用户名: 密码: 验证码:
獐子岛养殖区扇贝质量与环境的相互关系及体内细菌消长特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于双壳贝类滤食的习性,在生长过程中极易富集环境中的有害因子,这不仅会损害贝类正常的生长生理和免疫活力,人们食用了被污染的贝类后也极易引发食物中毒。近年来,水产品安全己成为制约当前水产养殖业持续发展的关键问题之一。为进一步研究扇贝产品质量与养殖环境的相关关系,探讨细菌在贝类体内消长的特征和机理,本文在研究了獐子岛海域养殖环境、虾夷扇贝体内的污染物时空分布和综合评价的基础上,选择具有高污染风险的海洋细菌作为对象,研究了不同细菌在扇贝体内的累积及组织分布差异,不同饵料及投喂量对细菌净化的影响,并探讨了细菌的感染对虾夷扇贝消化酶和免疫酶活性的影响。研究结果对水产动物益生菌的开发具有一定指导作用,并为虾夷扇贝的健康、可持续养殖提供科学依据。主要研究结果如下:
     1.于2008年4、6、8、9、10和11月,在獐子岛虾夷扇贝养殖区共进行6个航次的调查,对海水、沉积物和不同养殖方式的贝类产品中重金属(Cu、Pb、Cd、Zn)、微生物(细菌总数和大肠菌群)含量进行了监测,同时监测了贝类毒素(麻痹性贝毒PSP和腹泻性贝毒DSP)含量。结果显示,獐子岛海域活性磷酸盐的含量范围是1.20-28.20μg/L,均符合《海水水质标准》二类标准值。无机氮(DIN)的含量范围是33.65-663.44μg/L,6月份所有测站和11月的近岸2个测站均超过二类标准值。海水和沉积物中重金属含量均符合《海水水质标准》和《海洋沉积物质量》的一类标准值。与大肠菌群相比,海水中的细菌总数与环境因子的相关性更强,与海水的溶解氧呈强负相关(R = -0.788),与pH(R = -0.584)和水温(R = -0.572)呈中等程度正相关。溶解氧是所调查项目中对海水细菌的主要限制因子,pH和水温对其也有一定影响。
     贝类监测结果显示:(1)虾夷扇贝体内4种重金属和2种贝毒含量均符合《海洋生物质量》的一类标准值,8月份Pb(0.11 mg/kg)和Cd(0.20 mg/kg)平均含量最高,Zn含量范围是12.73-19.81 mg/kg,11月平均含量最高。研究结果表明,虾夷扇贝累积重金属的能力与养殖方式、环境条件和贝类生理状态等具一定的相关关系。筏式1龄贝最容易累积Pb和Cu,而底播贝更容易累积Cd。贝类体内与沉积物中的铜和锌含量分别具有强正相关,而扇贝体内的铅与海水中的铅浓度呈现中等程度正相关(R = 0.436),与镉的相关性较差。(2)近岸的底播贝6月份PSP含量出现最高值(73.20μg/100g),11月份均未检测到PSP。PSP的平均含量与海水中活性磷酸盐呈强负相关(R = -0.655),活性磷酸盐可能是产PSP赤潮藻的主要限制因子。PSP在虾夷扇贝中肠腺中含量最高,约为全贝平均含量的4.92-8.17倍,鳃和外套膜次之,闭壳肌中最低,约为全贝平均含量的60%左右。(3)调查期间,贝类体内细菌总数的月平均值呈逐渐增加增加,至8月达到最大;9月降低,10月又有所回升,数量达3150 cfu/g,11月再次降低至调查期间最低值;大肠杆菌,在6月份的1号站贝类体内数量最高,每月均可检测到大肠菌群。筏式养殖的和龄期小的扇贝易于累积环境中的细菌。贝类体内的大肠菌群与海水中的大肠菌群具有显著的极强正相关(R = 0.947,P < 0.01),与贝类体内的细菌总数也有强正相关(R = 0.693),与海水中的pH呈强负相关,但与海水中的细菌总数关系不大。扇贝体内的大肠菌群(y, cfu/g)与海水中的大肠菌群(x1, cfu/mL)和扇贝体内细菌总数(x2,×103 cfu/g)的函数关系分别为y = 1.4689x1 + 2.6488 (R2 = 0.9422),y = 8.3402x2 + 2.5719 (R2 = 0.7786);扇贝体内的细菌总数(y,×103 cfu/g)与海水中大肠菌群(x, cfu/mL)的函数关系为y = 4.3612x2 - 75.457x + 326.62 (R2 = 0.9017)。
     獐子岛养殖区生态环境质量在4、11月为“优”,其他月份均维持在“良”的水平。獐子岛表层沉积物中重金属的潜在生态风险均为极低水平。虾夷扇贝全年质量总体为“良”,其制约因素主要为6-10月的PSP和大肠菌群。
     2.采用接触染毒法,研究了大肠杆菌和粪肠球菌在虾夷扇贝体内累积消长规律,结果表明,1-3d细菌累积量达到峰值;从生物富集系数(BCF)和累积量的增长率(RA)值可以看出,粪肠球菌处理组均高于大肠杆菌处理组,说明扇贝更容易从环境中累积粪肠球菌。从两种细菌在扇贝体内各组织中的分布看,消化道内含量最大,大肠杆菌和粪肠球菌在消化道中的含量分别比全部软组织含量高5.7倍和12.9倍;血淋巴中的含量最小,分别是全部软组织含量的6.0%和13.9%;血淋巴中粪肠球菌的含量高于大肠杆菌85倍。净化实验表明,净化24h时,投喂0.03%和0.05%螺旋藻组净化率高于盐藻投喂组,均在90%以上。因此,在净化初期,螺旋藻能提高净化率;在实验条件下,高浓度盐藻不利于扇贝体内细菌的净化。
     3.研究了扇贝体内细菌含量对其消化生理的影响。结果显示,暴露在高于3 log10CFU/mL大肠杆菌和粪肠球菌的环境中,扇贝消化酶活性明显受到了抑制。大肠杆菌对扇贝消化酶活性的抑制作用比粪肠球菌更为明显。采用接触染毒和注射染毒两种感染方式发现,接触染毒大肠杆菌组胰蛋白酶活性明显低于粪肠球菌,而注射染毒组之间无差异。
     4.采用二次接触染毒法、大肠杆菌和粪肠球菌全菌体抗原、基因组DNA和活菌注射法和接触染毒法,研究了扇贝体内细菌含量与扇贝免疫活性的关系。(1)二次染毒实验结果表明,实验1 d后,再次暴露大肠杆菌处理组扇贝血清中的SOD和ACP活性均明显高于一次暴露处理的扇贝(P < 0.05),但这种作用仅能维持在2周以内。这说明扇贝对细菌感染有一定的记忆能力,在再次感染时表现一定的“获得性免疫”的特征。
     (2)注射实验4 h后,各处理组血清中的SOD酶活性均高于空白组(Ct),但差异不显著(P > 0.05)。注射两种细菌细胞抗原组分后,扇贝血清中的SOD酶活性均呈现活菌>全菌体抗原>细菌基因组DNA注射组;而全菌体抗原和细菌基因组DNA注射组中,大肠杆菌处理组的SOD酶活性均低于粪肠球菌。72 h后,粪肠球菌全菌体抗原注射组的酶活性最高,明显高于大肠杆菌全菌体抗原处理组(P < 0.05),其他组之间没有显著差异。
     (3)细菌的累积对3龄扇贝免疫因子的影响实验结果表明,扇贝在长期暴露于细菌的环境中,血清中的免疫酶活性明显高于血细胞。粪肠球菌处理的扇贝ACP活性比大肠杆菌组低。
Bivalves tend to accumulate harmful substances and microorgnisms via food-chain transmission due to their filter-feeding habitual behavior. This biological characteristic not only affects negatively the growth and immunity of the shellfish, but may also threaten the consumers’safety. Seafood safety has become a key issue of sustainable development of aquaculture. In order to evaluate the relationship between food safety of scallop (Patinopecten yessoensis) and aquatic environmental factors in the cultural area of Zhangzidao Island, and to clarify the mechanism of uptake and depuration of bacteria in scallop, we have conducted experiments on environmental monitoring and evaluation of the relationship between the marine pollution level and food safety of the scallop, studying the accumulation of opportunistic bacteria and their distribution in different tissues of scallop, the effect of diets on the bacterial depuration in the scallop, and the effect of bacteria on activities of digestive and immune enzymes of the scallop. The findings of this study are useful for developing aquacultural probiotics and will provide scientific basis for sustainable aquaculture of bivalves. The results are as follows:
     1. In April, June, August, October and November, 2008, six samplings were carried out respectively, to detect the seasonal variation of shellfish toxins (paralytic shellfish poisoning toxin, PSP; diarrhoeic shellfish poisoning toxin, DSP), heavy metals (copper, Cu; lead, Pb; cadmium, Cd; zinc, Zn) and bacteria (total bacteria and coliforms) both in the seawater and the scallop Patinopecten yessoensis. The monitoring results showed that the active phosphate was at concentrations between 1.20-28.20μg/L, met the grade II of Seawater Quality Standard (GB3097-1997) throughout the year. Dissolved inorganic nitrogen (DIN) was at concentrations between 33.65-663.44μg/L, and all samples taken in June and two inshore samples taken in November greatly exceeded the grade II of Seawater Quality Standard. The heavy metal levels in seawater and sediment both met the grade I of Seawater Quality Standard and Marine Sediment Quality, respectively. Compared with coliforms, the number of total bacteria in seawater was more related to environmental factors, showing a strong negative correlation with dissolved oxygen in seawater (R= -0.788), and a positive medium correlation with pH (R = -0.584) and water temperature (R = -0.572). Dissolved oxygen was the main limiting factor of marine bacteria under the survey conditions; pH and water temperature also had a certain influence on it.
     Scallop monitoring results showed that the levels of four heavy metals and two shellfish poisoning toxins were in agreement with grade I of Marine Biological Quality, the average contents of Pb (0.11 mg/kg) and Cd (0.20 mg/kg) in August and that of Zn (19.81 mg/kg) in November were the highest during the survey. Accumulation of heavy metals was related to mariculture patterns, environmental conditions and the physiological state of the shellfish. Raft-cultured one-year scallop can accumulate Pb and Cu most easily, while the bottom-cultured was easier to accumulate Cd. Contents of Cu and Zn in scallop had a strong positive correlation with that of the sediment, and the content of Pb in scallop has a moderately positive correlation with that in sea water (R = 0.436), Cd showed a lack of correlation. PSP content in inshore bottom-cultured scallops (73.20μg/100g) showed a maximum in June, but was undetectable in November. The average level of PSP in scallop was negatively correlated with active phosphate in seawater (R =- 0.655), indicating that active phosphate may be a major limiting factor for toxic alga producing PSP. The highest level of PSP was detected in the digestive gland, about 4.92 to 8.17 times higher than the average content of total soft tissue, gills and mantle, ranked in a descending sequence, and the lowest was in the adductor, about 60 percent of the average content. For seasonal variations, two top levels of total bacteria in scallop were detected in August (3490 cfu/g) and in October (3150 cfu/g ); The highest number of coliforms in scallop (80 cfu/g) were found in station 1 in June, and coliforms were detectable until October. Both culture pattern and growth stage can affect the bacterial accumulation in scallop. Raft-cultured and young scallops were more easily contaminated by bacteria than the bottom-cultured ones. The coliforms in scallop were significantly correlated to those in seawater (R = 0.947, P < 0.01), and were also positively correlated with total bacteria in scallop (R = 0.693 ), but negatively correlated with the seawater pH, showing a lack of correlation with the total bacteria in seawater. Accordingly, the relationships between coliforms in scallop (y, cfu/g) and those in seawater (x1, cfu/mL), and the total bacteria in scallop (x2,×103 cfu/g) were expressed as follows: y = 1.4689x1 + 2.6488 (R2 = 0.9422), y = 8.3402x2 + 2.5719 (R2 = 0.7786); The relationship between total bacteria in scallop (y,×103 cfu/g) and coliforms in seawater (x, cfu/mL) was as follows: y = 4.3612x2 - 75.457x + 326.62 (R2 = 0.9017).
     In April and November the ecological environment quality was excellent in Zhangzidao Island cultural area, and maintained a―good‖level in other months. The potential ecological risk of heavy metals was at a bottom level in surface sediments, while the N/P value was most suitable for growth of harmful alga from August to October, the risk of harmful alga bloom was at a top level. The annual quality of scallop was at a―good‖level on the whole, the limiting factors of which were the contents of PSP toxin and coliforms in scallop tissues from June to October.
     2. After being challenged by exposures, the accumulation and depuration of Escherichia coli and Enterococcus faecalis in P. yessoensis were studied, and the results showed that the number of bacteria reached a top level at 1 to 3 d. The bioconcentration factor (BCF) and the rate of accumulation in E. faecalis treatments were both higher than those of E. coli treatments, suggesting that the scallop accumulated E. faecalis more easily from the environment. The largest numbers of both bacteria were detected in the digestive tract, and the smallest numbers were detected in hemolymph. The contents of E. coli and E. faecalis in the digestive tract were 5.7 and 12.9 times higher than those in the total soft tissue; while those in the hemolymph were 6.0 and 13.9 percent of the total soft tissue, respectively. Furthermore, the level of E. faecalis was about 85 times higher than that of E. coli in hemolymph. After 24h of depuration, the highest depuration rates were observed in all treatments. The depuration rate of both the 0.03% and 0.05% Spirulina-feeding treatments exceeded 90 percent, higher than other groups, while the latter group obtained a top rate of 93%. Therefore, in the early days of depuration, Spirulina can significantly increase the depuration rate, and under the experimental conditions feeding Dunaliella salina powder went against the depuration of the bacteria from the scallop.
     3. The effect of long-term exposure to bacteria on digestion of scallops was studied. The analysis of enzyme activities showed that after the long-term exposure to higher than 3 log10CFU/mL E. coli and E. faecalis, the digestive enzyme activity in scallop was obviously inhibited. Compared with E. faecalis, the inhibition of digestive enzyme activities was more significant after exposure to E. coli. The trypsin activity in the E. coli treatment was markedly lower than to the E. faecalis treatment after exposure challenge, while no significant difference was observed between the two treatments after injection challenge.
     4. By using exposure challenge, secondary exposure challenge and injection of antigens of disrupted whole cell and bacterial genomic DNA bacterial antigens, the relationship between bacterial retention and scallop immunity was studied. (1) The secondary exposure results showed that at 1 d of secondary exposure to E. coli, SOD and ACP activities in cell-free hemolymph significantly increased (P < 0.05), but this up-regulation of immune enzyme activity may maintain shorter than two weeks during the secondary challenge of the same bacteria.
     (2) At 4 h of injection, SOD activities in cell-free hemolymph of all treatment groups were higher than the control (Ct), but the difference was not significant (P > 0.05). After injected with different cell contents of the two bacteria, the rank of SOD activities in cell-free hemolymph was as follows: live bacterial cell > antigens of disrupted whole cell > bacterial genomic DNA. The SOD activity in scallop injected with live E. coli cells were lower than with E. faecalis cells, but it was vice versa among the treatments with the antigen of disrupted whole cell and bacterial genomic DNA. At 72 h, the SOD activity in scallop injected with antigens of disrupted whole cell was significantly higher than all the other groups (P < 0.05), no significant difference was observed between the other groups.
     (3) At 21 d of exposure and 18 h of injection, scallops were tested for the immune enzyme activities in haemolymph. After a 21d exposure to bacteria, the immune enzyme activities in cell-free hemolymph were significantly higher than those in hematocyte. Compared with E. coli treatment, E. faecalis-exposed scallops showed a lower ACP activity.
引文
曹际娟,卫锋,马惠蕊,唐守亭,储晓刚,方晓明,张艺兵.贝类毒素检测技术及研究进展.检验检疫科学,2004,14(1):54-57.
    陈勇,刘洁生.麻痹性贝毒分析技术的研究进展.卫生研究,1999,28(5):315.
    崔维兴.贝毒素的产生、危害及控制.中国商检,1998,7:23.
    樊景凤,宋立超,张喜昌,梁玉波,关道明.辽东湾沿岸海水及贝类中HAV分布的研究.海洋科学,2007,31(2):52-55.
    傅萌,颜天,周名江.麻痹性贝毒对海洋贝类的影响及加速贝类净化的研究进展.水产学报,2000,24(4):382.
    黄宏瑜,许悦生,王丽玲,等.珠海市售水产品中汞镉铅砷污染状况.中国公共卫生,1998,14(1):23-25
    黄宏瑜,许悦生,王丽玲等.珠海市售水产品中汞镉铅砷污染状况.中国公共卫生,1998,14(1):23-25.
    黄越峰,严维辉,唐建清,黄成.不同含量螺旋藻饲料对克氏原螯虾两种消化酶的影响.水产养殖,2009,10:31-33.
    江天久,江涛.中国沿海部分海域麻痹性贝毒研究.海洋与湖沼,2007,38(1): 36-41.
    张珂,张文志.水产品可追溯系统研究与应用.中国渔业经济,2009,27(5):107-112.
    李江平,李雯.指示生物及其在环境保护中的应用.云南环境科学,2001,20(1):51-54.
    励建荣,李学鹏,王丽,段青源.贝类对重金属的吸收转运与累积规律研究进展.水产科学,2007,26(1): 51-55.
    林凤翱,于占国,梁玉波,关道明,冯金祥.辽东湾沿岸贝类和环境中的粪大肠菌和细菌总数.海洋环境科学,2004,23(3):43-45.
    马敬军,曾名勇,周德庆.贝类毒素检验及排除方法的研究进展.中国海洋药物,2003,6: 41-45.
    乔庆林,蔡友琼,徐捷,姜朝军. UV系统净化贝类中大肠杆菌的研究.海洋环境科学,2005,24(1): 13-15.
    乔庆林.贝类卫生和净化技术的研究.中国水产,2001,10(3):61.
    沈晓盛,顾润润,于慧娟,李庆,黄冬梅.浙江海洋贝类微生物调查及其评估.海洋渔业,2005,27(1):64-67.
    孙虎山,李光友.双壳贝类参与免疫防御的体液因子.海洋科学,2001,25(4): 34-36.
    王方雨,张世萍.螺旋藻在水产养殖中的应用.水产科学,2005,24(1): 45-46.
    王焕玲,梁玉波,刘仁沿,许道艳.我国麻痹性贝毒的研究现状.水产科学,2008,27(7):374-378.
    汪健翔,俞永富,徐志一,俞顺章,胡善联.毛蚶传播甲型肝炎的病原学证据—核酸分子杂交和免疫电镜初步结果.上海医科大学学报,1988,15(5):384-386.
    萧嘉裕,陈矿安.含有麻痹性贝毒的赤潮双鞭藻的群体动态、生命周期毒素合成.中山大学学报,1998,3:24-29.
    徐捷,乔庆林,蔡友琼,等.菲律宾蛤仔养殖水体中大肠杆菌安全限量的研究.水产科技情报,2006,33(1):3-7.
    徐捷,乔庆林,蔡友琼,等.养殖水体与贝类体内大肠杆菌(Colibacillus)含量的关系研究.现代渔业信息,2005,20(4):16-17.
    杨华,娄永江.贝类净化现状及净化技术研究进展.中国水产,2004,5:72-73.
    杨美兰,林燕棠,贾晓平,全桂英.珠江口及邻近海域贝类麻痹性毒素调查.中国水产科学,2002,9(3): 283-285.
    曾呈奎,相建海.赤潮藻及其毒素生物监测新技术.海洋生物技术.济南:山东科学技术出版社,1998. p416-427.
    翟毓秀,方建光.我国养殖贝类开拓欧洲市场的思考.中国水产,2006,6: 10-12.
    张雷,郁昂,于杰.两种织纹螺对TTX和PSP摄食转移的初步研究.厦门大学学报(自然科学版),2007,46(增刊1):124-126.
    钟江.诺如病毒研究进展.微生物与感染,2007,2(3):191.
    Andrews, L. Jahncke, M., Mallikarjunan, K.. Low dose gamma irradiation to reduce pathogenic Vibrio in live oysters (Crassostrea virginica). J. Aquat. Food Prod. Technol. 2003. 12: 71–82.
    Ann-Soft Rehnstam-Holm, Bodil Hernroth. Shellfish and Public Health: A Swedish Perspective. Ambio, 2005, 34(2): 136-142.
    Appleton, H. 1991. Hepatitis. In public health aspects of seafood-borne zoonatic diseases. WHO Symposium. Germany: Hannover, 1989.
    Bachère, E., Mialhe, E., No?l, D., Boulo, V., Morvan, A., and Rodriguez, J., 1995. Knowledge and research prospects in marine mollusc and crustacean immunology. Aquaculture 132, 17-23.
    Balcázar, J. L., de Blas. I., Ruiz-Zarzuela. I., Cunningham, D., Vendrell, D., Múzquiz, J.L. The role of probiotics in aquaculture. Veterinary Microbiology, 2006, 114(3-4):173-186.
    Bates, A. E. Persistence, morphology, and nutritional state of a gastropod hosted bacterial symbiosis in different levels of hydrothermal vent flux. Mar Biol, 2007, 152:557-568.
    Bayen S., Thomas, G. O., Lee, H. K., Obbard, J. P. Organochlorine pesticides and heavy metals in green mussel, Perna Viridis In Singapore. Water, Air, and Soil Pollution, 2004,155: 103-116.
    Berenguer, J. A., Gonzalez, L., Jimenez, I., Legarda, T. M., Olmedo, J. B. and Burdaspal, P. A. The effect of commercial processing on the paralytic shellfish poison (PSP) content on naturally-contaminated Acanthocardia tuberculatum L. Food Add Contamin, 1993, 10: 217-230.
    Birkenhauer, J. M., Oliver, J. D. Effects of Refrigeration and Alcohol on the Load of Aeromonas hydrophila in Oysters. Journal of Food Protection, 2002, 65 (3): 560-562.
    Blodgett, R. J., Chirtel, S. J. Influence of water temperature and salinity on Vibrio vulnificus in Northern Gulf and Atlantic Coast oysters (Crassostrea virginica). Applied and Environmental Microbiology, 1998, 64(4):1459-1465.
    Bonadonna, L., Briancesco, R., Coccia, A. M., Semproni, M., Stewardson, D. Occurance of potential bacterial pathogens in coastal areas of the adriatic sea. Environmental Monitoring and Assessment, 2002, 77: 31-49.
    Canesi L, Betti M, Ciacci C, Lorusso LC, Gallo G, Pruzzo C. Interactions between Mytilus haemocytes and different strains of Escherichia coli and Vibrio cholerae O1 El Tor: role of kinase-mediated signaling. Cell Microbiol, 2005,7(5):667-74.
    Carballal, M.J., López, C., Azevedo, C., Villalba, A., 1997a. In vitro study of phagocytic ability of Mytilus galloprovincialis Lmk. Hemocytes. Fish and Shellfish Immunology 7(6), 403-416.
    Carballal, M.J., López, C., Azevedo, C., Villalba, A., 1997b, Enzymes involved in defence functions of hemeytes of mussel Mytilus galloprovincialis. Journal of Invertebrate Pathology 70(2), 96-105.
    Choquet G, Soudant P, Lambert C, Nicolas JL, Paillard C. Reduction of adhesion properties of Ruditapes philippinarum hemocytes exposed to Vibrio tapetis. Dis Aquat Organ. 2003, 57(1-2):109-116.
    Chen, Y. W., Belzile, N., Guun, J. M. Antagonistic effect of selenium on mercury assimilation by fish populations near Sudbury metal smelters. Limnol Oceanogr,2001,46:1814-1818.
    Costa, P. R., Rosa, R., Sampayo, M. A. M. Tissue distribution of the amnesic shell?sh toxin, domoic acid, in Octopus vulgaris from the Portuguese coast. Marine Biology, 2004,144:971-976.
    Crisp, D. J., Yule, A. B., White, K. N. Feeding of oyster larvae: the functional response, energy budget and a comparison with mussel larvae. Journal of the Marine Biological Association of the United Kingdom,1985, 65:759-783.
    Croci, L. Cozzi, L. Suffredini, E. Ciccaglioni, G., Toti, L., Milandri, A., Ceredi, A., Benzi, M., Poletti, R. Characterization of microalgae and associated bacteria collected from shellfish harvesting areas. Harmful Algae, 2006. 5: 266–274.
    de Burgh, M. E., Singla, C.L. Bacterial colonization and endocytosis on the gill of a new limpet species from a hydrothermal vent. Mar Biol, 1984, 84:1-6.
    FAO Fisheries and Aquaculture Information and Statistics Service. 2009. Aquaculture production 1950-2007. FISHSTAT Plus-Universal software for fishery statistical time series [online or CD-ROM]. http://www.fao.org/fi/statist /FISOFT/FISHPLUS.asp
    Fei, L.H., Shao Y.Q., Li Y. Comparative analysis of the activity of SOD, CAT and MPO in different tissues of the scallop Chlamys farreri. Transactions of Oceanology and Limnology, 2008, 3:128-131.
    Feldhusen, F. Seafood transmitted disease. Dtsch Tierarztl Wochenschr, 1990, 106: 319-325.
    Fisher, W. S. Structure and functions of oyster hemocytes. In: Immunity in Invertebrates (M. Brehehn, Ed.), Springer, Berlin, 1986. p. 25-35.
    Fishern, S., Reinfelder, J. R. Metal speciation and biavailability in aquatic systems. New York: Wiley,1995. p363-406.
    Griffin, D. W., Donaldson, K. A., Paul, J. H., Rose, J. Pathogenic human enteric viruses in coastal water. Clinical Microbiology Reviews, 2003, 16:129-143.
    Hariharan, H., Giles, J. S., Heaney, S. B., Arsenault, G., McNair, N., Rainnie, D. J. Bacteriological studies on mussels and oysters from six river systems in PrinceEdward island, Canada. Journal of Shellfish Research, 1995, 14: 527-532.
    Hayakawa, I., Kanno, T., Yoshiyama, K., Fujio, Y. Oscillatory compared with continuous high pressure sterilization of Bacillus stearothermophilus spores. Journal of Food Science, 1994, 59: 164-167.
    Hong, X. T., Xiang, L. X., Shao, J. Z. The immunostimulating effect of bacterial genomic DNA on the innate immune responses of bivalve mussel, Hyriopsis cumingii Lea. Fish and Shellfish Immunology, 2006, 21: 357-364.
    Huss, H. H., Reilly, A., Karim Ben Embarek, P. Prevention and control of hazards in seafood. Food Control, 2000. 11: 149-156.
    Jacq, E., Moal, J., Samain, J. F., Corre, S., Daniel, J. Y., Nicolas, J. L., Cochard, J. C., Fera, P. Ecologie bactérienne dans les bacs d'élevage larvaire de coquilles Saint-Jacques (Pecten maximus), Ifremer, Actes de colloques,1992, 14:5-20.
    Jakabi, M., Gelli, D. S., Torre, J. C. M. D., Rodas, M. A. B., Franco, B. D. G. M., Destro, M. T., Landgraf, M.. Inactivation by ionizing radiation of Salmonella enteritidis, Salmonella infantis, and Vibrio parahaemolyticus in oyster (Crassostrea brasiliana). J. Food Prot, 2003, 66:1025-1029.
    Kang, D. H., Fung, D. Y. C. Application of thin agar layer method for recovery of injured Salmonella typhimurium. Int. J. Food Microbiol, 2000, 54:127-132.
    Karamoko, Y., Ibenyassine, K., Ait Mhand, R., Ennaji, M. M. Assessment of enterovirus contamination in mussel samples from Morocco. World Journal of Microbiology and Biotechnology, 2006, 22(2):105-108.
    Kingsley, D. H., Hoover, D. G., Papfragkou, E., Richards, G. P. Inactivation of hepatitis A virus and a calicivirus by high hydrostatic pressure. Journal of Food Protection, 2002, 65: 1605-1609.
    Klaverkamp, J. F., Hodgins, D. A ., Lutz, A. Selenite toxicity and mercury-selenium interactions in juvenile fish. Arch Environ Contam Toxicol,1983,12:405-413.
    Koopmans, M., Duizer, E. Food-borne viruses: an emerging problem. International Journal of Food Microbiology, 2004, 90: 23-41.
    Kueh, C.S.W., Chan, K. Y. Bacteria in bivalve shellfish with special reference to the oyster. Journal of Applied Bacteriology, 1985, 59: 41-47.
    La Peyre, J.F., Chu, F.E., Meyers, J.M. Hemocytic and humoral activities of eastern and Pacific oysters following challenge by the protozoan Perkinsus marinus. Fish and Shellfish Immunology, 1995, 5(3):179-190.
    Li, C.H., Song, L. S., Zhao, J. M., Zhu, L., Zou, H. B., Zhang, H., Wang, H., Cai, Z. H. Preliminary study on a potential antibacterial peptide derived from histone H2A in hemocytes of scallop Chlamys farreri. Fish and Shellfish Immunology, 2007, 22(6): 663-672.
    Li, H., Parisi, M. G., Toubiana, M., Cammarata, M., Roch, P. Lysozyme gene expression and hemocyte behaviour in the Mediterranean mussel, Mytilus galloprovincialis, after injection of various bacteria or temperature stresses. Fish Shellfish Immunol, 2008, 25(1-2):143-152.
    Maginot, N., Samain, J. E, Daniel, J. Y., Le Coz, J. R., Moal, J. Kinetic properties of lysozyme from the digestive glands of Ruditapes philippinarum. Océanis, 1989,15: 451-464.
    Marden, P. E., Hermanson, M., Kjelleberg, S. Incorporation of tritiated thymidine by marine bacterial isolates when undergoing a starvation survival response. Archives of Microbiology, 1988, 149:427-432.
    Marino A, Lombardo L, Fiorentino C, Orlandella, B., Monticelli, L., Nostro, A., Alonzo, V. Uptake of Escherichia coli, Vibrio cholerae non-O1 and Enterococcus durans by, and depuration of mussels (Mytilus galloprovincialis). International Journal of Food Microbiology, 2005,99(3): 281-286.
    McHenery, J. G., Birkbec, T. H. Distribution of lysozyme like activity in 30 bivalve species. Comparative Biochemistry and Physiology, 1986, 85B:581-584.
    Moal, J., Samain, J. F., Corre, S., Nicolas, J. L., Glynn, A. Bacterial nutrition of great scallop larvae. Aquaculture International, 1996, 4:215-223.
    Morita, R. Y. Starvation and miniaturisation of heterotrophs with special emphasis on maintenance of the starved viable state. Bacteria in Their Natural Environment (eds M.M. Fletcher and G.D. Floodgate) Academic Press: London, 1985, pp. 111-130.
    Mortensen, S. H., Glette, J. Phagocytic activity of scallop (Pecten maximus) hemocytes maintained in vitro. Fish and Shellfish Immunology, 1996, 6(2), 111-121.
    Motes, M. L., DePaola, A., Cook, D. W., Veazey, J. E., Hunsucker, J. C., Garthright, W. E., Blodgett, R. J., Chirtel, S. J. Influence of water temperature and salinity on Vibrio vulnificus in Northern Gulf and Atlantic Coast oysters (Crassostrea virginica). Applied and Environmental Microbiology, 1998, 64(4): 1459-1465.
    Muller, W. E. G., Rinkevich, B. Invertebrate immunology. Progress in Molecular andSubcellular Biology, 1996, 15: 247.
    Munoz, J. Foodborne disease: seafood. Pediatr Infect Dis J, 1999, 18: 910-911.
    Murphree, R. L., Tamplin, M. L. Uptake and Retention of Vibrio cholerae O1 in the Eastern Oyster, Crassostrea virginica. Applied and Environmental Microbiology, 1991, 61(10): 3656-3660.
    Phillips D.J.H. Use of macroalgae and invertebrates as monitors of metal levels in estuaries and coastal water. In: Furness RW, Rainbow PS (eds) Heavy Metals in the Marine Environment. CRC Press, Boca Raton, FL, 1990. p102-119.
    Pontefract, R. D., Bishai, F. R., Hockin, J., Bergeron, G., Parent, R. Norwalk-like viruses associated with agastroenteritis outbreak following oyster consumption. J. Food. Prot, 1993, 56: 604-607.
    Power, U. F., Collins, J. K. Tissue Distribution of a Coliphage and Escherichia coli in Mussels after Contamination and Depuration. Applied and Environmental Microbiology, 1990, 56(3):803-807.
    Prakash, A., Medcof, J. C., Tenment, A. D. Paralytic shellfish poisoning in Easter Canada. Bul1. Fish. Res. Board Canada,1971,15(1):82.
    Raa, J. 1996. The use of immunostimulatory substances in fish and shellfish farming. Review of Fisheries Science 4, 229–288.
    Ravn H. Toxincological and chemical aspects of paralytic shellfish poisoning (PSP). Vigo: Intergovernment Oceanographic Commisson of UNESCO, 1995, 32(4):55.
    Richards, G. P. Enteric virus contamination of foods through industrial practices: a primer on intervention strategies. Journal of Industrial Microbiology & Biotechnology, 2001, 27:117-125.
    Rinkevich, B., Muller, W. E. G. Invertebrate immunology. Progress in Molecular and Subcellular Biology, 1996, 15: 247.
    Rippey, S. R. Infectious diseases associated with molluscan shellfish consumption. Clin Microbiol Rev, 1994, 7:419-425.
    Ronald W, Pitman. Wastewater Bacteria and Shellfish. Bulletin of the Southern California Academy of Sciences,1995,94(1): 92-102.
    Seguineau, C., Laschi-Locquerie, A., Leclerq, M., Samain, J. F., Moal, J. F., Fayol, V. Vitamin transfer from algal diet to Pecten maximus larvae. Journal of Marine Biotechnology, 1993,1: 67-71.
    Smelt, J. P. P. M. Recent advances in the microbiology of high pressure processing. Trends in Food Science and Technology, 1998,9: 152-158.
    ?yvokien?, J., Mick?nien?, L., Bar?ien?, J. Bacteria in the digestive system of molluscs from Lithuanian lakes. Ekologija, 2008, 54(4): 271-277.
    Takahashi, H., Iwade, Y., Konuma, H., Hara-Kudo, Y. Development of a quantitative real-time PCR method for estimation of the total number of Vibrio
    parahaemolyticus in contaminated shellfish and seawater. J. Food Prot, 2005, 68:1083-1088.
    Verschuere, L., Rombaut, G., Sorgeloos, P., Verstraete, W. Probiotic Bacteria as Biological Control Agents in Aquaculture. Microbiology and Molecular Biology Reviews, 2000,64 (4):655-671.
    Wallace, B. J., Guzewich, J. J., Cambridge, M., Altekruse, S., Morse, D. L . Seafood associated outbreaks in New York, 1980-1994. Am J Prev Med, 1999. 17: 48–54.
    Williams, H. R., Macey, B. M., Burnett, L. E., Burnett, K. G. Differential localization and bacteriostasis of Vibrio campbellii among tissues of the Eastern oyster, Crassostrea virginica. Developmental and Comparative Immunology, 2009, 33(4): 592-600.
    Wu, J. Y. Assessing surface water quality of the Yangtze Estuary with genotoxicity data. Mar Pollut Bull, 2005,50: 1661-1667.
    Xing, J., Zhan, W. B., Zhou, Li. Endoenzymes associated with hemocyte types in the scallop (Chlamys farreri). Fish and Shellfish Immunology, 2002, 13(4), 271-278.
    Zobell, C. E., Feltham, C. B. Bacteria as food for certain marine invertebrates. Journal of Marine Research,1937, 1:312-327.
    白洁,时瑶,宋亮,李正炎.黄海西北部浮游细菌生物量分布特征及其与环境因子的关系.中国海洋大学学报,2009,39(4):592-596.
    白洁,李岿然,李正炎,孙军,魏皓,刘素美,吴增茂.渤海春季浮游细菌分布与生态环境因子的关系.青岛海洋大学学报,2003,33(6):841-846.
    陈皓文.桑沟湾细菌的研究.海岸工程,2001,20(1): 72-80.
    陈皓文.珠江三角洲及珠江口海区的空气微生物含量.热带海洋,1996,15(3):76-80.
    程军利,张鹰,张东,刘吉堂,陈双双.海州湾赤潮发生期生态环境要素分析.海洋科学进展,2009,27(2):217-223.
    董婧,刘海映,毕远溥,蒋双,王文波,李培军.黄海北部近岸的浮游甲藻生态.海洋水产研究,2002,23(4):46-50.
    杜佳垠.大连黄海沿岸海域涡鞭毛藻类有毒有害赤潮生物.北京水产,2004,6: 9-10.
    杜佳垠.大连黄海沿岸海域针胞藻类有毒有害赤潮生物.河北渔业,2005,139:9-10.
    费岳军,蒋红.舟山朱家尖海域角毛藻赤潮与环境因子关系的研究.海洋环境科学,2008,27(4):38-41.
    高磊,李道季.黄、东海西部营养盐浓度近几十年来的变化.海洋科学,2009,33(5): 64-69.
    高如承,尤玉博.福州市沿海双壳类动物重金属研究.福建师范大学学报(自然科学版),1992, 8(1):83-88.
    贺广凯.黄渤海沿岸经济贝类体中重金属残留量水平.中国环境科学,1996,l6(2): 96-100.
    洪专,高亚辉,易瑞灶,许晨.赤潮毒藻塔玛亚历山大藻研究进展.海洋科学,2006,30(11): 82-87.
    蒋增杰,方建光,张继红,毛玉泽,王巍.桑沟湾沉积物重金属含量分布及潜在生态危害评价.农业环境科学学报, 2008, 27(1):301-305.
    孔凡洲,徐子钧,等.黄渤海海域贝类麻痹性贝毒的检测与分析.中国海洋大学学报,2007,37(3):305-309.
    励建荣,李学鹏,王丽,段青源.贝类对重金属的吸收转运与累积规律研究进展.水产科学,2007,26(1): 51-55.
    李江平,李雯.指示生物及其在环境保护中的应用.云南环境科学,2001,20(1): 51-54.
    李文姬,薛真福,李华琳,张明,罗鸣,王诗欢,付洪军,吴厚岩.虾夷扇贝海区采苗技术初步研究.水产科学,2007,26(5): 259-262.
    林凤翱,于占国,梁玉波,关道明,冯金祥.辽东湾沿岸贝类和环境中的粪大肠菌和细菌总数.海洋环境科学,2004,23(3):43-45.
    林凤翱,卞正和,关春江,冯志权,马明辉,贺杰,张映.渤海、黄海沿岸几种经济贝类及其生存环境中的异养细菌.海洋学报(中文版),2002,24(2): 101-106.
    刘海映,董婧,王文波,李陪军.黄海北部对虾放流水域营养状况分析.中国水产学会学术年会论文集.北京:海洋出版社,2000a. 326-331.
    刘海映,董婧,王文波.黄海北部辽宁沿岸对虾放流水域的IN和IP.水产科学,2000b,19(3):8-11.
    马元庆,唐学玺,刘义豪,任利华,靳洋,刘小静.山东半岛近海贝类污染状况调查与评价.海洋环境科学,2009,28(5):562-565.
    王保栋,韩彬.近岸生态环境质量综合评价方法及其应用.海洋科学进展, 2009, 27(3):400-404.
    王焕玲,梁玉波,刘仁沿,许道艳.我国麻痹性贝毒的研究现状.水产科学,2008,27(7):374-378.
    王菊英,马德毅,鲍永恩,刘广远,刘娟.黄海和东海海域沉积物的环境质量评价.海洋环境科学,2003,22(4): 21-24.
    王美珍,王国良,薛超波,董志国,潘雪央.杭州湾南岸滩涂贝类养殖环境中微生物数量分布及其类群.水产学报,2005,29(5):682-687.
    王年斌,薛克,马志强,周遵春,宛立.黄海北部河口区活性磷酸盐含量分布动态与环境质量评价.中国水产科学,2004,11(3): 272-275.
    王年斌,薛克,马志强,周遵春,宛立.黄海北部河口区无机氮含量分布动态与环境质量评价.大连水产学院学报,2003,18(4): 282-286.
    文世勇,赵冬至,赵玲,杨建洪,张丰收,高树刚.基于氮磷比的赤潮灾害危险度评估方法研究.中山大学学报自然版,2009,48(2): 84-89.
    萧嘉裕,陈矿安.含有麻痹性贝毒的赤潮双鞭藻的群体动态、生命周期及毒素合成.中山大学学报,1998,3:24-29.
    徐辉,王日东.大连湾海域赤潮状况及预测模式研究.科技咨询导报,2007, 16:87. 许勇,张鹰,刘吉堂,张东.基于Logistic回归的海州湾赤潮环境要素阈值研究. 海洋通报,2009,28(3):70-75.
    杨美兰,林燕棠,贾晓平,全桂英.珠江口及邻近海域贝类麻痹性毒素调查.中国水产科学,2002,9(3): 283-285.
    张喆,孟祥红,肖慧,谭篅觯2ǎ蒲х?青岛近岸水体夏冬季浮游病毒、细菌分布特征及其与环境因子的关系.武汉大学学报(理学版),2008,54(2):209-214.
    Blodgett, R. J., and Chirtel, S. J. Influence of water temperature and salinity on Vibrio vulnificus in Northern Gulf and Atlantic Coast oysters (Crassostrea virginica). Applied and Environmental Microbiology, 1998, 64(4), 1459-1465.
    Bonadonna, L., Briancesco, R., Coccia, A.M., Semproni, M., Stewardson, D. Occurance of potential bacterial pathogens in coastal areas of the adriatic sea. Environmental Monitoring and Assessment, 2002, 77: 31-49.
    Fishern, S., Reinfelder, J. R. Metal speciation and biavailability in aquatic systems. New York: Wiley. 1995, 363-406.
    Hong, X. T., Xiang, L. X., Shao, J. Z. The immunostimulating effect of bacterial genomic DNA on the innate immune responses of bivalve mussel, Hyriopsis cumingii Lea. Fish and Shellfish Immunology, 2006, 21: 357-364.
    Hosoi, Y., Kido, Y., Nagira, H., Yoshida, H., Bouda, Y. Analysis of water pollution and evaluation of purification measures in an urban river basin. Water Science and Technology, 1996, 34 (12) :33–40.
    Laura, D. M., Laura E. J., Harvell, C. D. Innate Immunity, Environmental Drivers, and Disease Ecology of Marine and Freshwater Invertebrates. Annual Review of Ecology, Evolution, and Systematics, 2006, 37: 251-288.
    Murphree, R. L., Tamplin, M. L. Uptake and Retention of Vibrio cholerae O1 in the Eastern Oyster, Crassostrea virginica. Applied and Environmental Microbiology, 1991, 61(10), 3656-3660.
    Prakash, A., Medcof, J. C. Tenment, A. D. Paralytic shellfish poisoning in Easter Canada.Bull Fish Res Board Canada, 1971, 15(1): 82.
    Schaeffer, D. J., Cox, D. K. Establishing ecosystem threshold criteria In: Costanza, R., Norton, B. G. and Haskell, B. D. eds Ecosystem health: new goals for environmental management. Washington: Island Press, 1992.
    Tallon, P., Magajna, B., Lofranco, C., Leung, K. T. Microbial indicators of faecal contamination in water: a current perspective. Water, Air, and Soil Pollution, 2005, 166: 139-166.
    黄越峰,严维辉,唐建清,黄成.不同含量螺旋藻饲料对克氏原螯虾两种消化酶的影响.水产养殖,2009,10:31-33.
    蒋增杰,方建光,门强,王巍.桑沟湾贝类筏式养殖与环境相互作用研究.南方水产,2006,2(1): 23-29.
    李文姬,薛真福,李华琳,张明,罗鸣,王诗欢,付洪军,吴厚岩.虾夷扇贝海区采苗技术初步研究.水产科学,2007,26(5): 259-262.
    宋庆云,罗挽涛,王文兴,等.扇贝的养殖环境及其体内的细菌学分析.黄渤海海洋,1997,15(3): 26-30.
    宋微波,王崇明,王秀华,李赟,李筠.栉孔扇贝大规模死亡的病原研究新进展. 海洋科学,2001,25(12): 23-26.
    王方雨,张世萍.螺旋藻在水产养殖中的应用.水产科学,2005,24(1): 45-46.
    徐捷,乔庆林,蔡友琼,姜朝军.菲律宾蛤仔养殖水体中大肠杆菌安全限量的研究.水产科技情报,2006,33(1): 3-7.
    Blodgett, R. J., Chirtel, S. J. Influence of water temperature and salinity on Vibrio vulnificus in Northern Gulf and Atlantic Coast oysters (Crassostrea virginica). Applied and Environmental Microbiology, 1998, 64(4):1459-1465.
    Bonadonna, L., Briancesco, R., Coccia, A. M., Semproni, M., Stewardson, D. Occurance of potential bacterial pathogens in coastal areas of the adriatic sea. Environmental Monitoring and Assessment, 2002, 77: 31-49.
    Croci, L., Suffredini, E., Cozzi, L., Toti, L. Effects of depuration of molluscs experimentally contaminated with Escherichia coli, Vibrio cholerae O1 and Vibrio parahaemolyticus. Journal of Applied Microbiology, 2002, 92:460-465.
    Girolamo, Di. R., Liston, J., Matches, J. Uptake and elimination of poliovirus by West Coast oysters. Appl Environ Microbiol, 1975, 29:260-264.
    Hariharan, H., Giles, J. S., Heaney, S. B., Arsenault, G., McNair, N., Rainnie, D. J. Bacteriological studies on mussels and oysters from six river systems in Prince Edward island, Canada. Journal of Shellfish Research, 1995, 14: 527-532.
    Hong, X. T., Xiang, L. X., Shao, J. Z. The immunostimulating effect of bacterial genomic DNA on the innate immune responses of bivalve mussel, Hyriopsis cumingii Lea. Fish and Shellfish Immunology, 2006, 21: 357-364.
    Kueh, C.S.W., Chan, K. Y. Bacteria in bivalve shellfish with special reference to theoyster. Journal of Applied Bacteriology, 1985, 59: 41-47.
    Laura, D. M., Laura, E. J., Harvell, C. D. Innate Immunity, Environmental Drivers, and Disease Ecology of Marine and Freshwater Invertebrates. Annual Review of Ecology, Evolution, and Systematics, 2006, 37: 251-288.
    Marino, A., Lombardo, L., Fiorentino, C., Orlandella, B., Monticelli, L., Nostro, A., Alonzo, V. Uptake of Escherichia coli, Vibrio cholerae non-O1 and Enterococcus durans by, and depuration of mussels (Mytilus galloprovincialis). International Journal of Food Microbiology, 2005, 99(3): 281-286.
    Motes, M. L., DePaola, A., Cook, D. W., Veazey, J. E., Hunsucker, J. C., Garthright, W. E., Blodgett, R. J., Chirtel, S. J. Influence of water temperature and salinity on Vibrio vulnificus in Northern Gulf and Atlantic Coast oysters (Crassostrea virginica). Applied and Environmental Microbiology, 1998, 64(4): 1459-1465.
    Muller, W. E. G., Rinkevich, B. Invertebrate immunology. Progress in Molecular and Subcellular Biology, 1996,15: 247.
    Murphree, R. L., Tamplin, M. L. Uptake and Retention of Vibrio cholerae O1 in the Eastern Oyster, Crassostrea virginica. Applied and Environmental Microbiology, 1991, 61(10), 3656-3660.
    Power, U. F., Collins, J. K. Differential depuration of poliovirus, Escherichia coli, and a coliphage by the common mussel, Mytilus edulis. Appl Environ Microbiol, 1989, 55(6):1386-1390.
    Power, U. F., Collins, J. K. Tissue Distribution of a Coliphage and Escherichia coli in Mussels after Contamination and Depuration. Applied and Environmental Microbiology, 1990, 56(3):803-807.
    Pruzzo, C., Gallo, G., and Canesi, L. Persistence of vibrios in marine bivalves: the role of interactions with haemolymph components. Environmental Microbiology, 2005, 7(6): 761-772.
    Tallon, P., Magajna, B., Lofranco, C., Leung, K.T. Microbial indicators of faecal contamination in water: a current perspective. Water, Air, and Soil Pollution, 2005, 166: 139-166.
    Williams, H. R., Macey, B. M., Burnett, L. E., Burnett, K. G. Differential localization and bacteriostasis of Vibrio campbellii among tissues of the Eastern oyster, Crassostrea virginica. Developmental and Comparative Immunology, 2009, 33(4): 592-600.
    蒋长苗,鲍传和,马元山.草鱼肠道正常菌群与肠炎病原菌关系的初步研究.吉林农业大学学报, 1992, 14(1): 55-58.
    金宗濂.功能食品评定原理及方法.北京:北京大学出版社,1995. 康白主编.微生态学.大连出版杜.1988:345-383.
    施琼芳.鱼类生理学[M].北京:农业出版社,1991, 126-127.
    汤伏生,朱晓燕,张兴忠.鲤鱼肠道细菌及其淀粉酶对宿主消化的影响.水产学报. 1994, 18(3):177-122.
    Bardouil, M., Bohec, M., Bougrier, S., Lassus, P., Truquet, P. Feeding responses of Crassostrea gigas (Thunberg) to inclusion of different proportions of toxic dinoflagellates in their diet. Oceanologica Acta, 1996, 19:177-182.
    Bates, A. E. Persistence, morphology, and nutritional state of a gastropod hosted bacterial symbiosis in different levels of hydrothermal vent flux. Mar Biol, 2007, 152:557-568.
    Bradford, M. M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding, 1976, 72: 248-254.
    Crisp, D. J., Yule, A. B., White, K. N. Feeding of oyster larvae: the functional response, energy budget and a comparison with mussel larvae. Journal of the Marine Biological Association of the United Kingdom,1985, 65:759-783.
    de Burgh, M. E., Singla, C.L. Bacterial colonization and endocytosis on the gill of a new limpet species from a hydrothermal vent. Mar Biol, 1984, 84:1-6.
    Gillor, O., Etzion, A., Riley, M.A. The dual role of bacteriocins as anti- and probiotics. Applied Microbiology and Biotechnology, 2008, 81(4):591-606.
    Herry, A., Le Pennec, M., Johnson, M. Bacteria-host relationships in the bivalve mollusc Loripes lucinalis. Acta Microbiol Immunol Hung, 1994, 41(3): 273-281.
    Jacq, E., Moal, J., Samain, J. F., Corre, S., Daniel, J. Y., Nicolas, J. L., Cochard, J. C., Fera, P. Ecologie bactérienne dans les bacs d'élevage larvaire de coquilles Saint-Jacques (Pecten maximus), Ifremer, Actes de colloques,1992, 14:5-20.
    Maginot, N., Samain, J. E, Daniel, J. Y., Le Coz, J. R., Moal, J. Kinetic properties of lysozyme from the digestive glands of Ruditapes philippinarum. Océanis, 1989,15: 451-464.
    Marden, P. E., Hermanson, M., Kjelleberg, S. Incorporation of tritiated thymidine by marine bacterial isolates when undergoing a starvation survival response. Archives of Microbiology, 1988, 149:427-432.
    McHenery, J. G., Birkbec, T. H. Distribution of lysozyme like activity in 30 bivalve species. Comparative Biochemistry and Physiology, 1986, 85B:581-584.
    Moal, J., Samain, J. F., Corre, S., Nicolas, J. L., Glynn, A. Bacterial nutrition of great scallop larvae. Aquaculture International, 1996, 4:215-223.
    Morita, R. Y. Starvation and miniaturisation of heterotrophs with special emphasis on maintenance of the starved viable state. Bacteria in Their Natural Environment (eds M.M. Fletcher and G.D. Floodgate) Academic Press: London, 1985, pp. 111-130.
    Prieur, D. Experimental studies of trophic relationships between marine bacteria and bivalve molluscs. Kieler Meeresforschung, Sonderh, 1981,5:376-383.
    Seguineau, C., Laschi-Locquerie, A., Leclerq, M., Samain, J. F., Moal, J. F., Fayol, V. Vitamin transfer from algal diet to Pecten maximus larvae. Journal of Marine Biotechnology, 1993,1: 67-71.
    Shumway, S. E. Toxic algae. World Aqua, 1989,20:65-74.
    ?yvokien?, J., Mick?nien?, L., Bar?ien?, J. Bacteria in the digestive system of molluscs from Lithuanian lakes. Ekologija, 2008, 54(4): 271-277.
    Wildish, D., Lassus, P., Martin, J., Saulnier. A., Bardouil, M. Effect of the PSP-causing dinoflagellate, Alexandrium sp., on the initial feeding response of Crassostrea gigas. Aquatic Living Resources, 1998, 11: 35-43.
    Worthington, V. Worthington Enzyme Manual. Enzymes and Related Biochemicals. Worthington Chemical, New Jersey. 1993: pp 399.
    Zobell, C. E., Feltham, C. B. Bacteria as food for certain marine invertebrates. Journal of Marine Research,1937, 1:312-327.
    李海兵,宋晓玲,李赟,韦嵩.水产动物益生菌研究进展.动物医学进展,2008,29(5):94-99.
    李金钟.肠球菌分类与鉴定新进展.临床检验杂志, 2006,24(3):228-230.
    牟海津,江晓路,刘树青,管华诗.免疫多糖对栉孔扇贝酸性磷酸酶、碱性磷酸酶和超氧化物歧化酶活性的影响.青岛海洋大学学报, 1999,29(3):463-468.
    孙德文,詹勇,许梓荣.微生态制剂在水产养殖中的应用.淡水渔业,2002,32(3): 54-57.
    孙虎山,李光友.大肠杆菌感染后栉孔扇贝血淋巴中7种酶活力的变化.海洋科学,1999,5:40-44.
    孙虎山,李光友.栉孔扇贝血淋巴中超氧化物岐化酶和过氧化氢酶活性及其性质的研究.海洋与湖沼,2000,31(3):259-265.
    王娜,何苗,施汉昌.水环境中大肠杆菌多特征抗原及抗体的制备研究.环境科学,2007,28(5):1142-1146.
    Blodgett, R. J., Chirtel, S. J. Influence of water temperature and salinity on Vibrio vulnificus in Northern Gulf and Atlantic Coast oysters (Crassostrea virginica). Applied and Environmental Microbiology, 1998, 64(4):1459-1465.
    Canesi L, Betti M, Ciacci C, Lorusso LC, Gallo G, Pruzzo C. Interactions between Mytilus haemocytes and different strains of Escherichia coli and Vibrio cholerae O1 El Tor: role of kinase-mediated signaling. Cell Microbiol, 2005,7(5):667-74. Carballal, M.J., López, C., Azevedo, C., Villalba, A. In vitro study of phagocytic
    ability of Mytilus galloprovincialis Lmk. Hemocytes. Fish and Shellfish Immunology, 1997a, 7(6):403-416.
    Carballal, M. J., López, C., Azevedo, C., Villalba, A. Enzymes involved in defence functions of hemeytes of mussel Mytilus galloprovincialis. Journal of Invertebrate Pathology, 1997b, 70(2):96-105.
    Chen, L. L., Zhang, C. T. Gene recognition from questionable ORFs in bacterial and archaeal genomes. Journal of Biomolecular Structure and Dynamics, 2003, 21(1): 99-109.
    Choquet G, Soudant P, Lambert C, Nicolas JL, Paillard C. Reduction of adhesion properties of Ruditapes philippinarum hemocytes exposed to Vibrio tapetis. Dis Aquat Organ. 2003, 57(1-2):109-116.
    Cong, M., Song, L. S., Wang, L. L., Zhao, J. M., Qiu, L. M., Li, L., Zhang, H. The enhanced immune protection of Zhikong scallop Chlamys farreri on the secondary encounter with Listonella anguillarum. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2008, 151(2):191-196.
    Fei, L. H., Shao Y. Q., Li Y. Comparative analysis of the activity of SOD, CAT and MPO in different tissues of the scallop Chlamys farreri. Transactions of Oceanology and Limnology, 2008, 3:128-131.
    Fisher, W. S. Structure and functions of oyster hemocytes. In: Immunity in Invertebrates (M. Brehehn, Ed.), Berlin: Springer, 1986. pp. 25-35.
    Hartke A, Lemarinier S, Pichereau V, et al. Survival of Enterococcus faecalis in Seawater Microcosms Is Limited in the Presence of Bacterivorous Zooflagellates. Current Microbiology, 2002, 44:329-335.
    Hauton, C., Hawkins, L.E., Hutchinson, S. Response of hemocyte lysosomes to bacterial inoculation in the oysters Ostrea edulis L. and Crassostrea gigas (Thunberg) and the scallop Pecten maximus (L.). Fish and Shellfish Immunology, 2001, 11(2):143-153.
    Hernroth, B. Factors influencing bactericidal activity of blue mussel (Mytilus edulis) hemocytes against Salmonella typhimurium. Fish and Shellfish Immunology, 2003, 14(2):93-104.
    Hong, X. T., Xiang, L. X., Shao, J. Z. The immunostimulating effect of bacterial genomic DNA on the innate immune esponses of bivalve mussel, Hyriopsis cumingii Lea. Fish and Shellfish Immunology, 2006, 21(4):357-364.
    La Peyre, J. F., Chu, F. E., Meyers, J. M. Hemocytic and humoral activities of eastern and Pacific oysters following challenge by the protozoan Perkinsus marinus. Fish and Shellfish Immunology, 1995, 5(3): 179-190.
    Laura, D. M., Laura E. J., Harvell, C. D. Innate Immunity, Environmental Drivers, and Disease Ecology of Marine and Freshwater Invertebrates. Annual Review of Ecology, Evolution, and Systematics, 2006, 37: 251-288.
    Li, H., Parisi, M. G., Toubiana, M., Cammarata, M., Roch, P. Lysozyme gene expression and hemocyte behaviour in the Mediterranean mussel, Mytilus galloprovincialis, after injection of various bacteria or temperature stresses. Fish Shellfish Immunol, 2008, 25(1-2):143-152.
    Malham, S. K., Lacoste, A., Gélébart, F., Cueff, A., Poulet, S. A. Evidence for a direct link between stress and immunity in the Mollusc Haliotis tuberculata. Journal ofExperimental Zoology Part A: Ecological Genetics and Physiology, 2003, 295: 136-144.
    Mortensen, S. H., Glette, J. Phagocytic activity of scallop (Pecten maximus) hemocytes maintained in vitro. Fish and Shellfish Immunology, 1996, 6(2): 111-121.
    Otles, S., Cagindi, O., Akclcek, E. Probiotics and health. Asian Pac J Cancer Prev, 2003, 4(4):369-372.
    Oubella, R., Paillard, C., Maes, P., Auffret, M. Changes in Hemolymph Parameters in the Manila Clam Ruditapes philippinarum (Mollusca, Bivalvia) Following Bacterial Challenge. Journal of Invertebrate Pathology, 1994,64(1): 33-38.
    Pruzzo, C., Gallo, G., Canesi, L. Persistence of vibrios in marine bivalves: the role of interactions with hemolymph components. Environmental Microbiology, 2005, 7(6):761-772.
    Rinkevich, B., Muller, W. E. G. Invertebrate immunology. Progress in Molecular and Subcellular Biology, 1996, 15: 247.
    Tallon, P., Magajna, B., Lofranco, C., Leung, K. T. Microbial indicators of faecal contamination in water: a current perspective. Water, Air, and Soil Pollution, 2005, 166, 139-166.
    Xing, J., Lin, T. T., Zhan, W. B. Variations of enzyme activities in the hemocytes of scallop Chlamys farreri after infection with the acute virus necrobiotic virus (AVNV). Fish and Shellfish Immunology, 2008, 25(6):847-852.
    Xing, J., Zhan, W. B., Zhou, Li. Endoenzymes associated with hemocyte types in the scallop (Chlamys farreri). Fish and Shellfish Immunology, 2002, 13(4), 271-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700