoting kinases. Biochim Biophys Acta,2002.1600(1-2): p.45-50.
    108. Bereiter-Hahn, J., et al., Locomotion of Xenopus epidermis cells in primary culture. J Cell Sci,1981.52:p.289-311.
    109. Bray, D. and J.G. White, Cortical flow in animal cells. Science,1988.239(4842):p. 883-8.
    110. Charras, GT., et al., Non-equilibration of hydrostatic pressure in blebbing cells. Nature,2005.435(7040):p.365-9.
    111. Janson, L.W. and D.L. Taylor, In vitro models of tail contraction and cytoplasmic streaming in amoeboid cells. J Cell Biol,1993.123(2):p.345-56.
    112. Paluch, E., et al., Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments. Biophys J,2005.89(1):p.724-33.
    113. Paluch, E., et al., Dynamic modes of the cortical actomyosin gel during cell locomotion and division. Trends Cell Biol,2006.16(1):p.5-10.
    114. Marlow, F., et al., Zebrafish Rho kinase 2 acts downstream of Wntll to mediate cell polarity and effective convergence and extension movements. Curr Biol,2002.12(11): p.876-84.
    115. Kunwar, P.S., D.E. Siekhaus, and R. Lehmann, In vivo migration:a germ cell perspective. Annu Rev Cell Dev Biol,2006.22:p.237-65.
    116. Wang, C. and R. Lehmann, Nanos is the localized posterior determinant in Drosophila. Cell,1991.66(4):p.637-47.
    117. Wharton, R.P. and G Struhl, RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos. Cell,1991.67(5):p.955-67.
    118. Draper, B.W., C.M. McCallum, and C.B. Moens, nanosl is required to maintain oocyte production in adult zebrafish. Dev Biol,2007.305(2):p.589-98.
    119. Nasevicius, A. and S.C. Ekker, Effective targeted gene'knockdown'in zebrafish. Nat Genet,2000.26(2):p.216-20.
    120. Deshpande, G, et al., Nanos downregulates transcription and modulates CTD phosphorylation in the soma of early Drosophila embryos. Mech Dev,2005.122(5):p. 645-57.
    121. Moore, F.L., et al., Human Pumilio-2 is expressed in embryonic stem cells and germ cells and interacts with DAZ (Deleted in AZoospermia) and DAZ-like proteins. Proc Natl Acad Sci U S A,2003.100(2):p.538-43.
    122. Nakahata, S., et al., Involvement of Xenopus Pumilio in the translational regulation that is specific to cyclin B1 mRNA during oocyte maturation. Mech Dev,2003.120(8): p.865-80.
    123. Lublin, A.L. and T.C. Evans, The RNA-binding proteins PUF-5, PUF-6, and PUF-7 reveal multiple systems for maternal mRNA regulation during C. elegans oogenesis. Dev Biol,2007.303(2):p.635-49.
    124. Dubnau, J., et al., The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr Biol,2003.13(4):p.286-96.
    125. Schweers, B.A., K.J. Walters, and M. Stern, The Drosophila melanogaster translational repressor pumilio regulates neuronal excitability. Genetics,2002.161(3): p.1177-85.
    126. Murata, K., et al., Cloning of cDNAs for the precursor protein of a low-molecular-weight subunit of the inner layer of the egg envelope (chorion) of the fish Oryzias latipes. Dev Biol,1995.167(1):p.9-17.
    127. Meloni, S., et al., Egg envelope organisation in the icefish Chionodraco hamatus. Polar Biology,2004.27(10):p.586-594.
    128. Kanamori, A., et al., Genomic organization of ZP domain containing egg envelope genes in medaka (Oryzias latipes). Gene,2003.305(1):p.35-45.
    129. De Sousa, P.A., et al., Temporal patterns of embryonic gene expression and their dependence on oogenetic factors. Theriogenology,1998.49(1):p.115-128.
    130. Murata, K., et al., Cloning of cDNA and estrogen-induced hepatic gene expression for choriogenin H, a precursor protein of the fish egg envelope (chorion). Proc Natl Acad Sci U S A,1997.94(5):p.2050-5.
    131. Selman, K., et al., Stages of oocyte development in the zebrafish, Brachydanio rerio. Journal of Morphology,1993.218(2):p.203-224.
    132. Luoh, S.W., et al., Zfx mutation results in small animal size and reduced germ cell number in male and female mice. Development,1997.124(11):p.2275-84.
    133. Galan-Caridad, J.M., et al., Zfx controls the self-renewal of embryonic and hematopoietic stem cells. Cell,2007.129(2):p.345-357.
    134. Schneider-Gadicke, A., et al., Putative transcription activator with alternative isoforms encoded by human ZFX gene. Nature,1989.342(6250):p.708-11.
    135. Traut, W. and H. Winking, Meiotic chromosomes and stages of sex chromosome evolution in fish:zebrafish, platyfish and guppy. Chromosome Res,2001.9(8):p. 659-72.
    136. Wallace, B.M. and H. Wallace, Synaptonemal complex karyotype of zebrafish. Heredity,2003.90(2):p.136-40.
    137. von Hofsten, J. and P.E. Olsson, Zebrafish sex determination and differentiation: Involvement of FTZ-F1 genes. Reproductive Biology and Endocrinology,2005.3.
    138. Scapigliati, G, S. Meloni, and M. Mazzini, A monoclonal antibody against chorion proteins of the sea bass Dicentrarchus labrax (Linnaeus,1758):studies of chorion precursors and applicability in immunoassays. Biol Reprod,1999.60(4):p.783-9.
    139. Stevens, L.M., et al., The Drosophila embryonic patterning determinant torsolike is a component of the eggshell. Current Biology,2003.13(12):p.1058-1063.
    140. Lu, D., M.A. Searles, and A. Klug, Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition. Nature,2003.426(6962):p.96-100.
    141. Brown, R.S., Zinc finger proteins:getting a grip on RNA. Curr Opin Struct Biol,2005. 15(1):p.94-8.
    142. Dadgostar, H. and G. Cheng, Membrane localization of TRAF 3 enables JNK activation. J Biol Chem,2000.275(4):p.2539-44.
    143. Bandyopadhyay, K., et al., High affinity binding between laminin and laminin binding protein of Leishmania is stimulated by zinc and may involve laminin zinc-finger like sequences. European Journal of Biochemistry,2002.269(6):p.1622-1629.
    144. Fujita, T., et al., Molecular cloning and characterization of three distinct choriogenins in masu salmon, Oncorhynchus masou. Mol Reprod Dev,2008.75(7):p.1217-28.
    145. Darie, C.C., et al., Mass spectrometric evidence that proteolytic processing of rainbow trout egg vitelline envelope proteins takes place on the egg. Journal of Biological Chemistry,2005.280(45):p.37585-37598.
    146. Lyons, C.E., et al., Expression and structural analysis of a teleost homolog of a mammalian zona pellucida gene. J Biol Chem,1993.268(28):p.21351-8.
    147. Del Giacco, L., et al., Identification and spatial distribution of the mRNA encoding the gp49 component of the gilthead sea bream, Sparus aurata, egg envelope. Mol Reprod Dev,1998.49(1):p.58-69.
    148. Chang, Y.S., et al., Molecular cloning, structural analysis, and expression of carp ZP2 gene. Mol Reprod Dev,1997.46(3):p.258-67.
    149. Begovac, P.C.W., Robin A., Major vitelline envelope proteins in pipefish oocytes originate within the follicle and are associated with the Z3 layer Journal of Experimental Zoology,1989.251(1):p.18.
    150. Kanamori, A., Systematic identification of genes expressed during early oogenesis in medaka. Mol Reprod Dev,2000.55(1):p.31-6.
    151. Bausek, N., et al., The major chicken egg envelope protein ZP1 is different from ZPB and is synthesized in the liver. J Biol Chem,2000.275(37):p.28866-72.
    152. Baldacci, A., et al., Ultrastructure and proteins of the egg chorion of the antarctic fish Chionodraco hamatus (Teleostei, Notothenioidei). Polar Biology,2001.24(6):p. 417-421.
    153. Andrei, C., et al., The secretory route of the leaderless protein interleukin 1beta involves exocytosis of endolysosome-related vesicles. Mol Biol Cell,1999.10(5):p. 1463-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700