用户名: 密码: 验证码:
超级电容器炭基电极材料制备及其电容性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器在电子、新能源等高新技术领域具有广阔的应用。其性能主要是由电极材料决定的,因此降低材料成本,获得最佳性价比,成为电极材料研发的关键。
     本文通过发泡将沥青和酚醛树脂制备成具有微米级泡壁的三维网络结构,再通过炭化、水蒸气活化制备成活性泡沫炭;以糠醇为原料,通过模板法制备了孔结构分布窄的微孔模板炭;以天然鳞片石墨为原料,采用改进的Hummers法,制备了具有开放表面结构的石墨烯。用循环伏安法、恒流充放电和交流阻抗法等电化学评价方法,研究了微孔和开放平面内的充放电平衡容量和功率特性,并考察了孔结构对双电层电容性能的影响,及其与电解质离子的匹配关系。
     以热塑性酚醛树脂为原料,加入12 wt%的六次甲基四胺固化剂,在氮气保护下以10℃/min从室温升温到约210℃发泡,并继续升温到700℃炭化。在水流量为1.0~2.0mL/min的蒸汽中700~850℃活化60~180min,得到比表面在474~1287m2/g,孔径在0.64~5.0nm之间的酚醛基活性泡沫炭;以软化点为285℃各向同性煤焦油沥青为原料,加入30wt%甲苯,设定初始压力为3.0MPa,在300℃下发泡,经过氧化炭化,并在850℃下,水流量为1.0mL/min水蒸汽活化60~180min,得到了比表面为399~953m2/g,孔径在0.59~5.0nm之间的沥青基活性泡沫炭。
     比较了比表面为961m2/g的酚醛基活性泡沫炭和比表面积为953m2/g的沥青基活性泡沫炭的双电层电容性能,在1.0mA充放电时,二者容量相近,分别为117 F/g和112.5 F/g,当电流增加到50mA时,二者的容量差别变大,前者为60.5 F/g,后者为28.3 F/g,表明酚醛基比沥青基活性泡沫炭的孔容更大一些,有利于提高功率特性;比较了比表面积为1267 m2/g的酚醛基活性泡沫炭和比表面积为1297 m2/g的酚醛基活性炭纤维的双电层电容特性,在1.0mA充放电时,容量相差不大,前者为142.4 F/g,后者为169.8 F/g,随着充放电电流的增大,两种活性炭的电容量差异有所提高,在50mA时,前者为77.1 F/g,后者为121.5 F/g,表明活性泡沫炭作为电极材料虽然性能较活性炭纤维低些,但制备简单。
     利用NaY型分子筛,通过糠醇浸渍、聚合、700~800℃炭化、HF脱模等过程,制备了孔径在1.0nm和1.6nm附近双峰分布,比表面积约为578~826m2/g的模板炭。选用比表面积为826m2/g的模板炭,考察了在1.5mol/L的NaOH、KOH、NaCl、Na2SO4四种电解液中模板炭的电化学性能,发现模板炭在不同电解液中的比电容和循环伏安特性差别很大,在NaOH中的比容量、可逆性和循环伏安特性最好,在1.0mA时的比容量可达150.4F/g,在Na2SO4中的电容量最低,1.0mA时的比容量为58.7F/g。原因主要是随着电解质离子半径的增大,在模板炭孔隙中的扩散阻力增加。
     采用改进的Hummers方法制备了氧化石墨,在水中经超声分散得到片层直径0.4μm左右的单片层氧化石墨烯胶体溶液,经硼氢化钠还原得到比表面积为358 m2/g的石墨烯,在充放电电流为10 mA时,石墨烯电极的充电比容量可达138.6 F/g,充放电效率为98%。与微孔炭相比,开放平面的石墨烯具有较高的面积比电容。以5.0~50 mV/s扫描速率进行循环伏安测试,石墨烯电极表现出良好的功率性能。
Supercapacitors have been arousing more attentions in newly developed fields like electronics, new power sources etc. Since their performance mainly depends on the anode materials, it has been extensively pursued to get high quality materials with low cost and easy ways.
     Carbon foams with three dimensional networks and microsize walls were prepared from a pitch and a phenolic resin respectively through foaming, carbonization. The carbon foams were activated with steam activation. A microporous template carbon was synthesized from furfuryl alcohol with NaY zeolite as the template. Graphene was converted from natural crystalline flake graphite by modified hummers’method. The manufactured carbons, which could be classified into microporous and opened planar structured carbons, were evaluated with cyclic voltammetry and constant current coulometry for electrode materials of supercapacitors. The effect of pore size and electrolyte ions on capacitance was discussed.
     A thermalplastic phenolic resin blinded with hexamine was heated to foam at about 210℃, and then heated to 700℃to transform into carbon foams, among which the sample derived with 12wt% hexamine heated at 10℃/min. The carbon foam was activated at 700-850℃for 60-180min with water steam metered by water flow of 1.0-2.0mL/min, into activated carbon foams with specific surface area of 474-1287m2/g and pore diameter of 0.64-5.0nm. While a pitch with soft-point of 285℃was blown to pitch foams by supercritical solvent and successively oxidized and carbonized to get carbon foams, on which the solvent addition, foaming temperature, and initial pressure were the key influencial factors. The sample foamed under the conditions of 30wt% toluene, initial pressure of 3.0MPa, and foaming temperature of 300℃. was activated at 850℃for 60-180min with water steam metered by water flow of 1.0mL/min, into activated carbon foams with specific surface area of 399-953m2/g and pore diameter of 0.59-5.0nm.
     The electrochemical performances of the two activated carbon foams was studied, the phenolic resin based and the pitch based with specific surface area of 961m2/g and 953m2/g respectively. When measured at the current of 1.0mA, the two samples owned the similar capacitances of 117F/g and 112.5F/g, while measured at 50mA, their capacitances differed a lot, with 60.5F/g for the former and 28.3F/g for the later. Compared with activated carbon fiber with specific surface area of 1297m2/g, the activated resin carbon foam with specific surface area of 1267 m2/g showed a comparable specific capacitance of 142.4 F/g against 169.8F/g at 1.0mA and decreased to 77.1F/g against 121F/g at 50mA, indicating that activated carbon foam would be a good electrode material with easy process even a little lower performance compared with activated carbon fiber.
     Template carbons were prepared from furfuryl alcohol by using NaY zeolite as the template through soaking, polymerizing, carbonizing at 700-800℃, template removing with HF, with pores sized at 1.0nm and 1.6nm and specific surface area of 578-826m2/g. The sample with specific surface area of 826m2/g were measured in four different electrolytes of NaOH, KOH, NaCl and Na2SO4, showing that the performance in NaOH was the best with capacitance of 150.4F/g at 1.0mA, while that in Na2SO4 was the worst, with capacitance of 58.7F/g. The reason could be interpreted as smaller ions diffused more easily in the micropores.
     Graphene was converted from a crystal flake graphite through oxidizing by modified Hummers’method, dispersing by supersonic and reducing by NaBH4, with specific surface area of 358m2/g. The specific capacitance could reach 138.6F/g at 10mA with a capacitance efficiency of 98%, much higher than the micropore carbons based its specific surface area, which could be mainly benefited from its opened planar structure. The cyclic voltammetry showed the graphene had good double layer capacity.
引文
[1] Conway B. E. Electrochemical Supercapacitors. New York: Plenum Publishing, 1999.
    [2]杨红生,周啸,冯天富,等.电化学电容器最新研究进展I.双电层电容器[J].电子元件与材料, 2003, 22(2): 13-19.
    [3]朱磊,吴伯荣,陈晖,等.超级电容器研究及其应用[J].稀有金属, 2003, 27(3): 385-390.
    [4] K?tz R., Carlen M.. Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000, 45(15-16): 2483-2498.
    [5] Burke A. Ultracapacitors: why, how, and where is the technology. Journal of Power Sources, 2000, 91(1): 37-50.
    [6] Obreja Vasile V. N.. On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material--A review. Physica Elsevier, 2008, 40(7): 2596-2605.
    [7]陈英放,李媛媛,邓梅根,等.超级电容器的原理及应用[J].电子元件与材料, 2008, 27(04): 6-9.
    [8]王然,苗小丽.大功率超级电容器的发展与应用[J].电池工业, 2008, 13(03): 191-216.
    [9] Pandolfo A. G., Hollenkamp A. F.. Carbon properties and their role in supercapacitors. Journal of Power Sources, 2006, 157(1): 11-27.
    [10] Nishino A. Capacitors: operating principles, current market and technical trends. Journal of Power Sources, 1996, 60(2): 137-147.
    [11] Chu A., Braatz P.. Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles I. Initial characterization. Journal of Power Sources, 2002, 112(1): 236-246.
    [12]李歆.超级电容器综述[J].中国电子商情(基础电子), 2009, 11: 52-54.
    [13]华黎.超级电容器发展与新能源汽车[J].汽车与配件, 2009, 48(04): 26-32
    [14] Aurelien D. P., Plitz I., Serafin A., etc. A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. Journal of Power Sources, 2003, 115(1): 171-178.
    [15] Pell W. G., Conway B. E., Adams W. A., etc. Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications. Journal ofPower Sources, 1999, 80(1-2): 134-141.
    [16] Reynolds Chris.超级电容器进展[J],今日电子, 2010, 1: 26-27
    [17] Faggioli E., Rena P., Danel V., etc. Supercapacitors for the energy management of electric vehicles. Journal of Power Sources, 1999, 84(2): 261-269.
    [18] Huggins R. A.. Supercapacitors and electrochemical pulse sources. Solid State Ionics, 2000, 134(1-2): 179-195.
    [19] Ashtiani C., Wright R., Hunt G.. Ultracapacitors for automotive applications. Journal of Power Sources, 2006, 154(2): 561-566.
    [20]田艳红,付旭涛,吴伯荣.超级电容器用多孔炭材料的研究进展[J].电源技术, 2002, 26(6): 466-469.
    [21]吴憩棠,周宏湖.二次电池超级电容器混合电动车在沪多条公交线路示范运行[J].汽车与配件, 2008, 52(4): 28-29.
    [22] Nomoto S., Nakata H., Yoshioka K., etc. Advanced capacitors and their application. Journal of Power Sources, 2001, 97-98: 807-811.
    [23] Frackowiak E., Béguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001, 39(6): 937-950.
    [24]袁定胜,胡向春,刘应亮,等.超级电容器用炭材料的研究进展[J].电池, 2007, 37(6): 466-468.
    [25] Burke A. R&D considerations for the performance and application of electrochemical capacitors. Electrochimica Acta, 2007, 53(3): 1083-1091.
    [26]杨全红,唐致远.新型储能材料——石墨烯的储能特性及其前景展望[J].电源技术, 2009, 33(4): 241-244.
    [27] Zondlo John W., Velez Michael R.. Development of surface area and pore structure for activation of anthracite coal. Fuel Processing Technology, 2007, 88(4): 369-374.
    [28] Ito E., Nakamura H., Inagaki M.. Preparation of porous carbons from cypress using super-heated steam: III. Performance in electric double layer capacitors. Carbon, 2008, 46(4): 721-721.
    [29] ?i?dem ?entorun S., U?ak Astarl?o?lu M. G.., Levent A., etc. Preparation and characterization of activated carbons by one-step steam pyrolysis/activation from apricot stones. Microporous and Mesoporous Materials, 2006, 88(1-3): 126-134.
    [30]张琳,刘洪波,李步广,等.双电层电容器用酚醛树脂基活性炭的制备[J].电子元件与材料, 2005, 24(11): 35-38.
    [31] Qu D., Shi H. Studies of activated carbons used in double-layer capacitors. Journal ofPower Sources, 1998, 74(1): 99-107.
    [32] Barbieri O., Hahn M., Herzog A., Etc. Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon, 2005, 43(6): 1303-1310.
    [33]蔡琼,黄正宏,康飞宇.超临界水和水蒸气活化制备酚醛树脂基活性炭的对比研究[J].新型炭材料, 2005, 20(2): 122-128.
    [34] Ito E., Mozia S., Okuda M., etc. Nanoporous carbons from cypress II. Application to electric double layer capacitors. New Carbon Materials, 2007, 22(4): 321-326.
    [35] Mitani S., Lee S.,Yoon S., etc. Activation of raw pitch coke with alkali hydroxide to prepare high performance carbon for electric double layer capacitor. Journal of Power Sources, 2004,133(2): 298-301.
    [36] Biniak S., Bozena D., Janusz S. Electrochemical behaviour of carbon fibre electrodes in various electrolytes. Double-layer capacitance. Carbon, 1995, 33(9): 1255-1263.
    [37] Tanahashi I., Yoshida A., Nishino A. Activated carbon fiber sheets as polarizable electrodes of electric double layer capacitors. Carbon, 1990, 28(4): 477-482.
    [38] Xu B., Wu F., Chen S., etc. Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors. Electrochimica Acta, 2007, 52(13): 4595-4598.
    [39] Merino Cesar, Soto Pablo, Vilaplana-Ortego Eduardo, etc. Carbon nanofibres and activated carbon nanofibres as electrodes in supercapacitors. Carbon, 2005, 43(3): 551-557.
    [40] Miura K., Nakagawa H., Okamoto H. Production of high density activated carbon fiber by a hot briquetting method. Carbon, 2000, 38(1): 119-125.
    [41] Wang K. P., Teng H. The performance of electric double layer capacitors using particulate porous carbons derived from PAN fiber and phenol-formaldehyde resin. Carbon, 2006, 44(15): 3218-3225.
    [42] Xu B., Wu F., Chen R., etc. Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte. Journal of Power Sources, 2010, 195(7): 2118-2124.
    [43]孟庆函,刘玲,宋怀河,等.炭气凝胶为电极的超级电容器的研究[J].功能材料, 2004, 35(4): 457-459.
    [44] Pekala R.W., Farmer J. C., Alviso C. T., etc. Carbon aerogels for electrochemical applications. Journal of Non-Crystalline Solids, 1998, 225(1): 74-80.
    [45] Hwang S., Hyun S. Capacitance control of carbon aerogel electrodes. Journal ofNon-Crystalline Solids, 2004, 347(1-3): 238-245.
    [46] Wei Y. Z., Fang B., Iwasa S., etc. A novel electrode material for electric double-layer capacitors. Journal of Power Sources, 2005, 141(2): 386-391.
    [47] Iijima S. Helical microtubles of graphite carbon. Nature, 1991, 11(354): 56-58.
    [48] Niu C, Sichel E. K., Hoch R., etc. High power electrochemicalcapacitors based on carbon nanotube electrodes. Applied Physics Letter, 1997, 70(11): 1480-1482.
    [49]江奇,卢晓英,赵勇,等.炭纳米管微结构的改变对其容量性能的影响[J].物理化学学报, 2004, 24(5): 546-549.
    [50] Ye J., Liu X., Cui H., etc. Electrochemical oxidation of multi-walled carbon nanotubes and its application to electrochemical double layer capacitors. Electrochemistry Communications, 2005, 7(3): 249-255.
    [51] Zhang H., Cao G.., Yang Y.. Electrochemical properties of ultra-long, aligned, carbon nanotube array electrode in organic electrolyte. Journal of Power Sources, 2007, 172(1): 476-480.
    [52]张浩,曹高萍,杨裕生,等.可用至3.5V的碳纳米管阵列超级电容器[J].电化学, 2008, 14(2): 117-120.
    [53] Lu W., Qu L., Henry K., etc. High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes. Journal of Power Sources, 2009, 189(2): 1270-1277.
    [54]张浩,曹高萍,杨裕生,等.电化学双电层电容器用新型炭材料及其应用前景[J].化学进展, 2008, 20(10): 1495-1500.
    [55]黄毅,陈永胜.石墨烯的功能化及其相关应用[J].中国科学(B辑:化学), 2009, 39(9): 887-896.
    [56] Stoller M. D., Park S., Zhu Y., etc. Graphene-based ultracapacitors. Nano Letters, 2008, 8: 3498-3502.
    [57] Vivekchand S. R. C., Rout C. S., Subrahmanyam K. S., etc. Graphene-based electrochemical supercapacitors. Journal of Chemical Sciences, 2008, 120(1): 9-13.
    [58] Zhang Y., Li H., Pan L., etc. Capacitive behavior of graphene-ZnO composite film for supercapacitors. Journal of Electro analytical Chemistry, 2009, 634(1): 68-71.
    [59] Yan J., Wei T., Shao B., etc. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon, 2010, 48(2): 487-493.
    [60] Wang Y., Wang C., Guo C., etc. Influence of carbon structure on performance of electrode material for electric double-layer capacitor. Journal of Physics andChemistry of Solids, 2008, 69(1): 16-22.
    [61] Shi H. Activated carbons and double layer capacitance. Electrochimica Acta, 1996, 41(10): 1633-1639.
    [62] Kinoshita K. Carbon: electrochemical and physicochemical properties. New York: Kodansa Press, 1988.
    [63] Wang L., Toyoda M., Inagaki M. Dependence of electric double layer capacitance of activated carbons on the types of pores and their surface areas. New Carbon Materials, 2008, 23(2): 111-115.
    [64] Sing K. S. W., Everett D. H., Haul R. A. W., etc. Reporting physisorption data for gas/solid systems-with special reference to the determination of surface area and porosity, Pure and Applied Chemistry, 1985, 57(4): 603-619.
    [65] Largeot Celine, Portet Cristelle, Chmiola John, etc. Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. Journal of the American Chemical Society, 2008, 130(9): 2730-2731.
    [66] Dominiczak Peter. Supercapacitors: size matters: Energy generation. Materials Today, 2006, 9(10): 9-9.
    [67] Endo M., Maeda T., Takeda T., etc. Dresselhaus M S Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes usingvarious activated carbon electrodes. Journal of the Electrochem Society, 2001, 148(8):A910–A914.
    [68] Raymundo-Pi?ero E., Kierzek K., Machnikowski J., etc. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon, 2006, 44(12): 2498-2507.
    [69] Gryglewicz G., Machnikowski J., Lorenc-Grabowska E., etc. Effect of pore size distribution of coal based activated carbons on double layer capacitance. Electrochimica Acta, 2005, 50(5): 1197-1206.
    [70]王芙蓉,李开喜,吕永根,等.酚醛树脂基活性炭微球的电化学性能II.作为EDLC电极材料的活性炭微球的制备及电化学性能[J].新型炭材料, 2006, 21(3): 119-224.
    [71]文越华,程杰,曹高萍,等.表面官能团及OH-对炭电极电容性能的影响[J].电池, 2006, 36(5): 229-331.
    [72] Lozano-CastellóD., Cazorla-Amorós D., Linares-Solano A., etc. Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte. Carbon, 2003, 41(9): 1765-1775.
    [73] Seredych M., Hulicova-Jurcakova D., Lu G., etc. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon, 2008, 46(11): 1475-1488.
    [74]庄新国,杨裕生,杨冬平,等.表面官能团对活性炭性能的影响[J].电池, 2003, 33(4): 199-202.
    [75] Kastening B., Heins M. Properties of electrolytes in the micropores of activated carbon. Electrochimica Acta, 2005, 50(12): 2487-2498.
    [76]李会巧.超级电容器及其相关材料的研究[博士学位论文].上海:复旦大学, 2008.
    [77]王艳素.炭基电极材料制备及其孔结构对电容器性能的影响[博士学位论文].天津:天津大学, 2008.
    [78] Lee G., Pyun S. Effect of microcrystallite structures on electrochemical characteristics of mesoporous carbon electrodes for electric double-layer capacitors. Electrochimica Acta, 2006, 51(15): 3029-3038.
    [79]成果,谢应波,龙东辉,等.超级电容器用新型微晶炭的结构及其电容性能[J].华东理工大学学报(自然科学版), 2009, 35(6): 803-808.
    [80] Lee J., Yoon S., Hyeon T., etc. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chemical Communication, 1999, 2177: 2177-2178.
    [81] Fuertes A. B., Lota G., Centeno T. A., etc.Templated mesoporous carbons for supercapacitor application. Electrochimica Acta, 2005, 50(14): 2799-2805.
    [82] Jurewicz K., Vix-Guterl C., Frackowiak E., etc. Capacitance properties of ordered porous carbon materials prepared by a templating procedure. Journal of Physics and Chemistry of Solids, 2004, 65(2-3): 287-293.
    [83] Gregory S., Abraham S., Linoam E., etc. Carbon Electrodes for Double-Layer Capacitors I. Relations Between Ion and Pore DimensionsJ. Journal of the Electrochemical Society, 2000 , 147 ( 7): 2486-2493 .
    [84] Chmiola J., Yushin G., Gogotsi Y. etc. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science , 2006, 313(22): 1760-1763.
    [85] Okamura M., Nakamura H. Proceedings of the 14th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Florida Educational Seminar, 2004, (12): 215-225,
    [86]杨骏兵,凌立成,刘朗.酚醛树脂基球形炭活化特性的研究[J].新型炭材料, 1999, 14(4): 11-16.
    [87] Kim C. Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors. Journal of Power Sources, 2005, 142(1-2): 382-388.
    [88]韩鹏献,王成扬,时志强,等.水蒸汽活化树脂炭用做双电层电容器电极材料[J].无机材料学报, 2007, 22(6): 1046-1050.
    [89]李灿,黄正宏,张江南,等.以石油渣油为原料制备多孔炭[J].材料科学与工程学报, 2009, 27(3): 344-347.
    [90]黄正宏,康飞宇,郝吉明. KOH活化与CO2活化的ACF的孔结构[J].炭素, 2005(1): 23-26.
    [91] San M. G., Fowler G. D., Sollars C. J.. A study of the characteristics of activated carbons produced by steam and carbon dioxide activation of waste tyre rubber. Carbon, 2003, 41(5): 1009-1016.
    [92] Lewandowski A., Zajder M., Frackowiak E., etc. Supercapacitor based on activated carbon and polyethylene oxide-KOH-H2O polymer electrolyte. Electrochimica Acta, 2001, 46(18): 2777-2780.
    [93] Jo?o M., Valente N., Pedro N., etc. Production of activated carbons from coffee endocarp by CO2 and steam activation. Fuel Processing Technology, 2008, 89(3): 262-268.
    [94] Mora E., Blanco C., Pajares J. A., etc. Chemical activation of carbon mesophase pitches. Journal of Colloid and Interface Science, 2006, 298(1): 341-347.
    [95]李晶,黄可龙,刘业翔.超级电容器用活性炭的制备与电化学表征[J].材料科学与工艺, 2009, 17(1): 1-4.
    [96]谢应波,张维燕,张睿,等. NaOH活化法中碱炭比对孔结构和电化学性能的影响[J].材料科学与工艺, 2009, 17(5): 732-737.
    [97] Sevilla M.,ávarez S., Centeno T. A., etc. Performance of templated mesoporous carbons in supercapacitors. Electrochimica Acta, 2007, 52(9): 3207-3215.
    [98] Fuertes A.B., Pico F., Rojo J.M.. Influence of pore structure on electric double-layer capacitance of template mesoporous carbons. Journal of Power Sources, 2004, 133(2): 329-336.
    [99] Kodama M., Yamashita J., Soneda Y., etc. Structural characterization and electric double layer capacitance of template carbons. Materials Science and Engineering B, 2004, 108(1-2): 156-161.
    [100] Ruiz V., Blanco C., Santamaría R., etc. Carbon molecular sieves as model activeelectrode materials in supercapacitors. Microporous and Mesoporous Materials, 2008, 110(2-3): 431-435.
    [101]徐斌,彭璐,王国庆.高功率超级电容器用介孔炭电极材料[J].电化学, 2009, 15(1): 9-12.
    [102]伍刚,李德伏,王金渠. NaY分子筛模板法合成多孔炭材料[J].材料科学与工程学报, 2006, 24(4): 565-567.
    [103]王爱平,康飞宇,黄正宏.沸石矿模板炭的制备及其纳米孔的形成机理[J].新型炭材料, 2007, 22(2): 141-146.
    [104]王仁清,方勤,邓梅根.模板法制备超级电容器活性炭电极材料[J].电子元件与材料, 2009, 28(1):14-16.
    [105] Liu G., Kang F., Li B., etc. Characterization of the porous carbon prepared by using halloysite as template and its application to EDLC. Journal of Physics and Chemistry of Solids, 2006, 67(5-6): 1186-1189.
    [106]庄凯,梁逵,李兵红,等.微波活化制备双电层电容器用活性炭的研究[J].电子元件与材料, 2006, 25(6): 18-20.
    [107]赵家昌,陈思浩,解晶莹.模板-物理活化法制备高性能中孔炭材料[J].电源技术, 2007, 31(12): 1000-1003.
    [108]张治安,赖延清,李劼,等.活性炭的制备及其在有机超级电容器中的应用[J].电子元件与材料, 2007, 16(11): 12-16
    [109] Guo C., Wang C. Study on preparation of activated mesocarbon microbeads/expanded graphite composites for electrical double layer capacitors. Composites Science and Technology, 2007, 67(7-8): 1747-1750.
    [110]张琳,刘洪波,李步广,等.碱炭比对活性炭孔结构及电容特性的影响[J].湖南大学学报(自然科学版), 2005, 32(3): 23-27.
    [111]杨骏兵,凌立成,刘朗,等.固化和炭化条件对酚醛树脂基球形活性炭机械强度与吸附性能的影响[J].炭素技术, 1999, 4: 10-14.
    [112] Lee J., Yoon S., Hyeon T., etc. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Journal of Chemical Communication, 1999, 2177-2178.
    [113] Endo M., Kim Y. J., Ohta H., etc. Morphology and organic EDLC applications of chemically activated AR-resin-based carbons. Carbon, 2002, 40(14): 2613-2626.
    [114]王鹏,吕永根,秦显营,等.超临界条件对沥青泡沫炭结构的影响[J].炭素, 2008, 2: 3-10.
    [115]邓梅根,方勤,冯义红,等.活性炭的孔结构与其电容特性的关系研究[J]. 2007, 38 (4): 553-555.
    [116]周鹏伟,李宝华,康飞宇,等.椰壳活性炭基超级电容器的研制与开发[J].新型炭材料, 2006, 21(2): 125-131.
    [117] Hou P., Toshiaki Y., Hironori O., etc. An easy method for the synthesis of ordered microporous carbons by the template technique. Carbon, 2005, 43(12): 2624-2627.
    [118] Ania C.O., Khomenko V., Raymundo-Pinero E., etc. The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template. Advanced Functional Materials, 2007, 17(11): 1828-1836.
    [119] Chmiola J., Yushin G., Gogotsi Y., etc. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science, 2006, 313(22): 1760-1763.
    [120] Kyotani T., Sonobe N., Tomtta A. Formation of highly orientated graphite from olyacrylonitrile by using a two-dimensional space between montmorillonite lamellae. Nature, 1988, 331(6154): 331-333.
    [121] Novoselov K. S., Geim A. K., Morozov S. V., etc. Electric field effect in atomically thin carbon films. Science, 2004, 306(5296): 666-669.
    [122] Meyer J. C., Geim A. K., Katsnelson M. I., etc. The structure of suspended graphene sheets. Nature, 2007, 446(7131): 60-63.
    [123] Geim A. K.. Graphene: status and prospects. Science, 2009, 324(19): 1530-1534.
    [124] Titelman G. I., Gelman V., Bron S., etc. Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide. Carbon, 2005, 43(3): 641-649.
    [125] SzabóT., Tombácz E., Illés E., etc. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon, 2006, 44(3): 537-545.
    [126] Osváth Z., Darabont Al., Nemes-Incze P., etc. Graphene layers from thermal oxidation of exfoliated graphite plates. Carbon, 2007, 45(15): 3022-3026.
    [127] Stankovich S., Dikin D. A., Piner R. D., etc. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558-1565.
    [128] Stankovich S., Piner R. D., Nguyen S. T., etc. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 2006, 44(15): 3342-3347.
    [129]李俊,王先友,黄庆华.炭气凝胶的制备及其在超级电容器中的应用[J].电源技术,2006, 30(7): 555-562.
    [130]郭春雨,王成扬,时志强.活性中间相炭微球在超级电容器中的应用[J].电源技术, 2007, 31(3): 179-182.
    [131] Marques M., Suárez-Ruiz I., Flores D., etc. Correlation between optical, chemical and micro-structural parameters of high-rank coals and graphite. International Journal of Coal Geology, 2009, 77(3-4): 377-382.
    [132] Randin J., Yeager E. Differential capacitance study on the basal plane of stress-annealed pyrolytic graphite. Journal of Electroanalytical Chemistry, 1972, 36(2): 257-276.
    [133] Gomibuchi E., Ichikawa T., Kimura K., etc. Electrode properties of a double layer capacitor of nano-structured graphite produced by ball milling under a hydrogen atmosphere. Carbon, 2006, 44(5): 983-988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700