用户名: 密码: 验证码:
轨道车辆—结构动态耦合系统的数值模拟方法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着当今铁路客运高速化、重载化需求的日益高涨与逐步实施,轨道车辆与承载结构的动力相互作用问题越来越受到人们的重视。一方面,由于高速运行的车辆对所通过的结构(隧道、桥梁等)产生动力冲击作用,引起结构的振动可能使其构件产生疲劳,降低其强度和稳定性;另一方面,结构的振动又对运行车辆的平稳性和安全性产生影响。因此,对轨道车辆与承载运输的结构进行动态响应分析,掌握其动态响应特性是十分必要的。本文建立了轮轨三维滚动接触模型,基于三维非线性建模及并行计算技术,研究了轨道车辆-结构动态耦合系统的三维动态仿真方法。本文的主要研究内容包括:
     研究轨道车辆-结构动态耦合系统数值建模方法,包括基于近景摄影测量原理,对平板车、灌浆车的关键尺寸进行了测量,并建立了相应的几何模型;通过车轮踏面与轨道面的垂向接触对和轮缘与轨道侧面的侧向接触对构建力学模型;基于分段的bucket分类搜索和双向对称接触方式建立了三维轮轨滚动接触的方法,实现该方法的直线和曲线动态模拟。
     研究轨道车辆-结构动态耦合系统的高性能数值计算方法,在求解结构三维非线性有限元模型的动力学响应时,总体的计算规模巨大,串行算法和普通的计算机无法胜任此工作。本文采用更新拉格朗日格式中心差分算法,对非线性有限元方程进行求解时,结合上海超级计算中心曙光4000A计算机的体系结构和轨道车辆运行的特点,提出基于轮轨接触均衡的区域分解并行算法。通过对轨道车辆与桥梁、隧道结构的动态耦合振动响应分析,检验了并行效率。
     研究轮轨三维滚动接触建模方法在车-桥动态耦合系统响应分析中的应用。分别建立了轻轨车辆与大跨度双层斜拉桥的三维非线性有限元模型,其中轻轨车辆采用二系悬挂的方式连接,模型包含轮对、转向架和车体;斜拉桥由土体、承台、主塔、墩、枕木、钢轨、斜拉索和钢板桁梁桥面组成。对轻轨车辆在单车匀速、双车交汇下的桥梁动态响应及行车安全进行了分析。
     研究车-桥动态耦合系统在船桥碰撞下的动态响应特性,船舶对斜拉桥的撞击作用通过建立船舶的三维非线性有限元模型实现。将“船桥碰撞”与“车桥耦合”联系在一起进行研究,建立面向车辆行驶过程的车-船-桥动态耦合系统模型。分析船舶撞击荷载对斜拉桥及轻轨车辆行车安全的影响。
     研究上海隧道工程股份有限公司正在施工的“青草沙”隧道轨道管片运输行车安全问题,建立了车辆与轨道三维非线性有限元模型。轨道运输车辆由电瓶车、平板车及运载的管片组成,车辆之间采用销连接,车辆与24kg窄轨之间的作用通过滚动接触的方式实现组成。分析轨道运输车辆事故多发的机理,设计了提高行车安全的减振装置,通过仿真比较了改进前后的效果。
     研究轮轨三维滚动接触建模方法在车-隧动态耦合系统响应分析中的应用。建立了轨道运输车辆-轨道-隧道结构的三维非线性有限元模型,隧道结构主要由土体、隧道管壁、工作井及组成。为了体现拟实建模方法的特点,土体采用弹塑性材料模拟,根据真实的地质资料进行了分层,考虑了外水压的影响。对车辆正常运输以碰撞事故发生时的隧道动态响应进行了分析。
With the increasing requirement and implement of high-speed and overload transportation, more and more attention has been paid on the couple dynamic response of rail vehicle and structure. On the one hand, the dynamic shock by the high-speed passing vehicle will cause the mechanical fatigue of structure. On the other hand, the vibration of the structure affects the safety and stabilization of vehicle. Therefore, it is necessary to study on the dynamic response characteristics of the vehicle and the loaded structure. Based on the 3D non-linear modeling method and the parallel computing technologies, the 3D rolling contact model of rail and wheel is set up, and the 3D dynamic numerical simulation method of rail vehicle and structure as bridge and tunnel is studied. The main contents include:
     The numerical modeling method of the rail vehicle and structure dynamic couple system is studied. Based on the photogrammetry theory, the geometry model of rail transportation vehicle is build. With the vertical contact of wheel tread and top surface of railhead as well as lateral contact of wheel flange and lateral surface of railhead, the mechanical model of wheel and rail is set up. Through the bucket sorting search method based on segment and bi-direction contact manner, the dynamic running simulation in the straight and curve line with 3D rolling contact model is achieved.
     The high performance numerical computation method of the rail vehicle and structure dynamic couple system is studied. Serial methods and normal computer are not adapted to nonlinear dynamic analysis of large and complex structure with the 3D non-linear finite element models. With the Update Lagrange Formation method and central difference algorithm, the nonlinear equation is solved. Based on the character of the vehicle-rail dynamic couple system and the structures of DAWNIING 4000A supercomputer located in Shanghai Supercomputer Center, the domain decomposition method based on the rail-wheel contact balance between vehicle and rail is proposed. Through the application in rail vehicle and bridge dynamic analysis, as well as the rail transportation vehicle and the tunnel coupling vibration analysis, the parallel computing efficiency of rail-wheel contact balance bisection (RWCBB) method and recursive coordinate bisection (RCB) method are compared.
     The application of the 3D wheel-rail rolling contact numerical modeling methods in vehicle and bridge couple dynamic response analysis is studied. The non-linear finite element models of light rail vehicle and cable-stayed bridge are respectively built up. The finite element model of light rail vehicle is made of the wheel-set, the bogie, and the body, which are connected with secondary suspension system. The finite element model of the cable-stayed bridge includes all structural components: bridge deck, cable, tower, piers, cap, piles, sleeper, rail and soil. Through the simulation of two moving load conditions as single direction for one train and oppose direction for two, the running safety of light rail train and dynamic response of bridge are analyzed, which provides the reference for the safety design of long span cable-stayed bridge.
     The dynamic response characteristic of light rail vehicle and bridge couple system under collision of ship and bridge is studied. The 3D numerical model of the ship is set up. Combine the ship-bridge collision with vehicle-bridge couple problem, the finite element model of the light rail vehicle, the cable-stayed bridge, and the ship are built as a whole system. The dynamic response of the cable-stayed bridge and the light rail vehicle under ship impact are respectively analyzed.
     According to transportation safety issues of the“Qingcaosha”tunnel, which being construct by Shanghai Tunnel Engineering Co. Ltd, the rail transportation vehicle and the 24Kg narrow rail structure are respectively built with 3D non-linear finite element models. The rail transportation vehicle is composed of storage battery car, the flat car and the grout transportation car, which are connected with dowels each other. In order to improve the running safety of rail transportation vehicle and decrease the probability of derailment accident, the device of absorbers is design and added to vehicle. The effect with and without absorbers in vehicle is testified.
     The application of the 3D wheel-rail rolling contact numerical modeling methods in vehicle and tunnel vibration analysis is studied. The finite element model of tunnel, which are made of solid, the tunnel wall and the working well, is established. The Drucker-Prager material model is applied in describing the soil, which delaminated according to the real geological and hydraulic. The dynamic response of tunnel during normal running condition and accident condition of rail transportation vehicle are respectively analyzed.
引文
[1]曾庆元,郭向荣.列车桥梁时变系统振动分析理论与应用.北京:中国铁道出版社,1999
    [2] Carter F.W., On the Action of a Locomotive Driving Wheel, Proc.of the Royal Society of London, A112, 1926, 151~157
    [3]王福天,车辆系统动力学,北京:中国铁道出版社,1994
    [4] Johnson K.L., The Effect of a Tangential Contact Force upon the Rolling Motion of an Elastic Sphere on a Plane, Journal of Applied Mechanics,1958,25:339~346
    [5] Vermeulen J.K., Johnson K.L., Contact of Non-spherical Bodies Transmitting Tangential Forces, Journal of Applied Mechanics, 1964, 31:338~340
    [6] Kalker J. J., The Transmission of Force and Couple Between Two Elastically Similar Rolling Spheres, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam, B67, 1964, 135~177
    [7] Kalker J. J., On the Rolling Contact of Two Elastic Bodies in the Presence of Dry friction, Ph.D.Thesis, Delft University, The Netherlands,1967
    [8] Kalker J. J., A Fast Algorithm for the Simplified Theory of Rolling Contact, Vehicle System Dynamics, 1982, 11:1~13
    [9] Garg V. K.著,沈利人译,铁道车辆系统动力学,成都:西南交通大学出版社,1998.9
    [10] Kalker J. J., Van Random Y., A Minimum Principle for Friction Less Elastic Contact with Application to Non-Hertzian Half-space Contact Problems, Journal of Engineering Mathematics, 1972, 88:193~206
    [11]金学松等.接触问题的余能原理及其在轮轨滚动接触研究中得应用.铁道学报.1996,18(5):30一36
    [12] Jin Xuesong, Zhang Weihua, Hu Liujia. Effect of Lateral Motion on the Creep Forces in Wheel/Rail Rolling Contact. Journal of Southwest Jiaotong University. 1999, 5 (1): 44– 54
    [13]金学松等.三维非赫兹滚动接触理论在轮轨滚动接触中的应用.西南交通大学学报.1997,32(4):407一412
    [14]王喜成,俞展猷.轮轨接触区内摩擦功的计算.中国铁道科学.1995,16(4):88~102
    [15] Cooperrider N. K., Analytical and Experimental Determination of Nonlinear Wheel/Rail Constrains, Proc. of ASME, Symposium on Equipment Dynamics, 1979
    [16] De Pater, Yang G., The Geometrical Contact Between Track and Rail, Vehicle System Dynamics, 1988, 17(3):126~135
    [17]佐藤等.铁道车辆轮轨贺轨道轮的接触几何.国外铁道车辆,1995.3:32 ~ 40
    [18]杨国帧.磨耗形踏面的轮轨接触几何参数.铁路车辆,1980(10)
    [19]严隽耄.具有任意轮廓形状的轮轨空间几何约束的研究.西南交通大学学报. 1983(3):40~47
    [20]严隽耄,王开云.任意形轮轨接触关系的计算,铁道车辆,1984,2:31~38
    [21]王开云,翟婉明,蔡成标.轮轨型面及系统参数对轮轨空间接触几何关系的影响[J].铁道车辆, 2002,(02) .
    [22]王珏,李治.一种轮轨接触几何算法[J].西南交通大学学报, 2003,(02)
    [23]任尊松,翟婉明,王其昌.轮轨接触几何关系在道岔系统动力学中的应用[J].铁道学报, 2001, (05)
    [24]任尊松,孙守光.道岔区轮轨接触几何关系研究[J].工程力学, 2008,(11)
    [25] R. I. Mair, R. Groenhout. The Growth of Transverse Fatigue Defects in the Head of Railway Rails. Rail International, Dec., 1980: 657-689
    [26] R. Smallwood, J. C. Sinclair, K J. Sawley. An Optimization Technique to Minimize Rail Contact Stress. Wear, 1991, 144: 373-384
    [27] A. Ekberg, H. Bjamehed, R. Lunden. A Fatigun Life Model for General Rolling Contact with Application to Wheel/Rail Damage, Fatigue Fract. Engeng Mater, 1995, 18(10):1189-1199
    [28] C. C. Yu, L. M. Keer, B. Moran. Elastic-Plastic Rolling Sliding Contact on a Quarter Space. Wear, 1996, 191: 219-225
    [29] Arnold D. Kerr, Joel E. Cox. Analysis and Tests of Bonded Insulated Rail Joints Subjected to Vertical Wheel Loads. International Journal of Mechanical Sciences, 1999, 41:1253-1272
    [30] Aleksander Sladkowski, Marek Sitarz. Analysis of Wheel-Rail Interaction using FE Software. Wear, 2000, 258: 1217-1223
    [31] A. Ahmed, M. B. Shabana and R. S. Jalili, Numerical Procedure for the Simulation of Wheel/Rail Contact Dynamics, ASME Journal of Dynamic Systems, Measurement and Control, 2001, 123: 168-178
    [32] B. Xu, Y. Y. Jiang. Elastic-Plastic Finite Element Analysis of Partial Slip Rolling Contact. ASME. Journal of Tribology, 2002, 124(1):20-26
    [33] Makoto Akama, Tadao Mori. Boundary Element Analysis of Surface initiated Rolling Contact Fatigue Cracks in Wheel/Rail Contact System. Wear, 2002, 253:35-41
    [34] Chen Y C. The Effect of Proximity of a Rail End in Elastic-Plastic Contact between a Wheel and a Rail. J. Rail Rapid Transit, Proc. Inst. Mech. Eng., 2003, 3:189-201
    [35] S. Iwnicki. Simulation of wheel-rail contact forces. Fatigue Fracture Engineering Material Structure. 2003, 26: 887-900
    [36] C. J. Bowe, T. P. Mullarkey. Wheel-Rail Contact Elements Incorporating Irregularities. Advances in Engineering Soft, 2005, 36:827-837
    [37] M. Busquet, L. Baillet, C. Bordreuil, Y. Berthier. 3D Finite Element Investigation on the Plastic Flows of Rolling Contacts– Correlation with Railhead Microstructural Observations. Wear, 2005, 258:1071-1080
    [38] Shabana, A. A.,Tobaa, M., Sugiyama, H., and Zaazaa, K. On the computer formulations of the wheel/rail contact problem. Nonlinear Dyn., 2005, 40: 169-193
    [39] Y. Handoko, M. Dhanasekar. An inertial reference frame method for the simulation of the effect of the longitudinal force to the dynamics of railway wheelsets, Nonlinear Dyn. 2006, 45: 399-425
    [40] Piotrowski, J. and Kik, W. A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations, Vehicle System Dynamics, 2008, 46: 27-48
    [41] P. Shackleton, S. Iwnicki. Comparison of wheel-rail contact codes for railway vehicle simulation- an introduction to the Manchester Contact Benchmark and initial results Vehicle System Dynamics, 2008, 46: 127-129
    [42] Jury Auciello, Enrico Meli, Stefano Falomi and Monica Malvezzi. Dynamic simulation of railway vehicles: wheel-rail contact analysis. 2009, 47: 867-899
    [43] Wallrapp, O. and Fuhrer, C., MEDYNA– an interactive analysis program for geometrically linear and flexible multibody system, In Multibody Systems Handbook, Schielen, W., Ed.,Springer, Berlin, 1990: 203-223.
    [44] Blader, F. B., and Klauser, P. E., User’s manual for NUCARS Version 1.0 Report R-734, Association of American Railroads, Chicago, IL, September 1989
    [45] Chollet, H., Ayasse, J. B., Fleuret, J. S., and Leveque, E., A generalized conicity criterion for the wheel– rail contact, Proceedings of the Eighth Mini Conference on Vehicle System Dynamics, Identification and Anomalies, TU Budapest 2002.
    [46] Gimenez, J. G., Martin, L. M., Pascal, J. P., and Maupu, J. L., IAVSD Railway benchmark No. 2 Sidive and Voco code solutions, In The Dynamics of Vehicles on Roads and Traks, Proceedings of the 12th IAVSD Symposium, Sauvage, G., ED., Swets and Zeitliner, Lisse, 1992: 551– 565
    [47] Evans, J. R., Rail vehicle dynamic simulations using VAMPIRE, Vehicle Syst. Dyn., 31(Suppl.), 119-140, 1999, Swet & Zeitlinger, Lisse.
    [48] Persson, I., GENSYS in railway vehicle modeling. In Iwnick, S., Ed., The Manchester Benchmarks for Rail Vehicle Simulaiton, Vehicle Syst. Dyn., 31, Suppl., 1999
    [49]雷腾.轮轨接触应力的计算和分析.中国铁道科学, 1985, 6(1):53-65
    [50]冯登泰.磨耗型轮轨弹塑性静力接触的解析解.铁道学报, 1988, 10(2):1-13
    [51]魏先祥.轮轨竞接触时的应力状态.铁道学报, 1991, 13(2): 1-11
    [52]吴鸿遥,程育仁.轮轨接触应力问题的安定性分析.铁道学报, 1994, 4(1):76-83
    [53]张焱,孔祥安,金学松等.轮轨接触应力问题的安定性分析.铁道机车车辆, 1999(3): 13-15
    [54]雷晓燕,管天佑.轮轨局部接触应力分析.华东交通大学学报, 1995, 12(2):20-26
    [55]刘启跃,王夏鍫.轮轨接触应力数值分析.铁道学报, 1998, 20(2):45-49
    [56]陆辉,孙国英.非椭圆接触面下钢轨三维弹塑性应力分析.西南交通大学学报, 2000, 35(4): 340-343
    [57]王珍君,侯炳麟.钢轨轨头三维应力有限元分析.中国铁道科学, 2000, 21(4):66-72
    [58]俞展献.轮轨内部剪切应力及其影响因素的研究.中国铁道科学, 1999, 20(3):11-19
    [59]俞展酞.轮轨接触应力的研究.铁道机车车轮, 2000(6):1-9
    [60]金学松,温泽峰,张卫华.轮对运动状态对轮对滚动接触应力的影响.工程力学, 2004, 21(1):166-173
    [61]赵鑫,金学松,温泽峰等.全滑动状态下轮轨接触热弹性应力.西南交通大学学报, 2008, 43(1):51-56
    [62] Jiang Xiaoyua, Jin Xuesong. Numerical simulation of wheel rolling over rail at high-speeds. Wear, 2007, 262: 666-671
    [63]张焱,铁路轮轨接触应力研究.西南交通大学博士学位论文, 1998, 9
    [64]张焱,孔祥安,金学松.轨头内弹塑性接触应力场与工况参数.铁道学报, 1999, 21(5):33-36
    [65]沈志云,张卫华,金学松等.轮轨接触力学研究的最新进展.中国铁道科学, 2001, 22(2):1-14
    [66]张立民.轮轨接触应力与钢轨波磨分析.西南交通大学学报, 2003, 38(1):34-37
    [67] Wen Zefeng, Jin Xuesong, Zhang Weihua. Elastic-plastic finite element analysis of three-dimensional contact-impact at rail joint. Chinese Journal of Mechanical Engineering, 2003, 16(4):411-416
    [68] Zefeng Wen, Xuesong Jin, Weihua Zhang. Contact-Impact Stress Analysis of Rail Joint Region using the Dynamic Finite Element Method. Wear, 2005, 258:1301-1309
    [69]陈泽深,王成国,王永菲.高速机车车辆动力学模拟中的轮轨接触模型.铁道机车车辆, 2005, 25(1):1-10
    [70]李晓宇,习年生,周清跃.轮轨接触位置对钢轨斜裂纹扩展行为影响的仿真.中国铁道科学, 2008, 29(2): 44-47
    [71]张军,仲政.机车车辆轮轨接触问题的数值模拟.同济大学学报, 2006, 34(9):1231-1236
    [72]孙传喜,张军,王春艳等.地铁车辆曲线区段轮轨接触的有限元分析.大连交通大学学报, 2008, 29(4):22-26
    [73]马昌红,史生良,吴亚平.轮轨接触应力的有限元分析.石家庄铁道学院学报, 2006, 19(3):32-35
    [74]张澎湃,井秀梅.轮轨接触应力的有限元计算.铁道车辆, 2007, 45(6):4-8
    [75]卢萍,崔大宾,王宁.轮轨接触应力数值计算方法.润滑与密封. 2009, 34(7):28-32
    [76]郭毅之.车流荷载作用下盾构隧道结构动力响应研究.上海交通大学.博士学位论文. 2006. 9
    [77]松浦章夫.高速铁路桥梁动力问题研究.日本土木学会论文报告集,1976. 12,256:35-47
    [78] Bhatti M H. Vertical and Lateral Dynamic Response of Railway Bridges Due to Nonlinear Vehicle and Track Irregularities. Chicago: Illinois Institute of Technology, 1982.
    [79] Diana G, Cheli F. Dynamic Interaction of Railway Systems with Large Bridges. Vehicle System Dynamic, 1989,18(1-3): 71-106.
    [80] Diana G, et al. Wind Effect on the Dynamic Behavior of Suspension Bridge. International Report, Milano, 1986.
    [81] Au, F.T.K., Wang, J.J., Cheng,Y.K. Impact Study of Cable-Stayed Bridge Under Railway Traffic Using Various Models. Journal of Sound and Vibration. 2001, 240 (3): 447-465.
    [82] R..Calcada. Dynamic Analysis of Metallic Arch Railway Bridge. Journal of Bridge Engineering. JULY/AUGUST 2002.
    [83] Myung-Kwan Song. A New Three–Dimensional Finite Element Analysis Model of High-Speed Train-Bridge Interactions. Engineering Structure. 2003, 25: 1611-1626.
    [84] Carlos. Study of the Bridge-Train Interaction. ASCE, 2006, 17th analysis and computation specialty conference.
    [85] Magdy Samaan, John B. Kennedy, Khaled Sennah. Dynamic Analysis of Curved Continuous Multiple-Box Girder Bridges [J]. Journal of Bridge Engineering. 2007, 12(2): 184-193.
    [86] Michal Majka, Michael Hartnett. Effects of Speed, Load and Damping on the Dynamic Response of Railway Bridges and Vehicles [J]. Computers and Structures. 2007, 86 (6): 556-572.
    [87] D. Bruno, F. Greco, P. Lonetti. Dynamic impact analysis of long span cable-stayed bridges under moving loads [J]. Engineering Structures, 2008, 30(4): 1160-1177.
    [88]夏禾,陈英俊.车-梁-墩体系动力相互作用分析.土木工程学报, 1982, 25(2):3-12.
    [89]夏禾.列车过桥时高桥墩的动力响应及其对车辆运行稳定性的影响.北京:北方交通大学, 1984.
    [90] Xia he, Xu Y L, et al. Dynamic interaction of long suspension bridges with running trains. Sound and Vibration, 2000, 237(2): 263-280.
    [91] Y.S.Cheng, F.T.K. Au, Y.K.Cheung. Vibration of Railway Bridges under a Moving Train by Using Bridge-Track-Vehicle Element. Engineering Structures. 23(2001): 1597-1606.
    [92] F.T.K. Au, J.J.Wang, Y.K.Cheung. Impact study of cable-stayed railway bridges with random rail irregularities. Engineering Structures. 24(2002): 529-541.
    [93]李小珍,强士中.高速列车-大跨度刚斜拉桥空间耦合振动响应研究.桥梁建设, 1998, 4:65-68.
    [94]李小珍,强士中.京沪高速南京越江钢斜拉桥车桥耦合振动分析.西南交通大学学报, 1999, 34(2):153-157.
    [95]李小珍,强士中.大跨度公铁两用斜拉桥车桥动力分析.振动与冲击. 2003, 22(1): 6-9.
    [96]蔡成标,翟婉明,王其昌,高速列车与高架桥上无碴轨道相互作用研究,铁道工程学报,2000,3:29~32
    [97]蔡成标,高速铁路列车-线路-桥梁耦合振动理论及应用研究:[博士学位论文],成都:西南交通大学,2004
    [98]程庆国,许慰平.大跨度铁路斜拉桥列车走行性探讨.全国桥梁结构学术大会论文集.武汉, 1992, 41-51.
    [99]程庆国,潘家英.大跨度铁路斜拉桥竖向刚度分析.全国桥梁结构学术大会论文集.武汉, 1992, 1163-1168.
    [100]高芒芒,高速铁路列车—线路—桥梁耦合振动及列车走行性研究:[博士学位论文]北京:铁道科学研究院,2001
    [101]冯星梅,陈庆中,史永吉.铁路桥梁横向振动模拟及适应快速行车结构型式的研究.土木工程学报. 2005, 38(12): 70-75.
    [102] Xiang J., Zeng Q. Y. A Study on Mechanical Mechanism of Train Derailment and Preventive Measures for Derailment. Vehicle System Dynamics, 2005, 43 (2):121- 147.
    [103] Xiang J., Zeng Q.Y., and Lou P. Transverse Vibration of Train-Bridge and Train-Track Time- Variant System and the Theory of Random Energy Analysis for Train Derailment. Vehicle System Dynamics, 2004, 41(2):129-155.
    [104]向俊.列车脱轨机理与脱轨分析理论研究.长沙:中南大学博士学位论文, 2006.
    [105]张昕,高架轨道交通引起环境振动的实测和理论分析研究:[博士学位论文],上海:同济大学,2002
    [106]吴定俊,王小松,项海帆.高速铁路尼尔森拱桥车桥动力特性.铁道学报, 2003, 25(3): 96-100
    [107]李忠献,黄健,张国忱.考虑图-结构相互作用得车桥系统耦合振动分析.天津大学学报. 2005, 38(12): 1035-1041.
    [108]陈燊,唐意,黄文机.多车荷载下刚架拱桥车振仿真可视化研究.工程力学. 2005, 22(1): 218-222
    [109]邹锦华,王荣辉,魏德敏.城市轨道交通连续刚构桥车桥耦合动力分析.铁道科学与工程学报. 2006, 3(1): 36-40.
    [110]潘昌实, G. N. Pande.黄土隧道列车动力荷载响应有限元初步数定分析研究.土木工程学报, 1984, 17(4): 19-28
    [111] J. Lang. Results of measurements on the control of structure-borne noise from subways.Seventh International Congress on Acoustics, Budapest, 1971, 421-424
    [112] L. Kurzweil. Ground-borne noise and vibration from underground rail systems. Journal of Sound and Vibration, 1979, 363-370
    [113] E. Ungar, et al. Vibrations produced in buildings by passage of subway trains, parameter estimation for preliminary design. Inter-noise, 1975, 491-498
    [114] L. Kurzweil, et al. Prediction of noise and vibration in buildings near the New York City Subway. Inter-noise, 1982, 213-216
    [115] W. Ruker. Research Report. 1980
    [116] J. Eisenmann, et al. Eisenbahn Technische Rundschau. 1983
    [117] J. Nelson, et al. Prediction and control of ground-borne noise and vibration from rail transit-trains. UMTAMA-06-0049-83-4 Report
    [118] Degrande, G., Clouteau, D., Othman, R., et al. A numerical model for ground-borne vibrations from underground railway traffic based on a periodic finite element–boundary element formulation. Journal of Sound and Vibration, 2006, 293(3–5): 645–666
    [119] Hussein, M.F.M., Hunt, H.E.M. A numerical model for calculating vibration from a railway tunnel embedded in a full-space. Journal of Sound and Vibration, 2007, 305(3):401–431
    [120] Gupta, S., Hussein, M.F.M., et al. A comparison of two numerical models for the prediction of vibrations from underground railway traffic. Soil Dynamics and Earthquake Engineering, 2007, 27(7): 608–624
    [121] X. Sheng, C.J.C. Jones and D.J. Thompson. Prediction of ground vibration from trains using the wavenumber finite and boundary element methods, Journal of Sound and Vibration, 2006, 293 (3–5) :575–586.
    [122]李德武.列车振动对隧道衬砌影响的分析.兰州铁道学院学报, 1997, 16(4): 24-27
    [123]李德武,高峰.隧道仰拱对列车振动衰减影响的研究.铁道学报, 1999, 21(1): 60-63
    [124]高峰.铁路隧道列车振动响应分析.兰州铁道学院学报, 1998, 17(2): 6-12
    [125]陈卫军,张璞.列车动载作用下交叠隧道动力响应数值模拟.岩土力学, 2002, 23(6): 770-774
    [126]王祥秋,杨林德,周治国.列车振动荷载作用下隧道衬砌结构动力响应特性分析[J].岩石力学与工程学报, 2006, 25(07): 1337-1342
    [127]白冰,李春峰.地铁列车振动作用下近距离平行隧道的弹塑性动力响应.岩土力学, 2009, 30(01): 123-128
    [128]白冰,李春峰.地铁列车振动作用下交叠隧道的三维动力响应.岩土力学, 2007, 28(S1): 715-718 .
    [129]由广明,刘维宁.交叠车站与区间隧道列车振动对环境的影响.北京交通大学学报, 2005, 29(04) :40-44
    [130]田薇.车辆动载作用下轨道结构和隧道结构的动力分析.同济大学,硕士学位论文, 2007
    [131]张曦.地铁振动对隧道周围软粘土微结构影响及动力特性研究.同济大学,博士学位论文, 2007
    [132]张玉娥,白宝鸿.高速铁路隧道列车振动响应数值分析方法.振动与冲击, 2001, 20(3): 91-93
    [133]张昀青,刘维宁,张振刚.列车荷载作用下周围物体的动力响应解.铁道学报, 2003, 25(4): 85-88
    [134]黄娟,彭立敏,李晓英等.隧道振动响应研究进展.中国铁道科学, 2009, 30(2):60-65
    [135] Du Xinguang, Jin Xianlong, Zhang Xiaoyun, et al. Geometry features measurement of trafficaccident for reconstruction based on close-range photogrammetry. Advances in Engineering Software, 2009, 40(7): 497-505.
    [136]金学松,张雪珊,张剑等.轮轨关系研究中的力学问题[J].机械强度, 2005,(04)
    [137] Shabana, A.A., Zaazaa, K.E., Escalona, et al. Development of elastic force model for wheel/rail contact problems. J. Sound Vib, 2004, 269, 295–325
    [138]程建钢,姚振汉,李明瑞.结构动力分析显式积分并行算法与实现.清华大学学报(自然科学版). 1996, 36(10):80-85.
    [139] P. Krysl, Z. Bittnar. Parallel explicit finite element solid dynamics with domain decomposition and message passing dual partitioning scalability. Computer and Structure, 2001, 79:345-360.
    [140] Weimar K. LS-DYNA User's Guide[M]. CAE-FEM GmbH & PWS, 2001
    [141] Belytschko T, Liu W K, Moran B. Nonlinear finite elements for continua and structures[M].北京:清华大学出版社, 2002: 271-273
    [142] P. Krysl, Z. Bittnar. Parallel explicit finite element solid dynamics with domain decomposition and message passing: dual partitioning scalability. Computer & Structures, 2001, 79: 345-360.
    [143]郑哲明,程建钢,姚振汉.有限元并行计算中网格自动区域划分的研究.工程力学, 2002, 19(6): 54-57
    [144] M. J. Berger, S. H. Bokhari. A partitioning strategy for nonuniform problems on multi- processors. IEEE Transactions on Computers, 1987, C-36(5): 570-580
    [145]铁道车辆用轮对型式与基本尺寸(TB/T 1010-2025).北京:中国标准出版社,1991
    [146]铁路用热轧钢轨(GB 2585-2007).北京:中国标准出版社,2007
    [147]机车车辆车轮轮缘踏面外形(TB/T 449-2003),北京:中国标准出版社,2003
    [148]闵浦二桥新建工程施工图设计计算报告.上海市城市建设设计研究院, 2007
    [149]阎兴非,彭俊,周良.公轨两用斜拉桥-闵浦二桥总体设计分析.中国市政工程. 2008
    [150]铁道机车动力学性能试验鉴定方法及评定标准(TB/T 2360-93).北京:铁道部标准计量研究所, 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700