用户名: 密码: 验证码:
几种重要过渡金属配合物催化二氧化碳与环氧化物反应的量子化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于工业碳源的日趋短缺和环境问题的日益严重,二氧化碳催化转化为化工产品倍受人们的关注。在CO_2化学固定方面,利用二氧化碳和环氧化物环加成得到五元环状碳酸酯是最具前景的方法之一。在过去的几十年中,用于CO_2/环氧化物耦合反应的各种类型催化剂被人们不断地探索研发,尤其是非氧化态和低价氧化态过渡金属配合物。然而,单纯依靠实验手段很难检到反应中间物种,所以迄今为止详细的反应机理仍然比较少见。量子化学作为一种有效的研究手段能够在分子层次上提供催化剂的重要性质。通过改进和设计催化剂,获得高产率、高选择性目的产物是一项十分有意义的工作。
     本论文旨在获得对一些过渡金属配合物催化二氧化碳与环氧化物耦合反应机理的全面的、深入的认识,重点阐明反应路径的不同之处,揭示催化剂结构与性质的关系,从而为新型高效催化剂的研发及应用提供理论指导。本论文采用B3LYP密度泛函理论方法,对过渡金属配合物NCCH_2Cu、(Ph_3P)_2Ni、Re(CO)_5Br催化合成五元环状碳酸酯的详细反应机理作了系统研究,主要研究内容及结论如下:
     1.氰甲基铜(I)催化CO_2与环氧丙烷的耦合反应
     氰甲基铜(I)催化合成环碳酸酯是分步反应,可以认为包括两个过程。在process 1中,CO_2插入氰甲基铜的Cu(I)–C键产生活化二氧化碳载体氰丙酸铜(I),此过程包含六步反应。第一步,CO_2侧面进攻反应物1形成5;第二步,侧配位二氧化碳载体5转化为更稳定的端配位络合物4;第三步,4释放出CO_2而生成物种2;第四步,CO_2进攻2产生五元环状中间物种6;然后,6的Cu原子扭转形成中间体7;最后,7异构化为8。从反应物(NCCH2Cu + CO_2)到中间物种(6,7,8)是一个能量增加的过程,表明二氧化碳载体6(7或8)的生成是非自发的吸能过程。在process 2中,计算得到的活化能垒和反应能显示,最好的活化二氧化碳载体为结构8,且path 3是最有利最优先的一条反应通道。从动力学方面考虑,环氧化物开环与Cu原子连接形成四元环状中间体14(path 2)和22(path 3)比与OCO_2原子连接形成八元环状中间体9(path 1)更为有利。从热力学角度分析,8a的总能量比7a稍微低一些。另外,自然键轨道(NBO)分析表明整个反应过程中Cu原子充当了轨道库或电荷库;process 2中八元环状中间体氧化转化过程证实了CH2CN部分与催化中心Cu原子间的协同作用。
     2. Ni(PH_3)_2催化CO_2与环氧乙烷的耦合反应
     Ni(PH_3)_2化合物催化CO_2与环氧化物耦合的最有利反应路径包括如下步骤:(i)环氧化物的配位和氧化加成;(ii)二氧化碳插入反应;(iii)环碳酸酯还原消除以及催化剂的再生。在化学计量反应条件下,环氧乙烷与(H_3P)_2Ni(CO_2)发生反应的活化能垒要比CO_2与(H_3P)_2Ni[O(CH_2)_2]反应的能垒高将近32 kcal/mol,因此在获得环碳酸酯过程中环氧化物优先被Ni(PH_3)_2活化发生氧化加成反应,得到活性中间体杂氧金属环丁烷2,该物种在苯溶剂中有很好的动力学及热力学稳定性,是反应路径中关键的中间体之一。由于双膦络合物2在实验条件下可以转化为单膦络合物14。CO_2优先靠近络合物14,形成六元环状中间体15。最后,反应需要翻越一个三中心的过渡态结构,还原消除得到环碳酸酯。研究表明,整个催化环的速控步是环碳酸酯的消除,而不是二氧化碳的活化插入。研究结果对先前一些实验中提出的可能机理作了很好的解释,提供了确凿的理论依据。另外,一些关键中间体(2、4a和15)将有待于实验的进一步检测验证。
     3. Re(I)羰基配合物催化CO_2与环氧化物的耦合反应
     对Re(CO)_5Br的不同键裂解方式的计算结果表明,Re(CO)_5Br是通过失去一个水平位点的羰基配体,得到具有单线态C2v结构的溴化四羰基铼Re(CO)4Br(A1),而不可能分解成溴自由基(B)和五羰基铼自由基(C)。Re(CO)4Br催化合成环碳酸酯的反应路径包括如下步骤:(i)环氧化物配位和开环;(ii) CO_2插入;(iii)环碳酸酯闭环消除以及催化剂再生。首先,氯甲基环氧乙烷被Re(I)中心活化,产生杂氧金属环丁烷中间体2b。由于结构2b为配位饱和构型,必须解离一分子的羰基CO得到16e的不饱和结构3,这样才有利于随后CO_2配位和插入生成六元环状中间体6。最后,经由一个三中心过渡态结构,环碳酸酯发生消除反应。环氧化物开环反应1d→2b和二氧化碳插入反应2b→6的活化自由能非常接近,因而,在变动的反应条件(温度和压力)下,两者都可能成为速控步。另外,催化环中的中间体物种是不稳定的,解释了为什么实验方法观测或捕获不到反应中间体。
Catalytic transformation of carbon dioxide into chemical products has attracted intense attention for the carbon source in industry and environmental problems. One of the promising methodologies in chemical CO_2 fixation is the cycloaddition between carbon dioxide with epoxides to afford the five-membered cyclic carbonates. A remarkable variety of catalysts, especially non-oxidative and low valent oxidative transition-metal complexes, have been continuously explored for the CO_2/epoxides coupling reactions over the past decades. However, due to reaction intermediates are difficultly detected by experimental methods, there generally appears to be a lack of detailed mechanistic studies till now. Alternatively, the quantum chemistry means are effective to provide important information about property of catalyst at the molecular level. Obtaining desired products with high selectivity and yield by modifying and designing catalyst is still a challenging and promising project.
     The purpose of this work is to clarify the detailed mechanism of the CO_2/epoxides coupling reactions catalyzed by some transition-metal complexes, with the hopes of shedding light on some of the important differences in reaction pathways. Furthermore, our studies reveal the relationship between the structure and reactivity of catalysts, and hence offer theoretical guidance to the development of more powerful catalysts. By means of the B3LYP density functional method, the detailed mechanism of the experimentally observed formation of five-membered cyclic carbonates in the presence of NCCH2Cu, (Ph_3P)_2Ni, and Re(CO)_5Br complexes. The main contents and results are as follows.
     1. Mechanism of NCCH2Cu-catalyzed coupling between CO_2 with propylene oxide
     The NCCH2Cu-catalyzed synthesis of cyclic carbonates is stepwise and considered to include two processes. In process 1, CO_2 insertion into the Cu(I)-C bond of copper(I) cyanomethyl affords activated carbon dioxide carriers. The formation of copper(I) cyanoacetate actually proceeds via six steps. The first step is the formation of complex 5 by the directly side-on attack of carbon dioxide to species 1; secondly, the side-on-coordination carbon dioxide complex 5 is transformed into the more stable end-on-coordination carbon dioxide complex 4; the third step is the production of species 2 by the release of CO_2 from 4; the fourth step is the attack of CO_2 to 2 affording five-membered cyclic intermediate 6; the following step corresponds to the torsion of copper of intermediate 6 leading to intermediate 7; the last step is a tautomerization step from 7 to 8. The increasing energy from the reactants (NCCH_2Cu + CO_2) to the activated carbon dioxide carriers (6, 7, and 8) implies that the formation of 6 (7 or 8) is an unspontaneous and endothermic process. In process 2, O-coordination of propylene oxide molecule to the electrophilic copper center of carriers 6 (7 or 8) occurs. From the calculated barrier heights and reaction energies, it is concluded that the best activated carbon dioxide carrier is species 8 and path 3 is more favored. Kinetically, the ring-opening of epoxide to copper atom forming the four-membered ring intermediates 14 (path 2) and 22 (path 3) is more favored than that to OCO_2 atom to form the eight-membered ring species 9 (path 1). Thermodynamically, the total energy of 8a is slightly lower than that of 7a. In addition, natural bond orbital (NBO) analysis results show that the copper atom serves as an orbital or charge reservoir in the overall reaction. The eight-membered ring intermediate oxidation transformation in process 2 effectively demonstrates the cooperativity of CH2CN moiety with the center copper. These results could explain satisfactorily the reported experimental observations.
     2. Mechanism of Ni(0)-catalyzed coupling between CO_2 with epoxyethane
     The favorable reaction pathway of the Ni(PH_3)_2-mediated coupling reaction between CO_2 and epoxyethane proceeds via the following elementary steps: (a) epoxide coordination and oxidative addition, (b) carbon dioxide insertion, and (c) reductive elimination of cyclic carbonate. The calculated activation energy barrier of the formation of six-membered nickelacycle through the approach of epoxyethane on (H_3P)_2Ni(CO_2) is in the vicinity of 32 kcal/mol higher than the approach of CO_2 on (H_3P)_2Ni[O(CH_2)_2]. Thus, the oxidative addition of epoxide to (H_3P)_2Ni leading to oxametallacyclobutane 2 takes place first during the process of obtaining cyclic carbonate. Species 2, which is kinetically and thermodynamically stable in benzene solution, is a crucial intermediate along the reaction path. There exists the thermodynamic equilibrium between bisphosphine intermediate 2 and monophosphine intermediate 14 under experimental conditions. An incoming CO_2 molecule is favored to approach 14, and then produce six-membered ring species 15. From 15, the reductive elimination of cyclic carbonate occurs via the three-center transition state structure. The last step rather than CO_2 insertion is the controlling step in the overall cyclic mechanism. Our results agree perfectly with the previous experimental findings and support the validity of the proposed mechanism. Additional experimental work aimed at trapping proposed crucial intermediates (2, 4a, and 15) is expected to be developed in future.
     3. Mechanism of Re(I)-catalyzed coupling between CO_2 with chloromethyloxirane
     The calculated bond dissociation energies indicate that the real active catalyst is the unsaturated complex Re(CO)4Br via the loss of equatorial CO rather than free radical species (Re(CO)5 or Br radicals). The preferred mechanism promoted by Re(CO)4Br for the production of cyclic carbonates can be divided into three main stages involving epoxide coordination and oxidative addition, carbon dioxide insertion, and reductive elimination of cyclic carbonate. Firstly, the chloromethyloxirane is activated by Re(I) center, leading to the reactive oxametallacyclobutane 2b. Due to the conformation of intermediate 2b has no vacant site in the axial position of Re(CO)4Br fragment, so the CO dissociation from 2b to 3 is an essential step, which facilitates CO_2 coordination and insertion leading to metallacarbonate 6. From species 6, the cyclic carbonate reductive elimination occurs via a three-center transition state structure. Since the ring-opening of epoxide from 1d to 2b and the CO_2 multistep insertion from 2b to 6 have close activation energies, each of them can be the rate-determining step with variation of the reaction conditions (temperature and pressure). The key intermediates in the whole catalytic cycle are predicted to be labile, so no reaction intermediate can be observed or captured by experimental method to date.
引文
[1] Broeeker W. S. Thermohaline circulation, the Achilles heel of our climate system: will man-made CO2 upset the current balance? [J]. Science, 1997, 278(5343): 1582-1588.
    [2] Meehl G. A., Washington W. M. El Ni?o-like climate change in a model with increased atmospheric CO2 concentrations [J]. Nature, 1996, 382(6586): 56-60.
    [3] Arakawa H., Aresta M., Armor J. N., etc. Catalysis research of relevance to carbon management: progress, challenges, and opportunities [J]. Chem. Rev., 2001, 101(4): 953-996.
    [4] Khoo H. H., Tan R. B. H. Life cycle investigation of CO2 recovery and sequestration [J]. Environ. Sci. Technol., 2006, 40(12): 4016-4024.
    [5]张坤民. 21世纪中国环境面临的挑战与决策[J].环境保护, 1999, (1): 33-35.
    [6]周家贤.二氧化碳开发利用综述[J].化工设计, 2004, 14(4): 7-9.
    [7]周家贤. CO2–21世纪的新碳源[J].化工进展, 2001, (1): 1-3.
    [8] Halmann M. M. Chemical fixation of carbon dioxide: methods for recycling CO2 into useful products [M]. CRC Press: London, 1993.
    [9] Dell'Amico D. B., Calderazzo F., Labella L., etc. Converting carbon dioxide into carbamato derivatives [J]. Chem. Rev., 2003, 103(10): 3857-3897.
    [10] Shaikh A.-A. G., Sivaram S. Organic carbonates [J]. Chem. Rev., 1996, 96(3): 951-976.
    [11] Darensbourg D. J., Holtcamp M. W. Catalysts for the reactions of epoxides and carbon dioxide [J]. Coord. Chem. Rev., 1996, 153: 155-174.
    [12] Ochiai B., Endo T. Carbon dioxide and carbon disulfide as resources for functional polymers [J]. Prog. Polym. Sci., 2005, 30(2): 183-215.
    [13] Clements J. H. Reactive applications of cyclic alkylene carbonates [J]. Ind. Eng. Chem. Res., 2003, 42(4): 663-674.
    [14] Peppel W. J. Preparation and properties of the alkylene carbonates [J]. Ind. Eng. Chem., 1958, 50(5): 767-770.
    [15] Biggadike K., Angell R. M., Burgess C. M. Selective plasma hydrolysis of glucocorticoidγ-lactones and cyclic carbonates by the enzyme paraoxonase: an ideal plasma inactivation mechanism [J]. J. Med. Chem., 2000, 43(1): 19-21.
    [16] Nicolaou K. C., Yang Z., Liu J. J., etc. Total synthesis of taxol [J]. Nature, 1994, 367(6464): 630-634.
    [17] Nicolaou K. C., Couladouros E. A., Nantermet P. G., etc. Synthesis of C-2 taxol analogues [J]. Angew. Chem. Int. Ed. Engl., 1994, 33(15-16): 1581-1583.
    [18] Cornils B., Herrmann W. A. Applied Homogeneous Catalysis with Organometallic Compound [M]. Weinheim: Wiley-VCH, 2002, Vol.1.
    [19] Parshall G. W., Ittel S. D. Homogeneous Catalsis [M]. New York: Wiley-Interscience, 1992.
    [20] Lipkowitz K. B., Boyd D. B., Eds. Reviews in Computational Chemistry [M]. New York: VCH, 1990-1999, Vols. 1-13.
    [21] Inoue S., Koinuma H., Tsuruta T. Copolymerization of carbon dioxide and epoxide [J]. J. Polym. Sci., Part B: Polym. Lett., 1969, 7: 287-292.
    [22] Kihara N., Hara N., Endo T. Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure [J]. J. Org. Chem., 1993, 58(23): 6198-6202.
    [23] Sit W. N., Ng S. M., Kwong K. Y., etc. Coupling reactions of CO2 with neat epoxidescatalyzed by PPN salts to yield cyclic carbonates [J]. J. Org. Chem., 2005, 70(21): 8583-8586.
    [24] De Pasquale R. J. Unusual catalysis with Nickel(0) complexes [J]. J. Chem. Soc., Chem. Commun., 1973, (5): 157-158.
    [25] Li F. W., Xia C. G., Xu L. W., etc. A novel and effective Ni complex catalyst system for the coupling reactions of carbon dioxide and epoxides [J]. Chem. Commun., 2003, (16): 2042-2043.
    [26] Trost B. M., Angle S. R. Palladium-mediated vicinal cleavage of allyl epoxides with retention of stereochemistry: a cis hydroxylation equivalent [J]. J. Am. Chem. Soc., 1985, 107(21): 6123-6124.
    [27] Fujinami T., Suzuki T., Kamiya M., etc. Palladium catalyzed reaction of butadiene monoxide with carbon dioxide [J]. Chem. Lett., 1985, 14(2): 199-200.
    [28] Aye K.-T., Ferguson G., Puddephatt R. J., etc. Coupling of epoxides to PtII-complexes with carbon dioxide and the structure of a cyclic metallacarbonate [J]. Angew. Chem. Int. Ed. Engl., 1989, 28(6): 767-768.
    [29] Aye K.-T., Gelmini L., Puddephatt R. J., etc. Stereochemistry of the oxidative addition of an epoxide to platinum(II): relevance to catalytic reactions of epoxides [J]. J. Am. Chem. Soc., 1990, 112(6): 2464-2465.
    [30] Bu Z. W., Qin G., Gao S. K. A ruthenium complex exhibiting high catalytic efficiency for the formation of propylene carbonate from carbon dioxide [J]. J. Mol. Catal. A: Chem., 2007, 277(1-2): 35-39.
    [31] Tsuda T., Chujo Y., Saegusa T. Copper(I) cyanoacetate as a carrier of activated carbon dioxide [J]. J. Chem. Soc., Chem. Commun., 1976, (11): 415-416.
    [32] Kojima F., Aida T., Inoue S. Fixation and activation of carbon dioxide on Aluminum porphyrin. Catalytic formation of carbamic ester from carbon dioxide, amine, and epoxide [J]. J. Am. Chem. Soc., 1986, 108(3): 391-395.
    [33] Hirai Y., Aida T., Inoue S. Artificial photosynthesis ofβ-ketocarboxylic acids from carbon dioxide and ketones via enolate complexes of aluminum porphyrin [J]. J. Am. Chem. Soc., 1989, 111(8): 3062-3063.
    [34] Komatsu M., Aida T., Inoue S. Novel visible-light-driven catalytic CO2 fixation. Synthesis of malonic acid derivatives form CO2,α,β-unsaturated ester or nitrile, and diethylzinc catalyzed by aluminum porphyrins [J]. J. Am. Chem. Soc., 1991, 113(22): 8492-8498.
    [35] Carmona E., Marin J. M., Monge A., etc. Synthesis and x-ray structure of thenickelabenzocyclopentene complex [cyclic](Me3P)2Ni(CH2CMe2-o-C6H4). Reactivity toward simple, unsaturated molecules and the crystal and molecular structure of the cyclic carboxylate (Me3P)2Ni(CH2CMe2-o-C6H4C(O)O) [J]. J. Am. Chem. Soc., 1989, 111(8): 2883-2891.
    [36] Braunstein P., Matt D., Nobel D. Carbon dioxide activation and catalytic lactone synthesis by telomerization of butadiene and CO2 [J]. J. Am. Chem. Soc., 1988, 110(10): 3207-3212.
    [37] Darensbourg D. J., Grotsch G. Stereochemical studies of the carbon dioxide insertion reactions into the tungsten-alkyl bond [J]. J. Am. Chem. Soc., 1985, 107(25): 7473-7476.
    [38] Darensbourg D. J., Ovalles C. Homogeneous catalytic synthesis of reaction of alkyl halides, CO2, and anionic group 6 carbonyl catalysts and sodium salts [J]. J. Am. Chem. Soc., 1987, 109(11): 3330-3336.
    [39] Tsai J.-C., Nicholas K. M. Rhodium-catalyzed hydrogenation of carbon dioxide to formic acid [J]. J. Am. Chem. Soc., 1992, 114(13): 5117-5124.
    [40] Sakaki S., Ohkubo K. Characteristic features of CO2 insertion into a Cu-H bond. An ab initio MO study [J]. Inorg. Chem., 1988, 27(12): 2020-2021.
    [41] Sakaki S., Ohkubo K. Ab Initio MO study of CO2 insertion into a Cu(I)-H bond. Semiquantitative understanding of changes in geometry, bonding, and electron distribution during the reaction [J]. Inorg. Chem., 1989, 28(13): 2583-2590.
    [42] Sakaki S., Ohkubo K. Ab Initio MO study of CO2 insertion into a methyl-copper(I) bond. Critical difference from CO2 insertion into a hydrogen-copper(I) bond [J]. Organometallics, 1989, 8(12): 2970-2973.
    [43] Sakaki S., Musashi, Y. Ab Initio MO Study of the CO2 Insertion into the Cu(I)-R Bond (R = H, CH3, or OH). Comparison between the CO2 Insertion and the C2H4 Insertion [J]. Inorg. Chem., 1995, 34(7): 1914-1923.
    [44] Kim H. S., Kim J. J., Lee B. G., etc. Isolation of a pyridinium alkoxy ion bridged dimeric zinc complex for the coupling reactions of CO2 and epoxides [J]. Angew. Chem. Int. Ed., 2000, 39(22): 4096-4098.
    [45] Kim H. S., Kim J. J., Lee S. D., etc. New mechanistic insight into the coupling reactions of CO2 and epoxides in the presence of zinc complexes [J]. Chem. Eur. J., 2003, 9(3): 678-686.
    [46] Kim H. S., Kim J. J., Lee J. S., etc. Phosphine-bound zinc halide complexes for the coupling reaction of ethylene oxide and carbon dioxide [J]. J. Catal., 2005, 232(1): 80-84.
    [47] Kruper W. J., Deller D. V. Catalytic formation of cyclic carbonates from epoxides and CO2 with chromium metalloporphyrinates [J]. J. Org. Chem., 1995, 60(3): 725-727.
    [48] Paddock R. L., Ngugen S. T. Chemical CO2 fixation: Cr(III) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides [J]. J. Am. Chem. Soc., 2001, 123(46): 11498-11499.
    [49] Zhang X., Jia Y.-B., Lu X.-B., etc. Intramolecularly two-centered cooperation catalysis for the synthesis of cyclic carbonates from CO2 and epoxides [J]. Tetrahedron Lett., 2008, 49(46): 6589-6592.
    [50] Shen Y.-M, Duan W.-L., Shi M. Chemical fixation of carbon dixode catalyzed by binaphthyldiamino Zn, Cu, and Co Salen-type complexes [J]. J. Org. Chem., 2003, 68(4): 1559-1562.
    [51] Jing H. W., Edulji S. K., Nguyen S. T., etc. (Salen)Tin complexes: syntheses, characterization, crystal structures, and catalytic activity in the formation of propylene carbonate from CO2 and propylene oxide [J]. Inorg. Chem., 2004, 43(14): 4315-4327.
    [52] Paddock R. L., Hiyama Y., McKay J. M., etc. Co(III) porphyrin/DMAP: an efficient catalyst system for the synthesis of cyclic carbonates from CO2 and epoxides [J]. Tetrahedron Lett., 2004, 45(9): 2023-2026.
    [53] Paddock R. L., Nguyen S. T. Chiral (salen)Co(III) catalyst for the synthesis of cyclic carbonates [J]. Chem. Commun., 2004, (14): 1622-1623.
    [54] Chang T., Jing H.-W., Jin L.-L., etc. Quaternary onium tribromide catalyzed cyclic carbonate synthesis from carbon dioxide and epoxides [J]. J. Mol. Catal. A: Chem., 2007, 264(1-2): 241-247.
    [55] Jin L.-L., Jing H.-W., Chang T., etc. Metal porphyrin/phenyltrimethylammonium tribromide: High efficient catalysts for coupling reaction of CO2 and epoxides [J]. J. Mol. Catal. A: Chem., 2007, 261(2): 262-266.
    [56] Wang J.-G., Wu J.-C., Tang N. Synthesis, characterization of a new bicobalt complex [Co2L2(C2H5OH)2Cl2] and application in cyclic carbonate synthesis [J]. Inorg. Chem. Commun., 2007, 10(12): 1493-1495.
    [57] Sibaouih A., Ryan P., Repo T., etc. Efficient coupling of CO2 and epoxides with bis(phenoxyiminato) cobalt(III)/Lewis base catalysts [J]. J. Mol. Catal. A: Chem., 2009, 312(1-2): 87-91.
    [58] Lu X.-B., Liang B., Zhang Y.-J., etc. Asymmetric catalysis with CO2: direct synthesis of optically active propylene carbonate from racemic epoxides [J]. J. Am. Chem. Soc., 2004, 126(12): 3732-3733.
    [59] Berkessel A., Brandenburg M. Catalytic asymmetric addition of carbon dioxide to propylene oxide with unprecedented enantioselectivity [J]. Org. Lett., 2006, 8(20): 4401-4404.
    [60] Chen S.-W., Kawthekar R. B., Kim G.-J. Efficient catalytic synthesis of optically active cyclic carbonates via coupling reaction of epoxides and carbon dioxide [J]. Tetrahedron Lett., 2007, 48(2): 297-300.
    [61] Jin L.-L., Huang Y.-Z., Jing H.-W., etc. Chiral catalysts for the asymmetric cycloaddition of carbon dioxide with epoxides [J]. Tetrahedron: Asymmetr., 2008, 19(16): 1947-1953.
    [62] Walther D., Ruben M., Sven R. Carbon dioxide and metal centres: from reactions inspired by nature to reactions in compressed carbon dioxide as solvent. Coord. Chem. Rev., 1999, 182(1): 67-100.
    [63] Lu X.-B, He R., Bai C.-X. Synthesis of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture in the presence of bifunctional catalyst [J]. J. Mol. Catal. A: Chem., 2002, 186(1-2): 1-11.
    [64] Lu X.-B., Feng X.-J., He R. Catalytic formation of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture with tetradentate Schiff-base complexes as catalyst [J]. Appl. Catal. A: Gen., 2002, 234(1-2): 25-33.
    [65] Lu X.-B, Zhang Y.-J., Liang B., etc. Chemical fixation of carbon dioxide to cyclic carbonates under extremely mild conditions with highly active bifunctional catalysts [J]. J. Mol. Catal. A: Chem., 2004, 210(1-2): 31-34.
    [66] Lu X.-B., Zhang Y.-J., Jin K., etc. Highly active electrophile-nucleophile catalyst system for the cycloaddition of CO2 to epoxides at ambient temperature [J]. J. Catal., 2004, 227(2): 537-541.
    [67] Aida T., Inoue S. Activation of carbon dioxide with aluminum porphyrin and reaction with epoxide. Studies on (tetraphenylporphinato)aluminum alkoxide having a long oxyalkylene chain as the alkoxide group [J]. J. Am. Chem. Soc., 1983, 105(5): 1304-1309.
    [68] Jiang J.-L., Gao F., Hua R., etc. Re(CO)5Br-catalyzed coupling of epoxides with CO2 affording cyclic carbonates under solvent-free condition [J]. J. Org. Chem., 2005, 70(1): 381-383.
    [69] Heck R. F., Breslow D. S. The reaction of cobalt hydrotetracarbonyl with olefins [J]. J. Am. Chem. Soc., 1961, 83(19): 4023-4027.
    [70] Huang J.-W., Shi M. Chemical fixation of carbon dioxide by NaI/PPh3/PhOH [J]. J. Org. Chem., 2003, 68(17): 6705-6709.
    [71] Shen Y.-M., Duan W.-L., Shi M. Phenol and organic bases Co-catalyzed chemicalfixation of carbon dioxide with terminal epoxides to form cyclic carbonates [J]. Adv. Synth. Catal., 2003, 345(3): 337-340.
    [72] Shen Y.-M., Duan W.-L., Shi M. Chemical fixation of carbon dioxide Co-catalyzed by a combination of Schiff bases or phenols and organic Bases [J]. Eur. J. Org. Chem., 2004, (14): 3080-3089.
    [73] Ion A., Parvulescu V., de Vos D., etc. Sc and Zn-catalyzed synthesis of cyclic carbonates from CO2 and epoxides [J]. Appl. Catal. A: Gen., 2009, 363(1-2): 40-44.
    [74] Bai D. S., Jing H. W., Liu Q., etc. Titanocene dichloride-Lewis base: An efficient catalytic system for coupling of epoxides and carbon dioxide [J]. Catal. Commun., 2009, 11(3): 155-157.
    [75] Aresta M., Dibenedetto A., Gianfrate L., etc. Enantioselective synthesis of organic carbonates promoted by Nb(IV) and Nb(V) catalysts [J]. Appl. Catal. A: Gen., 2003, 255(1): 5-11.
    [76] Jing H. W., Nguyen S. T. SnCl4-organic base: Highly efficient catalyst system for coupling reaction of CO2 and epoxides [J]. J. Mol. Catal. A: Chem., 2007, 261(1): 12-15.
    [77] Nomura R., Matsuda A., Ninagawa H. Synthesis of cyclic carbonates from carbon dioxide and epoxides in the presence of organoantimony compouds as novel catalysts [J]. J. Org. Chem., 1980, 45(19): 3735-3738.
    [78] Jutz F., Grunwaldt J.-D., Baiker A. Mn(III)(salen)-catalyzed synthesis of cyclic organic carbonates from propylene and styrene oxide in“supercritical”CO2 [J]. J. Mol. Catal. A: Chem., 2008, 279(1): 94-103.
    [79] Jutz F., Grunwaldt J.-D., Baiker A. In situ XAS study of the Mn(III)(salen)Br catalyzed synthesis of cyclic organic carbonates from epoxides and CO2 [J]. J. Mol. Catal. A: Chem., 2009, 297(2): 63-72.
    [80] Srivastava R., Bennur T. H., Srinivas D. Factors affecting activation and utilization of carbon dioxide in cyclic carbonates synthesis over Cu and Mn peraza macrocyclic complexes [J]. J. Mol. Catal. A: Chem., 2005, 226(2): 199-205.
    [81] Jin L. L., Chang T., Jing H. W. Coupling of epoxides with carbon dioxide catalyzed by Ruthenium porphyrin complex [J]. Chin. J. Catal., 2007, 28(4): 287-289.
    [82] Jing H. W., Chang T., Jin L. L., etc. Ruthenium Salen/phenyltrimethylammonium tribromide catalyzed coupling reaction of carbon dioxide and epoxides [J]. Catal. Commun. 2007, 8(11): 1630-1634.
    [83] Spessard G. O., Miessler G. L. Organometallic Chemistry [M]. Upper Saddle River, NJ: Prentice-Hall, 1997.
    [84] Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis [J]. Chem. Rev., 1999, 99(8): 2071-2084.
    [85] Sun J., Fujita S., Arai M. Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids [J]. J. Organomet. Chem., 2005, 690(15): 3490-3497.
    [86] Peng J. J., Deng Y. Q. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids [J]. New J. Chem., 2001, 25(4): 639-641.
    [87]彭家建,邓友全.室温离子液体催化合成碳酸丙烯酯[J].催化学报, 2001, 22(6): 598-600.
    [88] Kawanami H. J., Sasaki A., Matsui K., etc. A rapid and effective synthesis of propylene carbonate using a supercritical CO2-ionic liquid system [J]. Chem. Commun., 2003, (7): 896-897.
    [89] Park D.-W., Mun N.-Y., Kim K.-H., etc. Addition of carbon dioxide to allyl glycidyl ether using ionic liquid catalysts [J]. Catal. Today, 2006, 115(1-4): 130-133.
    [90] Lee E.-H., Ahn J.-Y., Park D.-W., etc. Synthesis of cyclic carbonate from vinyl cyclohexene oxide and CO2 using ionic liquids as catalysts [J]. Catal. Today, 2008, 131(1-4): 130-134.
    [91] Sun J., Zhang S., Cheng W., etc. Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate [J]. Tetrahedron Lett., 2008, 49(22): 3588-3591.
    [92] Kim H. S., Kim J. J., Kim H., etc. Imidazolium zinc tetrahalide-catalyzed coupling reaction of CO2 and ethylene oxide or propylene oxide [J]. J. Catal., 2003, 220(1): 44-46.
    [93] Palgunadi J., Kwon O.-S., Kim H. S., etc. Ionic liquid-derived zinc tetrahalide complexes: structure and application to the coupling reactions of alkylene oxides and CO2 [J]. Catal. Today, 2004, 98(4): 511-514.
    [94] Li F.-W., Xiao L.-F., Xia C.-G., etc. Chemical fixation of CO2 with highly efficient ZnCl2/[BMIm]Br catalyst system [J]. Tetrahedron Lett., 2004, 45(45): 8307-8310.
    [95]李福伟,肖林飞,夏春谷.溴化锌-离子液体复合催化体系高效催化合成环状碳酸酯[J].高等学校化学学报, 2005, 26(2): 343-345.
    [96] Xiao L.-F., Li F.-W., Xia C.-G., etc. Immobilized ionic liquid/zinc chloride: Heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides [J]. J. Mol. Catal. A: Chem., 2006, 253(1-2): 265-269.
    [97] Zhang, S.-J., Chen, Y.-H., Li, F.-W., etc. Fixation and conversion of CO2 using ionic liquids [J]. Catal. Today, 2006, 115(1-4): 61-69.
    [98] Sun J. M., Fujita S.-I., Zhao F. Y., etc. Synthesis of styrene carbonate from styrene oxide and carbon dioxide in the presence of zinc bromide and ionic liquid under mild conditions [J]. Green Chem., 2004, 6(12): 613-616.
    [99] Sun J. M., Fujita S.-I., Arai M. Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids [J]. J. Organomet. Chem., 2005, 690(15): 3490-3497.
    [100] Ono F., Qiao K., Tomida D., etc. Rapid synthesis of cyclic carbonates from CO2 and epoxides under microwave irradiation with controlled temperature and pressure [J]. J. Mol. Catal. A: Chem., 2007, 263(1-2): 223-226.
    [101] Xie H. B., Li S. H., Zhang S. B. Highly active, hexabutylguanidinium salt/zinc bromide binary catalyst for the coupling reaction of carbon dioxide and epoxides [J]. J. Mol. Catal. A: Chem., 2006, 250(1-2): 30-34.
    [102] Kim Y. J., Varma R. S. Tetrahaloindate(III)-based ionic liquids in the coupling reaction of carbon dioxide and epoxides to generate cyclic carbonates: H-bonding and mechanistic studies [J]. J. Org. Chem., 2005, 70(20): 7882-7891.
    [103] CalóV., Nacci A., Monopoli A., etc. Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts [J]. Org. Lett., 2002, 4(15): 2561-2563.
    [104] Tian J.-S., Wang J.-Q., He L.-N., etc. One-pot synthesis of dimethyl carbonate catalyzed by n-Bu4NBr/n-Bu3N from methanol, epoxides, and supercritical CO2 [J]. Appl. Catal. A: Gen., 2006, 301(2): 215-221.
    [105] Zhao Y., Tian J.-S., He L.-N., etc. Quaternary ammonium salt-functionalized chitosan: An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide [J]. J. Mol. Catal. A: Chem., 2007, 271(1-2): 284-289.
    [106] Zhou Y. X., Hu S. Q., Han B. X., etc. Synthesis of cyclic carbonates from carbon dioxide and epoxides over betaine-based catalysts [J]. J. Mol. Catal. A: Chem., 2008, 284(1-2): 52-57.
    [107] Sibaouih A., Ryan P., Repo T., etc. Facile synthesis of cyclic carbonates from CO2 and epoxides with cobalt(II)/onium salt based catalysts [J]. Appl. Catal. A: Gen., 2009, 365(2): 194-198.
    [108] Kossev K., Koseva N., Troev K. Calcium chloride as co-catalyst of onium halides in the cycloadditon of carbon dioxide to oxiranes [J]. J. Mol. Catal. A: Chem., 2003, 194(1-2): 29-37.
    [109] Sun J. M., Fujita S.-I., Zhao F. Y., etc. A highly efficient catalyst system ofZnBr2/n-Bu4NI for the synthesis of styrene carbonate from styrene oxideand supercritical carbon dioxide [J]. Appl. Catal. A: Gen., 2005, 287(2): 221-226.
    [110] Sun J., Ren J. Y., Zhang S. J., etc. Water as an efficient medium for the synthesis of cyclic carbonate [J]. Tetrahedron Lett., 2009, 50(4): 423-426.
    [111] He L.-N., Yasuda H., Sakakura T. New procedure for recycling homogeneous catalyst: propylene carbonate synthesis under supercritical CO2 conditions [J]. Green Chem., 2003, 5(1): 92-94.
    [112] Sun J., Wang L., Zhang S. J., etc. ZnCl2/phosphonium halide: An efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate [J]. J. Mol. Catal. A: Chem., 2006, 256(1-2): 295-300.
    [113] Wu S.-S., Zhang X.-W., Yin S.-F., etc. ZnBr2–Ph4PI as highly efficient catalyst for cyclic carbonates synthesis from terminal epoxides and carbon dioxide [J]. Appl. Catal. A: Gen., 2008, 341(1-2): 106-111.
    [114] Liu Z., Torrent M., Morokuma K. Molecular orbital study of Zinc(II)-catalyzed alternating copolymerization of carbon dioxide with epoxide [J]. Organometallics, 2002, 21(6): 1056-1071.
    [115] Man M. L., Lam K. C., Sit W. N., etc. Synthesis of heterobimetallic Ru–Mn complexes and the coupling reactions of epoxides with carbon dioxide catalyzed by these complexes [J]. Chem. Eur. J., 2006, 12(4): 1004-1015.
    [116] Sun H., Zhang D. Density functional theory study on the cycloaddition of carbon dioxide with propylene oxide catalyzed by alkylmethylimidazolium chlorine ionic liquids [J]. J. Phys. Chem. A, 2007, 111(32): 8036-8043.
    [1]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社, 1985.
    [2]廖沐真,吴国是,刘洪霖.量子化学从头计算方法[M].北京:清华大学出版社, 1984.
    [3]林梦海.量子化学计算方法与应用[M].北京:科学出版社, 2004.
    [4] Born M., Oppenheimer R. Zur Quantentheorie der Molekeln (Quantum Theory of the Molecules) [J]. Ann. d. Physik, 1927, 84: 457-484.
    [5] Lowdin P. O. Correlation problem in many-electron quantum mechanics [J]. Adv. Chem. Phys., 1959, 2: 207-322.
    [6] Pople J. A., Seeger R., Krishnan R. Variational configuration interaction methods and comparison with perturbation theory [J]. Int. J. Quantum. Chem., 1977, 12: 149-163.
    [7] Goddard J. D., Handy N. C., Schaefer III H. F. Generalization of the direct configuration interaction method to the hartree-fock interacting space for doublets, quartets, andopen-shell singlets [J]. Int. J. Quantum. Chem., 1979, 16: 471.
    [8] Krishnan R., Schlegel H. B., Pople J. A. Derivative studies in configuration-interaction theory [J]. J. Chem. Phys., 1980, 72(8): 4654-4655.
    [9] Brooks B. R., Laidig W. D., Saxe P., etc. Analytic gradients from correlated wave functions via the two-particle density matrix and the unitary group approach [J]. J. Chem. Phys., 1980, 72(8): 4652-4653.
    [10] Salter E. A., Trucks G. W., Bartlett R. J. Analytic energy derivatives in many-body methods I. First derivatives [J]. J. Chem. Phys., 1989, 90(3): 1752-1766.
    [11] Raghavachari K., Pople J. A., Calculation of one-electron properties using limited configuration interaction techniques [J]. Int. J. Quantum. Chem., 1981, 20(5): 1067-1071.
    [12] Pople J. A., Head-Gordon M., Raghavachari K. Quadratic configuration interaction. A general technique for determining electron correlation energies [J]. J. Chem. Phys., 1987, 87(10): 5968-5975.
    [13] Mitrushenkov A. O. Passing the several billions limit in FCI calculations on a mini-computer [J]. Chem. Phys. Lett. 1994, 217(5-6): 559-565.
    [14] He Z., Kraka E., Cremer D. Application of quadratic CI with singles, doubles, and triples (QCISDT): An attractive alternative to CCSDT [J]. Int. J. Quantum. Chem., 1996, 57(2): 157-172.
    [15] Paldus J., Cizek J., Jeziorski B. Coupled cluster approach or quadratic configuration interaction? [J]. J. Chem. Phys., 1989, 90(8): 4356-4362.
    [16] Pople J. A., Head-Gordon M., Raghavachari K. Quadratic configuration interaction: Reply to comment by Paldus, Cizek, and Jeziorski [J]. J. Chem. Phys., 1989, 90(8): 4635-4636.
    [17] Pople J. A., Head-Gordon M., Raghavachari K. Quadratic configuration interaction. A general technique for determining electron correlation energies [J]. J. Chem. Phys., 1987, 87(10): 5968-5975.
    [18] Pople J. A., Krishnan R., Schlegel H. B., etc. Electron correlation theories and their application to the study of simple reaction potential surfaces [J]. Int. J. Quantum. Chem., 1978, 14(5): 545-560.
    [19] Bartlett R. J., Purvis G. D. Many-body perturbation theory, coupled-pair many-electrontheory, and the importance of quadruple excitations for the correlation problem [J]. Int. J. Quantum. Chem., 1978, 14(5): 561-581.
    [20] Purvis III G. D., Bartlett R. J. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples [J]. J. Chem. Phys., 1982, 76(4): 1910-1918.
    [21] Scuseria G. E., Janssen C. L., Schaefer III H. F. An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations [J]. J. Chem. Phys., 1988, 89(12): 7382-7387.
    [22] Seuseria G. E., Schaefer III H. F. Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)? [J]. J. Chem. Phys., 1989, 90(7): 3700-3703.
    [23] Hegarty D., Robb M.A. Application of unitary group methods to configuration interaction calculations [J]. Mol. Phys. 1979, 38: 1795-1812.
    [24] Eade R. H. E., Robb M.A. Direct minimization in mc scf theory. The quasi-newton method [J]. Chem. Phys. Lett., 1981, 83(2): 362-368.
    [25] Schlegel H. B., Robb M. A. MC SCF gradient optimization of the H2CO→H2 + CO transition structure [J]. Chem. Phys. Lett., 1982, 93(1): 43-46.
    [26] Yamamoto N., Vreven T., Robb M. A., etc. A Direct Derivative MC-SCF Procedure [J]. Chem. Phys. Lett., 1996, 250(3-4): 373-378.
    [27] Frisch M. J., Ragazos I. N., Robb M. A., etc. An Evaluation of three direct MC-SCF procedures [J]. Chem. Phys. Lett., 1992, 189(6): 524-528.
    [28] Krishnan R., Pople J. A. Approximate fourth-order perturbation theory of the electron correlation energy [J]. Int. J. Quantum. Chem., 1978, 14(1): 91-100.
    [29] Bartleet R. J., Shavitt I. Comparison of high-order many-body perturbation theory and configuration interaction for H2O [J]. Chem. Phys. Lett., 1977, 50(2): 190-198.
    [30] Bartleet R. J., Sekino H., Purvis III G. D. Comparison of MBPT and coupled-cluster methods with full CI. Importance of triplet excitation and infinite summations [J]. Chem. Phys. Lett., 1983, 98(1): 66-71.
    [31] Raghavachari K., Pople J. A., Replogle E. S., etc. Fifth order Moeller-Plesset perturbation theory: comparison of existing correlation methods and implementation of new methods correct to fifth order [J]. J. Phys. Chem., 1990, 94(14): 5579-5586.
    [32] Thomas H. The calculation of atomic fields [J], Proc. Camb. Phil. Soc. 1927, 23: 542-548.
    [33] Fermi E. Un metodo statistico per la determinazione di alcune priorieta dell'atome [J]. Rend. Accad. Naz. Lincei. 1927, 6: 602-607.
    [34] Hohenberg P., Kohn. W. Inhomogeneous electron gas [J]. Phys. Rev., 1964, 136(3B): B864-B871.
    [35] Levy M. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem [J]. Proc. Natl. Acad. Sci. USA, 1979, 76(12): 6062-6065.
    [36] Kohn W., Sham L. J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev., 1965, 140(4A): A1133-A1138.
    [37] Hedin L., Lundqvist B. I. Explicit local exchange correlation potentials [J]. J. Phys. Chem., 1971, 4: 2064-2083.
    [38] Ceperley D. M., Alder B. J. Ground state of the electron gas by a stochastic method [J]. Phys. Rev. Lett., 1980, 45(7): 566-569.
    [39] Vosko S. J., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis [J]. Can. J. Phys., 1980, 58(8), 1200-1211.
    [40] Perdew J. P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B, 1992, 45(23): 13244-13249.
    [41] Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. A, 1988, 38(6): 3098-3100.
    [42] Lee C., Yang W., Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B, 1988, 37(2): 785-789.
    [43] Perdew J. P., Chevary J. A., Vosko S. H., etc. Atoms, molecules, solids, and surfaces: Application of the general gradient approximation for exchange and correlation [J]. Phys. Rev. B, 1992, 46(11): 6671-6687.
    [44] Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868.
    [45] Becke A. D. New mixing of Hartree-Fock and local density-functional theories [J]. J.Chem. Phys., 1993, 98(2): 1372-1377.
    [46] Becke A. D. Density-functional thermochemistry. III. The role of exact exchange [J]. J. Chem. Phys., 1993, 98(7): 5648-5653.
    [47] Stevens P. J., Devlin J. F., Frisch M. J., etc. Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields [J]. J. Phys. Chem., 1994, 98(45): 11623-11627.
    [48] Becke A. D. Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing [J]. J. Chem. Phys., 1995, 104(3): 1040-1046.
    [49] Becke A. D. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals [J]. J. Chem. Phys., 1997, 107(20): 8554-8560.
    [50] Becke A. D. A new inhomogeneity parameter in density-functional theory [J]. J. Chem. Phys., 1998, 109(6): 2092-2098.
    [51] Curtiss L. A., Raghavachari K., Trucks G. W., etc. Gaussian-2 theory for molecular energies of first- and second-row compounds [J]. J. Chem. Phys., 1991, 94(11): 7221-7230.
    [52] Hehre W. J., Stewart R. F., Pople J. A. Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals [J]. J. Chem. Phys., 1969, 51(6): 2657-2664.
    [53] Collins J. B., Schleyer P. v. R., Binkley J. S., etc. Self-consistent molecular orbital methods. XVII. Geometries and binding energies of second-row molecules. A comparision of three basis sets [J]. J. Chem. Phys., 1976, 64(12): 5142-5151.
    [54] Binkley J. S., Pople J. A., Hehre W. J. Self-consistent molecular orbital methods. 21. Small split- valence basis sets for first-row elements [J]. J. Am. Chem. Soc., 1980, 102(3), 939-947.
    [55] Gordon M. S., Binkley J. S., Pople J. A., etc. Self-consistent molecular orbital methods. 22. Small split-valence basis sets for second-row elements [J]. J. Am. Chem. Soc., 1982, 104(10): 2797-2803.
    [56] Pietro W. J., Francl M. M., Hehre W. J., etc. Self-consistent molecular orbital methods. 24. Supplemented small split-valence basis sets for second-row elements [J]. J. Am. Chem.Soc., 1982, 104(19): 5039-5048.
    [57] Ditchfield R., Hehre W. J., Pople J. A. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules [J]. J. Chem. Phys., 1971, 54(2): 724-728.
    [58] Hehre W. J., Ditchfield R., Pople J. A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules [J]. J. Chem. Phys., 1972, 56(5): 2257-2261.
    [59] Francl M. M., Pietro, W. J., Pople J. A., etc. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements [J]. J. Chem. Phys., 1982, 77(7): 3654-3665.
    [60] Stevens W. J., Basch H., Krauss M. Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms [J]. J. Chem. Phys., 1984, 81(12): 6026-6033.
    [61] Stevens W. J., Krauss M., Basch H. etc. Relativistic compact effective potentials and efficient, shared-exponent basis sets fro the third-, fourth-, and fifth- row atoms [J]. Can. J. Chem., 1992, 70(2): 612-630.
    [62] Cundari T. R., Stevens W. J. Effective core potential methods for the lanthanides [J]. J. Chem. Phys., 1993, 98(7): 5555-5565.
    [63] Hay P. J., Wadt W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg [J]. J. Chem. Phys., 1985, 82(1): 270-283.
    [64] Wadt W. R., Hay P. J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi [J]. J. Chem. Phys., 1985, 82(1): 284-298.
    [65] Hay P. J., Wadt W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals [J]. J. Chem. Phys., 1985, 82(1): 299-310.
    [66] Fukui K., Tachibana A., Yamashita K. Toward chemodynamics [J]. Int. J. Quantum. Chem., 1981, 20: 621-632.
    [67] Fukui K. Variational principles in a chemical reaction [J]. Int. J. Quantum. Chem., 1981, 20: 633-642.
    [1] Leitner W. The coordination chemistry of carbon dioxide and its relevance for catalysis: a critical survery [J]. Coord. Chem. Rev., 1996, 153: 257-284.
    [2] Arakawa H., Aresta M., Armor J. N., etc. Catalysis research of relevance to carbon management: progress, challenges, and opportunities [J]. Chem. Rev., 2001, 101(4): 953-996.
    [3] Shaikh A.-A. G., Sivaram S. Organic carbonates [J]. Chem. Rev., 1996, 96(3): 951-976.
    [4] Paddock R. L., Ngugen S. T. Chemical CO2 fixation: Cr(III) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides [J]. J. Am. Chem. Soc., 2001, 123(46): 11498-11499.
    [5] Yamaguchi K., Ebitani K., Yoshida T., etc. Mg–Al mixed oxides as highly active acid–base catalysts for cycloaddition of carbon dioxide to epoxides [J]. J. Am. Chem. Soc. 1999, 121(18): 4526-4527.
    [6] Yano T., Matsui H., Koiki T., etc. Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry [J]. Chem. Commun., 1997, (12): 1129-1130.
    [7] Darensbourg D. J., Holtcamp M. W. Catalysts for the reactions of epoxides and carbon dioxide [J]. Coord. Chem. Rev., 1996, 153: 155-174.
    [8] Fujinami T., Suzuki T., Kamiya M., etc. Palladium catalyzed reaction of butadiene monoxide with carbon dioxide [J]. Chem. Lett., 1985, 14(2): 199-200.
    [9] Kim H. S., Kim J. J., Lee B. G., etc. Isolation of a pyridinium alkoxy ion bridged dimeric zinc complex for the coupling reactions of CO2 and epoxides [J]. Angew. Chem. Int. Ed., 2000, 39(22): 4096-4098.
    [10] Kruper W. J., Deller D. V. Catalytic formation of cyclic carbonates from epoxides and CO2 with chromium metalloporphyrinates [J]. J. Org. Chem., 1995, 60(3): 725-727.
    [11] Kawanami H., Ikushima Y. Chemical fixation of carbon dioxide to styrene carbonate under supercritical conditions with DMF in the absence of any additional catalysts [J]. Chem. Commun., 2000, (21): 2089-2090.
    [12] CalóV., Nacci A., Monopoli A., etc. Cyclic carbonate formation from carbon dioxide andoxiranes in tetrabutylammonium halides as solvents and catalysts [J]. Org. Lett., 2002, 4(15): 2561-2563.
    [13] Kihara N., Hara N., Endo T. Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure [J]. J. Org. Chem., 1993, 58(23): 6198-6202.
    [14] Li F. W., Xia C. G., Xu L. W., etc. A novel and effective Ni complex catalyst system for the coupling reactions of carbon dioxide and epoxides [J]. Chem. Commun., 2003, (16): 2042-2043.
    [15] Lu X.-B., Liang B., Zhang Y.-J., etc. Asymmetric catalysis with CO2: direct synthesis of optically active propylene carbonate from racemic epoxides [J]. J. Am. Chem. Soc., 2004, 126(12): 3732-3733.
    [16] Shen Y.-M., Duan W.-L., Shi M. Chemical fixation of carbon dixode catalyzed by binaphthyldiamino Zn, Cu, and Co Salen-type complexes [J]. J. Org. Chem., 2003, 68(4): 1559-1562.
    [17] Li F.-W., Xiao L.-F., Xia C.-G., etc. Chemical fixation of CO2 with highly efficient ZnCl2/[BMIm]Br catalyst system [J]. Tetrahedron Lett., 2004, 45(45): 8307-8310.
    [18] Jiang J.-L., Gao F., Hua R., etc. Re(CO)5Br-catalyzed coupling of epoxides with CO2 affording cyclic carbonates under solvent-free condition [J]. J. Org. Chem., 2005, 70(1): 381-383.
    [19] Shen Y.-M., Duan W.-L., Shi M. Chemical fixation of carbon dioxide Co-catalyzed by a combination of Schiff bases or phenols and organic Bases [J]. Eur. J. Org. Chem., 2004, (14): 3080-3089.
    [20] Huang J.-W., Shi M. Chemical fixation of carbon dioxide by NaI/PPh3/PhOH [J]. J. Org. Chem., 2003, 68(17): 6705-6709.
    [21] Jing H. W., Edulji S. K., Nguyen S. T., etc. (Salen)Tin complexes: syntheses, characterization, crystal structures, and catalytic activity in the formation of propylene carbonate from CO2 and propylene oxide [J]. Inorg. Chem., 2004, 43(14): 4315-4327.
    [22] Sit W. N., Ng S. M., Kwong K. Y., etc. Coupling reactions of CO2 with neat epoxides catalyzed by PPN salts to yield cyclic carbonates [J]. J. Org. Chem., 2005, 70(21): 8583-8586.
    [23] Man M. L., Lam K. C., Sit W. N., etc. Synthesis of heterobimetallic Ru–Mn complexes and the coupling reactions of epoxides with carbon dioxide catalyzed by these complexes [J]. Chem. Eur. J., 2006, 12(4): 1004-1015.
    [24] Braustein P., Matt D., Nobel D. Reactions of carbon dioxide with carbon-carbon bond formation catalyzed by transition-metal complexes [J]. Chem. Rev., 1988, 88(5): 747-764.
    [25] Tsuda T., Chujo Y., Saegusa T. Copper(I) cyanoacetate as a carrier of activated carbon dioxide [J]. J. Chem. Soc., Chem. Commun., 1976, (11): 415-416.
    [26] Tsuda T., Chujo Y., Saegusa T. Copper complex acting as a reversible carbon dioxide carrier [J]. J. Am. Chem. Soc., 1978, 100(2): 630-632.
    [27] Gambarotta S., Floriani C., Chiesi-Villa A., etc. Carbon dioxide and formaldehyde coordination on molybdenocene to metal and hydrogen bonds of the C1 molecule in the solid state [J]. J. Am. Chem. Soc. 1985, 107(10): 2985-2986.
    [28] Aye K.-T., Ferguson G., Puddephatt R. J., etc. Coupling of epoxides to PtII-complexes with carbon dioxide and the structure of a cyclic metallacarbonate [J]. Angew. Chem. Int. Ed. Engl., 1989, 28(6): 767-768.
    [29] Aida T., Inoue S. Activation of carbon dioxide with aluminum porphyrin and reaction with epoxide. Studies on (tetraphenylporphinato)aluminum alkoxide having a long oxyalkylene chain as the alkoxide group [J]. J. Am. Chem. Soc., 1983, 105(5): 1304-1309.
    [30] Kojima F., Aida T., Inoue S. Fixation and activation of carbon dioxide on Aluminum porphyrin. Catalytic formation of carbamic ester from carbon dioxide, amine, and epoxide [J]. J. Am. Chem. Soc., 1986, 108(3): 391-395.
    [31] Hirai Y., Aida T., Inoue S. Artificial photosynthesis ofβ-ketocarboxylic acids from carbon dioxide and ketones via enolate complexes of aluminum porphyrin [J]. J. Am. Chem. Soc., 1989, 111(8): 3062-3063.
    [32] Komatsu M., Aida T., Inoue S. Novel visible-light-driven catalytic CO2 fixation. Synthesis of malonic acid derivatives form CO2,α,β-unsaturated ester or nitrile, and diethylzinc catalyzed by aluminum porphyrins [J]. J. Am. Chem. Soc., 1991, 113(22): 8492-8498.
    [33] Carmona E., Marin J. M., Monge A., etc. Synthesis and x-ray structure of the nickelabenzocyclopentene complex [cyclic](Me3P)2Ni(CH2CMe2-o-C6H4). Reactivitytoward simple, unsaturated molecules and the crystal and molecular structure of the cyclic carboxylate (Me3P)2Ni(CH2CMe2-o-C6H4C(O)O) [J]. J. Am. Chem. Soc., 1989, 111(8): 2883-2891.
    [34] Braunstein P., Matt D., Nobel D. Carbon dioxide activation and catalytic lactone synthesis by telomerization of butadiene and CO2 [J]. J. Am. Chem. Soc., 1988, 110(10): 3207-3212.
    [35] Darensbourg D. J., Grotsch G. Stereochemical studies of the carbon dioxide insertion reactions into the tungsten-alkyl bond [J]. J. Am. Chem. Soc., 1985, 107(25): 7473-7476.
    [36] Darensbourg D. J., Ovalles C. Homogeneous catalytic synthesis of reaction of alkyl halides, CO2, and anionic group 6 carbonyl catalysts and sodium salts [J]. J. Am. Chem. Soc., 1987, 109(11): 3330-3336.
    [37] Tsai J.-C., Nicholas K. M. Rhodium-catalyzed hydrogenation of carbon dioxide to formic acid [J]. J. Am. Chem. Soc., 1992, 114(13): 5117-5124.
    [38] Sakaki S., Ohkubo K. Characteristic features of CO2 insertion into a Cu-H bond. An ab initio MO study [J]. Inorg. Chem., 1988, 27(12): 2020-2021.
    [39] Sakaki S., Ohkubo K. Ab Initio MO study of CO2 insertion into a Cu(I)-H bond. Semiquantitative understanding of changes in geometry, bonding, and electron distribution during the reaction [J]. Inorg. Chem., 1989, 28(13): 2583-2590.
    [40] Sakaki S., Ohkubo K. Ab Initio MO study of CO2 insertion into a methyl-copper(I) bond. Critical difference from CO2 insertion into a hydrogen-copper(I) bond [J]. Organometallics, 1989, 8(12): 2970-2973.
    [41] Sakaki S., Musashi Y. Ab Initio MO Study of the CO2 Insertion into the Cu(I)-R Bond (R = H, CH3, or OH). Comparison between the CO2 Insertion and the C2H4 Insertion [J]. Inorg. Chem., 1995, 34(7): 1914-1923.
    [42] Liu Z., Torrent M., Morokuma K. Molecular orbital study of Zinc(II)-catalyzed alternating copolymerization of carbon dioxide with epoxide [J]. Organometallics, 2002, 21(6): 1056-1071.
    [43] Sun H., Zhang D. Density functional theory study on the cycloaddition of carbon dioxide with propylene oxide catalyzed by alkylmethylimidazolium chlorine ionic liquids [J]. J. Phys. Chem. A, 2007, 111(32): 8036-8043.
    [44] Gaussian 03 (Revision B.05), Frisch M. J., Trucks G. W., Schlegel H. B., etc. Gaussian, Inc., Pittsburgh PA, 2003.
    [45] Gonzalez C., Schlegel H. B. An improved algorithm for reaction path following [J]. J. Chem. Phys., 1989, 90(4): 2154-2161.
    [46] Gonzalez C., Schlegel H. B. Reaction path following in mass-weighted internal coordinates [J]. J. Phys. Chem., 1990, 94(14): 5523-5527.
    [47] Reed A. E., Curtiss L. A., Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint [J]. Chem. Rev., 1988, 88(6): 899-926.
    [48] Himo F., Lovell T., Noodleman L., etc. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates [J]. J. Am. Chem. Soc., 2005, 127(1): 210-216.
    [49] Zhao H., Lin Z., Marder T. B. Density functional theory studies on the mechanism of the reduction of CO2 to CO catalyzed by copper(I) boryl complexes [J]. J. Am. Chem. Soc. 2006, 128(49): 15637-15643.
    [50] Dang L., Zhao H., Lin Z., etc. DFT studies of alkene insertion into Cu–B bonds in copper(I) boryl complexes [J]. Organometallics, 2007, 26(11): 2824-2832.
    [51] Fraile J. M., García J. I., Martínez-Merino V., etc. Theoretical (DFT) insights into the mechanism of copper-catalyzed cyclopropanation reactions. Implications for enantioselective catalysis [J]. J. Am. Chem. Soc., 2001, 123(31): 7616-7625.
    [52] Rauhut G., Pulay P. Transferable scaling factors for density functional derived vibrational force fields [J]. J. Phys. Chem., 1995, 99(10): 3093-3100.
    [53] Zhou M., Zhang L., Chen M., etc. Carbon dioxide fixation by copper and silver halide. Matrix-isolation FTIR spectroscopic and DFT studies of the XMOCO (X = Cl and Br, M = Cu and Ag) molecule [J]. J. Phys. Chem. A, 2000, 104(45): 10159-10164.
    [54] Versluis L., Ziegler T., Fan, L. A theoretical study on the insertion of ethylene into the cobalt-hydrogen bond [J]. Inorg. Chem., 1990, 29(22): 4530-4536.
    [55] Cordaro J. G., Bergman R. G. Dissociation of carbanions from acyl iridium compouds: An experimental and computational investigation [J]. J. Am. Chem. Soc. 2004, 126(51): 16912-16929.
    [56] Fukui K. Recognition of stereochemical paths by orbital interaction [J]. Acc. Chem. Res.1971, 4(2): 57-64.
    [57] Fukui K. The role of frontier orbitals in chemical reactions (Noble lecture) [J]. Angew. Chem. Int. Ed. Engl., 1982, 21(11): 801-809.
    [1] Santer B. D., Taylor K. E., Wigley T. M. L., etc. A search for human influences on the thermal structure of the atmosphere [J]. Nature, 1996, 382(6586): 39-46.
    [2] Kennedy C., Steinberger J., Gasson B., etc. Greenhouse gas emissions from global cities [J]. Environ. Sci. Technol., 2009, 43(19): 7297-7302.
    [3] Grossmann W. D., Steininger K., Grossmann I., etc. Indicators on economic risk from global climate change [J]. Environ. Sci. Technol., 2009, 43(16): 6421-6426.
    [4] Hellevang H., Aagaard P., Oelkers E., etc. Can dawsonite permanently trap CO2 [J]? Environ. Sci. Technol., 2005, 39(21): 8281-8287.
    [5] Khoo H. H., Tan R. B. H. Life cycle investigation of CO2 recovery and sequestration [J]. Environ. Sci. Technol., 2006, 40(12): 4016-4024.
    [6] Darensbourg D. J., Holtcamp M. W. Catalysts for the reactions of epoxides and carbon dioxide. Coord. Chem. Rev., 1996, 153: 155-174.
    [7] Shaikh A.-A. G., Sivaram S. Organic carbonates [J]. Chem. Rev., 1996, 96(3): 951-976.
    [8] Clements J. H. Reactive applications of cyclic alkylene carbonates [J]. Ind. Eng. Chem. Res., 2003, 42(4): 663-674.
    [9] Peppel W. J. Preparation and properties of the alkylene carbonates [J]. Ind. Eng. Chem., 1958, 50(5): 767-770.
    [10] Biggadike K., Angell R. M., Burgess C. M. Selective plasma hydrolysis of glucocorticoidγ-lactones and cyclic carbonates by the enzyme paraoxonase: an ideal plasma inactivation mechanism [J]. J. Med. Chem., 2000, 43(1): 19-21.
    [11] Nicolaou K. C., Yang Z., Liu J. J., etc. Total synthesis of taxol [J]. Nature, 1994, 367(6464): 630-634.
    [12] Inoue S., Koinuma H., Tsuruta T. Copolymerization of carbon dioxide and epoxide [J]. J. Polym. Sci., Part B: Polym. Lett., 1969, 7: 287-292.
    [13] Kihara N., Hara N., Endo T. Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure [J]. J. Org. Chem., 1993, 58(23): 6198-6202.
    [14] Yano T., Matsui H., Koiki T., etc. Magnesium oxide-catalysed reaction of carbon dioxidewith an epoxide with retention of stereochemistry [J]. Chem. Commun., 1997, (12): 1129-1130.
    [15] Yamaguchi K., Ebitani K., Yoshida T., etc. Mg–Al mixed oxides as highly active acid–base catalysts for cycloaddition of carbon dioxide to epoxides [J]. J. Am. Chem. Soc., 1999, 121(18): 4526-4527.
    [16] Yasuda H., He L., Sakakura T. Cyclic carbonate synthesis from supercritical carbon dioxide and epoxide over lanthanide oxychloride [J]. J. Catal., 2002, 209(2): 547-550.
    [17] Nomura R., Matsuda A., Ninagawa H. Synthesis of cyclic carbonates from carbon dioxide and epoxides in the presence of organoantimony compouds as novel catalysts [J]. J. Org. Chem., 1980, 45(19): 3735-3738.
    [18] Aida T., Inoue S. Activation of carbon dioxide with aluminum porphyrin and reaction with epoxide. studies on (tetraphenylporphinato)aluminum alkoxide having a long oxyalkylene chain as the alkoxide group [J]. J. Am. Chem. Soc., 1983, 105(5): 1304-1309.
    [19] Kruper W. J., Deller D. V. Catalytic formation of cyclic carbonates from epoxides and CO2 with chromium metalloporphyrinates [J]. J. Org. Chem., 1995, 60(3): 725-727.
    [20] Kim H. S., Kim J. J., Lee B. G., etc. Isolation of a pyridinium alkoxy ion bridged dimeric zinc complex for the coupling reactions of CO2 and epoxides [J]. Angew. Chem. Int. Ed., 2000, 39(22): 4096-4098.
    [21] Man M. L., Lam K. C., Sit W. N., etc. Synthesis of heterobimetallic Ru–Mn complexes and the coupling reactions of epoxides with carbon dioxide catalyzed by these complexes [J]. Chem. Eur. J., 2006, 12(4): 1004-1015.
    [22] Paddock R. L., Ngugen S. T. Chemical CO2 fixation: Cr(III) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides [J]. J. Am. Chem. Soc., 2001, 123(46): 11498-11499.
    [23] Shen Y.-M, Duan W.-L., Shi M. Chemical fixation of carbon dixode catalyzed by binaphthyldiamino Zn, Cu, and Co Salen-type complexes [J]. J. Org. Chem., 2003, 68(4): 1559-1562.
    [24] Lu X.-B., Liang B., Zhang Y.-J., etc. Asymmetric catalysis with CO2: direct synthesis of optically active propylene carbonate from racemic epoxides [J]. J. Am. Chem. Soc., 2004, 126(12): 3732-3733.
    [25] Sun J., Wang L., Zhang S. J., etc. ZnCl2/phosphonium halide: An efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate [J]. J. Mol. Catal. A: Chem., 2006, 256(1-2): 295-300.
    [26] Doskocil E. J., Bordawekar S. V., Kaye B. G., etc. UV?Vis spectroscopy of iodine adsorbed on alkali-metal-modified zeolite catalysts for addition of carbon dioxide to ethylene oxide [J]. J. Phys. Chem. B, 1999, 103(30): 6277-6282.
    [27] Peng J. J., Deng Y. Q., Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids [J]. New J. Chem., 2001, 25(4): 639-641.
    [28] Kim Y. J., Varma R. S. Tetrahaloindate(III)-based ionic liquids in the coupling reaction of carbon dioxide and epoxides to generate cyclic carbonates: H-bonding and mechanistic studies [J]. J. Org. Chem., 2005, 70(20): 7882-7891.
    [29] Park D.-W., Mun N.-Y., Kim K.-H., etc. Addition of carbon dioxide to allyl glycidyl ether using ionic liquid catalysts [J]. Catal. Today, 2006, 115(1-4): 130-133.
    [30] Kawanami H. J., Sasaki A., Matsui K., etc. A rapid and effective synthesis of propylene carbonate using a supercritical CO2-ionic liquid system [J]. Chem. Commun., 2003, (7): 896-897.
    [31] Jiang J.-L., Gao F., Hua R., etc. Re(CO)5Br-catalyzed coupling of epoxides with CO2 affording cyclic carbonates under solvent-free condition [J]. J. Org. Chem., 2005, 70(1): 381-383.
    [32] De Pasquale R. J. Unusual catalysis with Nickel(0) complexes [J]. J. Chem. Soc., Chem. Commun., 1973, (5): 157-158.
    [33] Gaussian 03 (Revision B.05), Frisch M. J., Trucks G. W., Schlegel H. B., etc. Gaussian, Inc., Pittsburgh PA, 2003.
    [34] Gonzalez C., Schlegel H. B. An improved algorithm for reaction path following [J]. J. Chem. Phys., 1989, 90(4): 2154-2161.
    [35] Gonzalez C., Schlegel H. B. Reaction path following in mass-weighted internal coordinates [J]. J. Phys. Chem., 1990, 94(14): 5523-5527.
    [36] Reed A. E., Curtiss L. A., Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint [J]. Chem. Rev., 1988, 88(6): 899-926.
    [37] Kirgan R., Simpson M., Rillema D. P., etc. Synthesis, characterization, photophysical,and computational studies of rhenium(I) tricarbonyl complexes containing the derivatives of bipyrazine [J]. Inorg. Chem., 2007, 46(16): 6464-6472.
    [38] Howell S. L., Scott S. M., Gordon K. C., etc. The effect of reduction on rhenium(I) complexes with binaphthyridine and biquinoline ligands: A spectroscopic and computational study [J]. J. Phys. Chem. A, 2005, 109(16): 3745-3753.
    [39] Bergamo M., Beringhelli T., D’Alfonso G., etc. NMR and DFT analysis of [Re2H2(CO)9]: Evidence of anη2-H2 intermediate in a new type of fast mutual exchange between terminal and bridging hydrides [J]. J. Am. Chem. Soc., 2002, 124(18): 5117-5126.
    [40] Miertus S., Scrocco E., Tomasi J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of Ab initio molecular potentials for the prevision of solvent effects [J]. Chem. Phys., 1981, 55(1): 117-129.
    [41] Miertus S., Tomasi J. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes [J]. Chem. Phys., 1982, 65(2): 239-245.
    [42] Pomelli C. S., Tomasi J. Variation of surface partition in GEPOL: effects on salvation free energy and free-energy profiles [J]. Theor. Chim. Acta, 1998, 99(1): 34-43.
    [43] Pomelli C. S., Tomasi J., SolàM. Theoretical study on the thermodynamics of the elimination of formic acid in the last step of the hydrogenation of CO2 catalyzed by rhodium complexes in the gas phase and supercritical CO2 [J]. Organometallics, 1998, 17(15): 3164-3168.
    [44] Huo C.-F., Li Y.-W., Jiao H., etc. Structures and energies of [Co(CO)n]m (m = 0, 1+, 1–) and HCo(CO)n: Density functional studies [J]. J. Phys. Chem. A, 2002, 106(50): 12161-12169.
    [45] Sibi M. P., Porter N. A. Enantioselective free radical reactions [J]. Acc. Chem. Res., 1999, 32(2): 163-171.
    [46] Braslau R., Naik N., Zipse H. Stereoselective coupling of prochiral radicals with a chiral C2-symmetric nitroxide [J]. J. Am. Chem. Soc., 2000, 122(35): 8421-8434.
    [47] Junk G. A., Svec H. J. The mass spectra, ionization potentials, and bond energies of the group VIIA decacarbonyls [J]. J. Chem. Soc. A, 1970, 2102-2105.
    [48] Huber H., Kundig E. P., Ozin G. A. Synthesis and infrared spectroscopic detection of rhenium pentacarbonyl [J]. J. Am. Chem. Soc., 1974, 96(17): 5585-5586.
    [49] Meckstroth W. K., Walters R. T., Dorfman L. M., etc. Fast reaction studies of rhenium carbonyl complexes: the pentacarbonylrhenium(0) radical [J]. J. Am. Chem. Soc., 1982, 104(7): 1842-1846.
    [50] Yang H., Snee P. T., Harris C. B., etc. Femtosecond infrared studies of a prototypical one-electron oxidative-addition reaction: chlorine atom abstraction by the Re(CO)5 radical [J]. J. Am. Chem. Soc., 1999, 121(39): 9227-9228.
    [51] Andrews L., Zhou M., Wang X., etc. Matrix infrared spectra and density functional calculations of manganese and rhenium carbonyl neutral and anion complexes [J]. J. Phys. Chem. A, 2000, 104(39): 8887-8897.
    [52] Huo C.-F., Li Y.-W., Jiao H., etc. HCo(CO)3-catalyzed propene hydroformylation. Insight into detailed mechanism [J]. Organometallics, 2003, 22(23): 4665-4677.
    [53] Gibson D. H., Ye M., Richardson J. F. Synthesis and characterization ofμ2-η2- andμ2-η3-CO2 complexes of iron and rhenium [J]. J. Am. Chem. Soc., 1992, 114(24): 9716-9717.
    [54] Guo C.-H., Zhang X.-M., Wu H.-S., etc. Theoretical study on the mechanism of nickel(0)-mediated coupling between carbon dioxide and epoxyethane [J]. J. Mol. Struct. (Theochem), 2009, 916(1-3): 125-134.
    [55] Ohnishi Y., Nakao Y., Sakaki S., etc. Ruthenium(II)-catalyzed hydrogenation of carbon dioxide to formic acid. Theoretical study of significant acceleration by water molecules [J]. Organometallics, 2006, 25(14): 3352-3363.
    [56] Pápai I., Schubert G., Mayer I., etc. Mechanistic details of nickel(0)-assisted oxidative coupling of CO2 with C2H4 [J]. Organometallics, 2004, 23(22): 5252-5259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700