用户名: 密码: 验证码:
配筋混凝土砌块结构抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
配筋砌块砌体结构因其具有节土、节能、环保等特点,在美国、欧洲、日本等发达国家被广泛地应用在建造高层房屋结构中。高层配筋砌块砌体结构的研究及应用在我国则起步较晚,理论体系和试验数据并不很充足。在当前的工程结构抗震研究领域中,其仍为研究的热点之一。论文选取1/4比例10层注芯率为19%的配筋砌块砌体结构为研究对象,在总结前人工作基础上,就配筋砌块砌体结构振动台抗震试验和配筋砌块砌体结构弹塑性数值模拟两个方面进行了研究,主要成果如下:
     1、确定模型与原型结构的相似关系,按一致相似律设计了目前国内规模最大的配筋混凝土砌块砌体模型结构。模型结构按7度设防,但层数与普通砌体结构相比超过规范3层,构造措施仍按7度要求设置。选择了Northridge、EL Centro-1、EL Centro-2三条地震波,对应从硬到软不同场地,峰值范围从0.06g~0.32g,分别相应7度区多遇烈度、基本烈度及罕遇烈度地震进行试验,沿纵向、横向、纵横向同时共进行了25次地震动输入试验,获取了大量的地震反应记录,考察了模型在各试验阶段的地震反应、变形状态及震害特征。从中筛取了有代表性的数据进行整理分析,为评价结构抗震性能和抗震能力奠定了基础。
     2、对X方向和Y方向各层输出结果,主要包括卓越频率、模型结构加速度反应、振型、相对位移和应变等记录进行了分析处理。对台面输入与顶层输出卓越频率的关系进行分析,给出回归曲线表达式。对X与Y方向顶层加速度放大系数进行了比较,Y方向平均为2.0,X方向平均为2.7,X方向比Y方向平均高出35%,主要原因是X方向卓越频率比Y方向对应的频率低,所以与台面输入能量富集的频带中心更接近,也就有了更多的共振效应。给出模型结构在两个方向的前三阶振型。对不同地面峰值加速度情况下的相对位移和应变进行时程分析。
     3、根据加载方案进行试验,对每次试验完成后对模型的开裂情况进行观测。重点观测项目为:开裂部位、裂缝走向、裂缝宽度及结构或构件的破坏情况等。对模型结构进行破坏分析,阐述其破坏机制。对结构震时、震止结构卓越频率的变化规律有一定的认识,对结构振型参数和不同强度地震作用下结构的性态进行了分析。试验现象表明结构能够满足在7度区“小震不坏、中震可修、大震不倒”的要求。
     4、将X方向考虑为壁式框架、Y方向视为整体剪力墙进行数值分析模型的建立。考虑墙、柱和梁三种构件单元类型,结构单元采用纤维模型。以三参数滞回模型考虑结构构件的滞回关系,充分考虑滞回过程中结构构件的刚度退化、强度退化和捏拢效应。在参考同类文献的基础上,给出了刚度退化参数、强度退化参数和捏拢参数的取值。结构构件破坏能力体系的构建是基于Park&Ang提出的破坏指标。
     5、应用IDARC5.5程序对模型结构进行了弹塑性地震反应有限元分析,进行了模型结构X、Y两个方向的模态参数及破坏分析,对数值分析结果与试验结果进行了对比。对7度各种加速度峰值作用情况下结构的层间剪力、位移和加速度响应进行分析。对试验结果、数值模拟和规范算法各种情况下的层间剪力进行分析。对模型结构的固有频率变化及破坏指数变化进行了分析。通过分析,给出了现有试验条件下,配筋砌体结构的地震响应情况和不同地震作用情况产生的破坏程度。分析表明适量注芯(19%注芯)的配筋砌体结构有较好的抗震性能,可以满足7度设防标准的要求。综合研究的结果对今后配筋混凝土砌块砌体结构抗震设计规范的修订具有重要参考价值。
environmental protection, reinforcement masonry structure is widely used in tall building in developed countries such as the United States, Europe and Japan. The theory system and experimental statistics of the study in this field are not sufficient because of the relatively late starts. Therefore, the study on it is still the focus in the field of engineering structure seismic study. The paper focuses on a 10-stories reinforcement masonry structure, which is in scale of 1/4, and the core casting ratio is 19%, through the anti-seismic test on shaking table as well as elastic and plastic numerical simulation analysis, the following achievement are obtained:
     1. The test constructs the reinforcement masonry structure model according to the similarity between the model and prototype, and the General Similitude Law as well. The detailing of this model complies with the fortification intensity of VII, but 3 stories beyond the seismic code. Three earthquake records of Northridge、EL Centro-1、EL Centro-2 are selected to input onto the model, corresponding to the different site conditions ranging from hard to soft respectively, applying the records PGA between 0.06g~0.32g, which are equivalent with the frequent intensity, basic intensity and rare intensity. The test inputs 25 records from the direction of X, Y, and X&Y simultaneous, gets massive records of seismic response, analyzes the seismic response, deformation and seismic damage on the model. The typical statistics were organized and analyzed, which set a solid foundation for the seismic evaluation on the building structure.
     2. Basing on the output records on X-direction and Y-direction, the paper analyzed dominant frequency, accelaration response of model structure, vibration mode, displacement and strain. The expression of regression curve was concluded by analyzing the relation between table input PGA and the dominant frequency of top output. Through comparing the top acceleration amplification factors of X-direction and Y-direction, the average value is 2.7 and 2.0 for X-direction and Y-direction respectively, which is 35% higher than the other. The main reason is that the dominant frequency of X-direction is lower than that of Y-direction, which is similar to the frequency range, therefore, more resonance takes place. The first three vibration modes on both directions are showed in the paper. The paper also analyzes the time history of the relative displacement and the strain under different PGA.
     3. The experiments are conducted according to the loading plan, and cracked condition is observed carefully. The focuses are as follows: cracked location, crack direction, crack width, the damage behavior of the structure and the element. The paper analyzes the damage condition of the model structure and describes the damage mechanism. By analyzing the experimental statistics, the rule of during and after input predominant frequencies is concluded, and the vibration mode of the structure and structure behavior under different input are analyzed. The appearances in the experiments show that the model meets the requirements as“Perfect subjected to minor earthquake; the maintenance subjected to moderate earthquake; no collapse subjected to unexpected rare earthquake.”
     4. The numerical analyzing model is constructed as X-direction for wall type frame and Y-direction for shear wall. Considering the elements of shear wall, column and beam, fiber model are applied to general structural elements. Three parameter park model is based while considering the hysteretic rule of the structural elements. The hysteretic rule takes stiffness degradation, strength deterioration and slip into account, which values are referred relative reference. The damage potential system is on the basis of damage index proposed by Park&Ang.
     5. Using the IDARC5.5 to conduct analysis on the elastic-plastic seismic response of model structure, the paper contrasts the numerical results to experiment findings after studying the model parameter and the damage condition on both X and Y direction. The paper also discusses the story shear force, displacement, acceleration responses under various PGA of fortification intensity of VII. Meanwhile, the values of story shear force are contrast via experimental results, numerical results and calculation results by code method. Moreover, the change of natural frequency and damage index are researched. Through analyzing, seismic response condition and damage extent are concluded under different input. The achievements indicate that reinforcement masonry structure with moderate core casting (19%) meets the requirements of fortification intensity of VII to resist earthquake effectively. The research conclusion has significant value to modify the seismic design code of reinforcement concrete masonry structure.
引文
[1]蔡勇,施楚贤,易思甜.配筋混凝土砌块砌体剪力墙位移延性设计方法[J].湖南大学学报,2005,32(3):52-55.
    [2]蔡勇,施楚贤,余志武等.配筋砌块砌体剪力墙1/4比例模型房屋抗震性能试验研究[J].土木工程学报,2007,40(9):16-22.
    [3]蔡勇.配筋混凝土砌块砌体框支剪力墙房屋抗震性能研究[D].长沙:湖南大学土木工程学院,2005.
    [4]程才渊,吴明舜,孙恒军.混凝土小砌块灌芯砌体抗压及弹性模量试验研究[J].四川建筑科学研究,2003,29(l):56-59.
    [5]程才渊,吴明瞬.混凝土小型空心砌块配筋砌体基本力学性能与抗震性能试验研究[J].建筑砌块与砌块建筑,2003(4):26-28.
    [6]杜修力,欧进萍.建筑结构地震破坏评估模型[J].世界地震工程,1991,7(3):47-58.
    [7]费洪涛,吕天启,王凤来等.配筋砌块短肢砌体剪力墙抗震性能的试验研究[J].工业建筑,2007,37(增刊):244-248,365.
    [8]工程抗震术语标准(JGJ/T97-95).中国建筑工业出版社,1996,北京.
    [9]胡嘉,孙恒军,程才渊.混凝土小型空心砌块配筋砌体墙片抗弯性能的试验研究[J].建筑砌块与砌块建筑,2006,3:6-9.
    [10]黄靓,施楚贤.配筋砌块砌体结构的模型试验和理论研究[J].建筑结构学报,2005,26(3):107-113.
    [11]黄靓.框支配筋砌块砌体剪力墙多自由度子结构拟动力试验研究及非线性地震反应分析[D].长沙:湖南大学土木工程学院,2005.
    [12]黄尚安.底部框架配筋砌块砌体房屋抗震设计研究[D].长沙:湖南大学土木工程学院,2003.
    [13]黄维平,邬瑞锋等.配重不足时的动力试验模型与原型相似关系问题的探讨[J].地震工程与工程振动,14卷4期,1994.
    [14]黄炎生,潘东辉,蔡健.设置边缘构件配筋砌块砌体剪力墙的抗震能力[J].东南大学学报,2007,37(6):1048-1051.
    [15]建筑抗震试验方法规程(JGJ101-96).中国建筑工业出版社,1997,北京.
    [16]姜洪斌,唐岱新,张洪涛.配筋混凝土小砌块剪力墙承载力试验研究[J].哈尔滨建筑大学学报,2001,34(3):30-34.
    [17]雷鸿君.配筋混凝土空心小砌块墙受震承载力研究[D].西安:西安建筑科技大学,2002.
    [18]李利群,刘伟庆.约束混凝土小型空心砌块砌体抗震性能试验研究[J].南京建筑工程学院学报,2001,2:19-26.
    [19]李忠献.工程结构试验理论与技术[M].天津:天津大学出版社,2004.
    [20]刘大海,杨翠如,钟锡根.高层建筑抗震设计[M].北京:中国建筑工业出版社,1993.
    [21]刘洪,孙恒军,程才渊等.配筋砌体墙片轴心受压及小偏心受压的试验研究[J].结构工程师,2003,3:70-75.
    [22]刘明,王利民,黄承逵等.配筋砌块砌体芯柱中钢筋搭接长度的试验研究[J].建筑砌块与砌块建筑,2002,3:13-16.
    [23]刘明,张帆,王利民.配筋砌块砌体芯柱中钢筋锚固的试验研究[J].沈阳建筑工程学院学报,2001,17(2):88-90.
    [24]刘洋.八层大开间混凝土砌体结构地震响应试验研究[D].大庆:大庆石油学院.2004.
    [25]刘玉兰.美国小砌块考查报告[J].建筑砌块与砌块建筑,1994,(3):1-4.
    [26]吕大刚,王光远.基于损伤性能的抗震结构最优化设防水准的决策方法[J].土木工程学报,2001,34(1):44-49.
    [27]吕猛,李强,汪海霞.配筋砌块砌体剪力墙结构在高层住宅中的应用研究[J].住宅科技,2005,3:18-20.
    [28]吕西林,程海波.钢筋混凝土框架结构的动力相似关系研究[J].北京:地震工程与工程振动,1997,17(1):162-170.
    [29]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1997.
    [30]吕西林.砌体结构墙体模型振动台试验及其动力相似作用[J].工程抗震,1993.
    [31]吕西林,朱伯龙.五层砌块模型房屋的振动台试验研究[J].同济大学学报,14卷1期,1986.
    [32]潘东辉.配筋砌体剪力墙约束边缘构件的研究[J].科学技术与工程,2008,8(3):824-827,846.
    [33]砌体结构现场检测技术标准(GB/T50315-2000).中国建筑工业出版社,2001,北京.
    [34]钱义良等.高层配筋砌块砌体房屋的设计[C].97全国砌块建筑设计施工技术研讨会论文集,1997,4:2-7.
    [35]全成华,唐岱新.高强砌块配筋砌体剪力墙抗剪性能试验研究[J].建筑结构学报,2002,23(2):79-82,86.
    [36]全成华.配筋砌块砌体剪力墙抗剪静动力性能研究[D].哈尔滨:哈尔滨工业大学土木工程学院,2002.
    [37]全洪,于杰,夏凯.普通混凝土小型空心砌块配筋砌体剪力墙高层住宅建筑结构设计[J].新型建筑材料,2006,9:22-24.
    [38]上海师范大学数学系编.回归分析及其试验设计[M].上海:上海人民教育出版社,1978.
    [39]施楚贤,蔡勇,余志武等.配筋混凝土砌块砌体框支剪力墙模型房屋抗震性能试验研究[J].建筑结构学报,2007,28(6):175-184.
    [40]施楚贤,杨伟军.配筋砌块砌体剪力墙的受剪承载力及可靠度分析[J].建筑结构,2001,31(3):41-44.
    [41]施楚贤主编.砌体结构理论与设计[M].北京:中国建筑工业出版社,2003.
    [42]孙氮萍.论绿色墙体材料一空心砌块的可持续发展[J].四川建筑科学研究,2000,2:47-49.
    [43]孙恒军,周广强,程才渊.混凝土小砌块配筋砌体墙片抗剪性能试验研究[J].山东建筑大学学报,2006,21(5):391-395.
    [44]孙恒军,周广强,程才渊.混凝土小砌块配筋砌体墙片受压性能试验研究[J].山东建筑大学学报,2006,21(4):316-320.
    [45]唐岱新,龚绍熙,周炳章.砌体结构设计规范理解与应用[M].北京:中国建筑工业出版社,2003.
    [46]田玉滨,唐岱新.配筋砌体砌块连梁抗剪承载力计算方法[J].低温建筑技术,2005,2:30-31.
    [47]王凤来,陈再现.配筋砌块砌体结构承重墙体系发展概况及应用效益分析[J].新型墙材,2009,3:43-46.
    [48]王凤来,李新.配筋砌块短肢砌体剪力墙偏压承载力试验[J].哈尔滨工业大学学报,2008,40(10):1527-1531.
    [49]王凤来,李新.配筋砌块砌体短肢剪力墙偏心受压性能的试验研究[J].建筑砌块与砌块建筑,2008,4:3-7.
    [50]王凤来,许祥训,惠英伟.配筋砌块砌体短肢剪力墙抗剪性能及承载力试验研究[J].建筑砌块与砌块建筑,2008,3:1-4.
    [51]王墨耕,王晓彦,王汉东.配筋砌块砌体剪力墙位移延性的设计和计算[J].建筑砌块与砌块建筑,2009,1:10-13.
    [52]王世旺.关于现代砌体结构的设想[C].99年全国砌体结构学术会议论文集.杭州:砌体结构标准技术委员会等,1999:24-30.
    [53]王天稳.土木工程结构试验[M].武汉:武汉理工大学出版社,2003.
    [54]王晓彦,王汉东,王墨耕.混凝土砌块配筋砌体剪力墙的曲率和曲率延性分析[J].建筑砌块与砌块建筑,2008,4:8-11.
    [55]王亚勇.我国2000年抗震设计模式规范基本问题研究综述[J].建筑结构学报,2000,21(1):2-4.
    [56]谢礼立.抗震性态和基于性态的抗震设防[C].国家自然科学基金“九五”重大项目—大型复杂结构的关键科学问题及设计理论研究论文集.大连理工大学出版社,1999:10-16.
    [57]谢琳,黄炎生.配筋砌块砌体结构的抗震性能[J].广东土木与建筑,2002,5:3-5.
    [58]熊立红.多层混凝土砌块结构性态抗震研究[D].哈尔滨:中国地震局工程力学研究所,2004.
    [59]徐正忠,雷宝乾.考察美国混凝土砌块建筑情况简介[J].建筑科学,1998,14(6):56-59.
    [60]许奎山,程才渊.基于MIDAS/Gen的配筋砌体剪力墙结构静力弹塑性分析[J].建筑砌块与砌块建筑,2009,1:17-20.
    [61]颜茂兰,高永昭,武惟娜.砌块建筑设置钢筋混凝土构造柱抗震性能的研究[J].建筑砌块与砌块建筑,2002,1:28-31.
    [62]杨德建,王宁.建筑结构试验[M].武汉:武汉理工大学出版社,2006.
    [63]杨德健,高永孚,孙锦镖等.构造柱-芯柱体系混凝土砌块墙体抗振性能试验研究[J].建筑结构学报,2000,21(4):22-27.
    [64]杨德健.国内小型混凝土砌块建筑抗震研究现状与展望[J].天津城市建设学院学报,2001,7(1):10-13.
    [65]杨伟军,施楚贤,胡庆国.配筋砌块砌体剪力墙的研究和应用[J].工业建筑,2002,32(9):64-66.
    [66]杨伟军,施楚贤.配筋砌块剪力墙抗剪承载力研究[J].建筑结构,2001,31(9) .
    [67]易文新.配筋砌块砌体剪力墙结构设计注意事项分析[J].山西建筑,2007,33(7):100-101.
    [68]于德湖,王焕定,张永山.配筋砌体结构抗震设计多道设防方法[J].工程力学,2003,20(4):109,141-146.
    [69]于德湖,王焕定.配筋砌体结构地震易损性评价方法初探[J].地震工程与工程振动,2002,22(4):97-101.
    [70]于德湖,王焕定.偏心配筋砌体结构弹塑性反应的影响参数分析[J].哈尔滨工业大学学报,2003,35(6):733-738.
    [71]于洋.配筋混凝土砌体结构动力响应分析[J].工程抗震与加固改造,2010,32(2):42-46.
    [72]苑振芳,何振文.15层配筋砌块住宅试点工程简介[J].施工技术,1998,7:18-20.
    [73]苑振芳,刘斌.混凝土砌块建筑发展现状及展望[J].墙材革新与建筑节能,1999(4):25-29.
    [74]张彬彬,杨德健,吴谨辉.砼空心砌块配筋砌体建筑的研究进展[J].天津城市建设学院学报, 2007,13(3):173-177.
    [75]张丙全,林永鹏,翟希梅.配筋砌块砌体柱偏压承载力计算分析[J].工业建筑,2008,38(9):42-44.
    [76]张丙全,翟希梅.配筋砌块砌体柱偏压承载力的影响因素分析[J].工业建筑.2008,38(增刊):213-216.
    [77]张敏政.地震模拟实验中相似律应用的若干问题[J].地震工程与工程振动,17卷2期,1997.
    [78]张永山,王焕定,王铁英.配筋混凝土砌块砌体高层模拟结构抗震分析[J].世界地震工程,2001,17(2):90-94.
    [79]赵顺波,靳彩,赵瑜等.工程结构试验[M].郑州:黄河水利出版社,2001.
    [80]郑文邦.配筋混凝土砌块砌体小高层框支结构抗震研究[J].山西建筑,2006,32(15):54-55.
    [81]中华人民共和国国家标准.建筑抗震设计规范,GB 50011-2001,中国建筑工业出版社,2001.
    [82]中华人民共和国国家标准.混凝土结构工程施工验收规范(GB50204-2003)
    [83]中华人民共和国国家标准.砌体工程施工质量验收规范(GB50203-2002)
    [84]中华人民共和国国家标准.砌体基本力学性能试验方法标准(GBJ129-90)
    [85]中华人民共和国建设部.混凝土小型空心砌块建筑技术规程(JGJ/T14-2004).中国建筑工业出版社,2004
    [86]中华人民共和国建设部.砌体结构设计规范(GB50003-2001) .中国建筑工业出版社,2001.
    [87]周炳章.砌体结构的现状与展望[C].99年全国砌体结构学术会议论文集.杭州:砌体结构标准技术委员会等,1999:1-5.
    [88]周抚生,郭迅,郑志华,毛国成.大开间小型混凝土砌块10层模型房屋抗震性能试验研究(I) [J].地震工程与工程振动,2002,22(6):58-64.
    [89]周抚生,郭迅,郑志华,毛国成.大开间小型混凝土砌块10层模型房屋抗震性能试验研究(II) [J].地震工程与工程振动,2004,24(2):107-110.
    [90]周抚生.大开间混凝土砌块配筋砌体结构抗震性能的研究[D].北京:清华大学,2003.
    [91]周明华.土木工程结构试验与检测[M].南京:东南大学出版社,2002.
    [92]朱伯龙,董振祥.钢筋混凝土非线性分析[M].上海:同济大学出版社,1985.
    [93]朱伯龙.砌体结构设计原理[M].上海:同济大学出版社,1991.
    [94]朱伯龙.结构抗震试验[M].北京:地震出版社,1989.
    [95]朱黎明,周雪明等.混凝土空心砌块配筋砌体建筑用砌块的生产[J].建筑砌块与砌块建筑,2003,4:20-22.
    [96]祝英杰.高强混凝土砌块砌体基本力学性能的试验研究及其动力分析[D].沈阳:东北大学,2002.
    [97] Abboud B E, Hamid A A,Harris H G.Small-scale modeling of concrete block masonry structures[J].ACI Structure Journal, 1990,87(2):145-155.
    [98] Bozorgnia,Y and V.V.Bertero. Damage Spectra:characteristics and applications to seismic risk reduction[J]. J.Struct.Eng.,2003,129(10):1330-1340.
    [99] Camacho J S , JrRB , Andolfato RP.An Experimental Investigation of Correlations Betreen Prototypes and Small-Scale Modeling of Ceramic Block Masonry Structrues[C],12th International brick/block Masonry Conference, Spain,2000.
    [100] Chai,Y.H. and Bird,S.M. Energy-based linear damage model for high-intensity seismic loading[J]. J.Struct.Eng.,121(5):857-864.
    [101] Clough, R.W. .“Effects of Stiffness Degradation on Earthquake Ductility Requirement”[R] , Report No.6614, Structural and Material Research, University of California, Berkeley, 1966.
    [102] Code of practice for use of masonry.BS5628-1:1992 and BS5628-2:2000.
    [103] Gilbert M, Molyneaux T, Hobbs B.Numerical Modeling of Unreinforced Masonry Walls Subject to Lateral Impact[C].In: Proc of the 11th IBBMaC. Shanghai,China,1997:1250-1259.
    [104] Horton R T. and Tadros M K.Deflection of Reinforced Masonry Members[J].ACI Structural Journal, 1990,87(4):453-463.
    [105] Hugh D. Mcniven. A Mathematical Model for The In-Plane Non-Linear Earthquake Behaviour of Unreinforced Masonry Walls[J]. Part 2: Completion of The Model, EESD, 18:249-261, 1989.
    [106] J.C.Scrivener.Reinforced Masonry-Seismic Behaviour and Design[J], Bulletinof N.Z.Society for Earthquake Engineering,5(4), 1972.
    [107] Kato H.Research and Development on Performance Evaluation and Structural Control Methods for Buildings with Soft First Story To Ensure The Seismic Safety[J]. Building Research Institute.www.kenken.go.jp,2002,1-8.
    [108] Lee Han-Seon and Ko Dong-Woo. Shaking Table Tests of a High-Rise RC Bearing-Wall Structure with Bottom Piloti Stories[J].Journal of Asian Architecture and Building Engineering,2002,1(1):47-5 4.
    [109] M.Elmorsi, M.Reza Kianoush ang W.K.Tso. Nonlinear Analysis of Cyclically Loaded Reinforced, Concrete Structures [ J ] , ACI Structural Journal, 95(6):725-739 1998.
    [110] Martin S.Williams and Robert G.Sexsmith.Evaluction of seismic damage indices for concrete elements loaded in combined shear and f1exure[J].ACI Structure Jounal,1997,194(3):315-322.
    [111] Mendola L L, Papia M,and Zingone G.Stability of Masonry Walls Subjected to Seismic Transverse Forces[J].Journal of Structural Engineering,1995,121 (11): 1581-1587.
    [112] Narendra Taly.现代配筋砌体结构[M].上海:同济大学出版社,2004.
    [113] Naraine K,Sinha S.Behavior of Brick Masonry under Cyclic Compressive Loading[J]. J.Struct.Engrg,ASCE,1989,115(6).
    [114] Park, Y.J., Ang, A.H-S. and Wen, Y.K..“Seismic damage analysis and damage-limiting design of R/C buildings”[J], Civil Engineering Studies, SRS No. 516, University of Illinois, Urbana, October 1984.
    [115] Reinforced Masonry. ISO/TC179/SC2 N50,1998.
    [116] S.L.Roufaiel and C.Meyer.Analytical modeling of hysteretic behavior of R/C frames[J]. J.Struct.Eng.,1987,113(3):429-444.
    [117] Seible F, Hegemier G A,Igarashi A and Kingsley G R.Simulated Seismic-Load Tests in Full-Scale Five-Story Masonry Building[J], Journal of Structural Engineering, 1994,120(3):903-924.
    [118] Shing P B,Nolang J L,and Klamerus E.Inelastic Behavior of Concrete Masonry Shear Walls[J].Journal of Structural Engineering,1989,115(3):2204-2225.
    [119] Shing P B,Schuller M,Hoskere V S,and Carter E.Flexural and Shear Response of Reinforced Masonry Shear Walls[J].ACI Journal,1990,87(6):646-656.
    [120] T.Usami and S.Kumar. Damage evaluation in steel box column by pseudodynamic tests[J]. J.Struct.Eng.,122(6):635-642.
    [121] Tomazevic M and Klemenc L.Verification of Seismic Resistance of Confined Masonry Building[sJ],Earthquake Engineering and Structural Dynamics, 1997, 26:1073-1088.
    [122] Tomazevic M and Lutman M.Seismic Behavior of Masonry Walls:Modeling of Hysteretic Rules[J].Journal of Structural Engineering,1996,122(9):1048-1054.
    [123] Tomazevic M,Lutman M,and Petkovic L.Seismic Behavior of Masnry Walls:Experimental Simulation[J], Journal of Structural Engineering, 1996,122(9):1040-1047.
    [124] Tomazevic M.Earthquake-Resistant Design of Masonry Buildings[J],Imperial College Press ,First published 1999.
    [125] Turnsek V,Cacovic F.Some Experimental Results on the Strength of Brick Masonry Wa11s[J].Proceedings of the SIBMaC.1971.
    [126] Y. Mengi and H.D. MeNiven. A mathematical model for the in plane Non-linear earthquake behavior[J], EESD, 18:249-261, 1989.
    [127] Y.J.Park and H.S.Ang.Seismic damage analysis of reinforced concrete buildings. Journal of Structural Engineering[J], ASCE,1985,111(4): 740-757.
    [128] Y.J.Parkand H.S.Ang.Mechanistic seismic damage model for reinforced concrete. Journal of Structural Engineering[J],ASCE,1985,111(4):722-739.
    [129] Yalcin Mengi. A Mathematical Model for The In-Plane Non-Linear Earthquake Behaviour of Unreinforced Masonry Walls[J]. Part 1: Experiments and Proposed Model, EESD, 18:233-247, 1989.
    [130] Yalcin Mengi, Hugh D.Mcniven and A.Kamil Tanrikulu, Models for Nonlinear Earthquake Analysis of Brick Masonry Buildings[J], EERC-92/03, 1992.
    [131] Young J. Park, Andrei M. Reinhorn and Sashi K. Kunnath,“IDARC: Inelastic damage analysis of reinforced concrete frame-shear-wall structures”[R],Technical report NCEER-87-0008, National Center for Earthquake Engineering Research, State University of New York at Buffalo.
    [132] Zarnic R, Gostic S, Crewe A J. and Taylor C A.Shaking Table Tests of 1:4 Reduced-scale models of masonry infilled reinforced concrete frame buildings [J].Earthquake Engineering and Structural Dynamics,2001,30:819-834.
    [133] Zonta D, Zanardo G. and Modem C.Experimental eveluation of the ductility of reduced-scale reinforced masonry building[J].Materials and Structures, 34(12): 636- 644.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700