用户名: 密码: 验证码:
中国西部弱还原性煤热化学转化特性基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在今后相当长的一段时期内,煤炭仍将是我国的主要能源。西部开发是我国经济发展的重点,而煤炭又是西部地区的支柱产业,针对西部煤所具有的结构特征对其热化学转化特性进行研究,对于西部煤炭资源的开发利用具有重要的理论意义和现实意义。
     本文选取新疆哈密、宁夏灵武、神东三种西部煤作为研究对象,系统研究了这些惰质组分含量较高煤的结构特征以及热解、气化、燃烧反应性,并与强还原性的中部平朔煤进行了比较;还通过去离子水洗、单酸洗、混酸洗逐级脱除煤中的内在矿物质,考查了内在以及外加矿物质对煤热化学转化特性的影响。得到以下主要结论:
     1)三种西部煤具有弱还原性煤的特征,而中部平朔煤具有较强的还原性特征。弱还原性煤具有较高的惰质组分和O含量,较低的挥发份、灰分以及H/C原子比;弱还原性煤惰质组中的C含量高于镜质组,H/C以及O/C原子比低于镜质组;而强还原性煤惰质组中的C含量以及H/C原子比低于镜质组,O/C原子比高于镜质组。弱还原性煤灰分中含有较高的Fe2O3、CaO、MgO和Na2O,较低的SiO2和Al2O3;而强还原性煤中SiO2和Al2O3含量较高。西部煤大多属于不黏煤或弱黏煤,而平朔煤属于粘结性煤。随着煤中惰质组分含量的增加,芳碳率及平均缩合环数增加;惰质组中芳香微晶结构单元较大,芳香层片在空间的排列更加规整,相互定向程度也优于镜质组。随着热处理温度的升高,煤的微晶结构渐趋规整。
     2)提出了判断煤还原程度强弱的经验式k = I%×0.8 + O% + Rz - H%×10为定量判断煤还原程度的相对强弱提供了依据。
     3)煤中惰质组含量越高,其热解反应性越低。高温下弱还原性煤的二次热解反应性明显高于强还原性的平朔煤,促进了大量含氧气体的释放。弱还原性煤热解时生成的含氧气体较多,含氢气体较少,且煤中惰质组分越多,含氧气体的释放量就越多;弱还原性煤镜质组热解释放的含氧气体量也高于强还原性煤。煤热解过程中含氢以及含氧气体的释放量与煤中氢、氧元素的含量相一致。随热解温度的升高,气相产物中含氢、含氧气体的释放呈现出规律性的变化,存在一个释放温区,CO为300-900℃, CO2为200-800℃, H2为500-900℃, CH4为400-800℃, C2以上烃类气体为400-600℃.
     4)西部弱还原性煤焦的气化反应性高于强还原性的平朔煤焦;弱还原性煤惰质组分焦的气化反应性高于镜质组分焦,这与强还原性煤显微组分焦的气化反应性相反。煤焦的气化反应性与煤的亚显微结构密切相关,惰质组中,丝质组与半丝质组含量越高,焦的气化反应性越强;镜质组中,均质胶质体与基质胶质体含量越高,焦的气化反应性越弱。惰质组和镜质组之间存在协同作用,合适的惰质组分含量能够增加样品焦的气化反应性。与强还原性煤相比,西部煤气化反应能够生成大量的H2和CO,但CH4的生成量较少。未反应收缩核模型非常适于描述弱还原性煤焦的气化反应机理,由此得到的表观活化能基本能够反映煤焦的气化反应性。
     5)煤的燃烧反应性随煤中惰质组分含量的增加而增强。西部弱还原性煤的燃烧反应性高于强还原性的平朔煤。升温速率增大,煤的燃烧反应性增加;O/C质量比降低,煤的可燃性下降;实验用样量增多,最大燃烧速率温度和燃尽温度升高,最大燃烧速率下降,点火温度几乎不变;样品粒径减小,最大燃烧速率增大,但最终失重量变化不大;未反应收缩核模型也适于描述弱还原性煤的燃烧机理,由此得到的表观活化能基本能够反映煤的燃烧特性。
     6)硅铝酸盐阻碍煤的热解;碱土金属及过渡金属盐类促进弱还原性煤的热解,水溶性的部分盐类阻碍弱还原性煤的热解,后两类盐对强还原性平朔煤的热解作用不明显。碱土金属及过渡金属盐类促进煤热解产生含氧气体,阻碍弱还原性煤热解生成含氢气体,促进强还原性煤热解生成含氢气体;硅铝酸盐促进弱还原性煤热解生成含氧气体,阻碍生成含氢气体,而对于强还原性煤热解的作用正好相反。外加钙对煤的热解具有促进作用,主要促进煤热解生成H2、CO和CO2。外加钠对煤热解的作用与煤的种类以及钠的添加量有关。钠的加入,促进煤热解生成H2和CO2,阻碍西部煤热解生成CH4和CO,促进强还原性煤热解生成CO,对强还原性煤热解生成CH4的量影响不大。
     内在矿物质阻碍强还原性煤焦的气化和燃烧,而促进弱还原性煤焦的气化,对弱还原性煤燃烧的作用与煤种类有关。外加钠、钙,能够促进煤焦的气化与燃烧。由于钠的催化作用,使得弱还原性煤二次最大燃烧速率显著高于强还原性的平朔煤。
At present, the development of the west regions has been a key of China’s economic development. Coal is the pillar industry in China’s western regions’s development, so it has important theoretical significance and practical utilization value to study the structure characteristics and thermal chemical conversion properties on the coals from that region.
     Three coals which have high inertinite content from Xinjiang Hami, Ningxia Lingwu and Shengdong mines in China’s western regions were selected as experimental coal samples. Their structure characteristics and pyrolysis, gasification and combustion reactivities were detailedly researched and compared with that of Pingshuo coal from China’s middle region. In addition, intrinsic minerals in these coals were eliminated by deionized water, single acid and compound acid washing and the influences of these intrinsic and added minerals on the thermal chemical conversion properties of these coals were also researched. Main conclusions were obtained as follows:
     1) Three coals from China’s western ragions demonstrate the properties of the weak reducibility and Pingshuo coal has the strong reducibility properties. Weak reducibility coals have high inertinite and O content, low volatile, ash and H/C atomic ratio; C content in inertinite is higher and H/C and O/C atomic ratio are lower than that in vitrinite; and for strong reducibility coal, C content and H/C atomic ratio in inertinite are lower and O/C atomic ratio is higher than that in vitrinite. The ashes in the weak reducibility coals have higher Fe2O3, CaO, MgO and Na2O, lower SiO2 and Al2O3, and that the ash in strong reducibility Pingshuo coal has higher SiO2 and Al2O3. Most of the coals in china’s western belong to non-coking or weak-coking coal, and that Pingshuo coal belongs to coking coal. Aromaticity and mean ring condensation number increase with inertinite content increase in coal. The aromatic crystallite unit is bigger, aromatic layer structure is more regularity and mutual directional degree is superior in inertinite to that in vitrinite. As heating treatment temperature increase coal crystallite structure becomes gradually regularity.
     2) The experimental relation expression has been put forward to estimate the reducibility of coal: k = I%×0.8 + O% + Rz - H%×10 to provide a basis for quantitative analysis of the relative intensity of the coal reducibility.
     3) The more inertinite in coal, the weaker coal pyrolysis reactivity is. The secondary pyrolysis reactivity at higher temperature on weak reducibility coals is higher than that of strong reducibility Pingshuo coal, which leads to the more realese of containing-O gases. The more containing-O gases and the lesser containing-H gases are released during pyrolysis of weak reducibility coal and its inertinite than that of strong reducibility coal and its inertinite. The yields of containing-O gases from vitrinite pyrolysis of weak reducibility coal are higher than that from strong reducibility coal vitrinite. The yields of containing-O and containing-H gases from coal pyrolysis are also consistent with O and H content in coal. With pyrolysis temperature increasing, the yields of containing-O and containing-H gases released present a regular change trends and the optimal release temperature regions are CO 300-900℃, CO2 200-800℃, H2 500-900℃, CH4 400-800℃and C2-4 hydrocarbon 400-600℃.
     4) The gasification reactivity of weak reducibility coal char is higher than that of strong reducibility coal char; the gasification reactivity of weak reducibility coal inertinite char is higher than that of vitrinite char; and it is just reverse to strong reducibility coal maceral char. The gasification reactivity of coal has to do with the ultrastructures of the coal. The more fusinite and semifusinite content in inertinite, the higher coal char gasification reactivity is; and that the more telocollinite and desmocollinite content in vitrinite, the weaker coal char gasification reactivity is. There are synergy action between inertinite and vitrinite and appropriate inertinite content could lead to higher gasification reactivity of char. More H2 and CO are released from weak reducibility coal gasification, but the yield of CH4 is smaller than that from strong reducibility coal gasification. Unreacted shrinking core model is fit for the mechanism description of coal char gasification process and the gasification reactivity of char could be generally reflected by activation energy calculated from the model.
     5) The more inertinite content in coal, the higher coal combustion reactivity is. The combustion reactivity of weak reducibility coal is higher than that of strong reducibility coal. The combustion reaction rate increases with heating rate increasing. The ignitibility of coal decreases with O/C quality ratio decreasing. As the dosage of coal sample increases, the maximum combustion rate temperature and burnout temperature increase, the maximum combustion rate decreases, but the ignite temperature almost unchanges. As the particle size of coal sample decreases, the maximum combustion rate increases, but the last weight loss is almost unchanged. Unreacted shrinking core model is also fit for the mechanism description of coal combustion process and the combustion properties of these coals can be reflected by activation energy calculated from this model.
     6) Aluminosilicate restrains coal pyrolysis process. Alkaline earth salts and some transition metal salts accelerate, and some water-solubility salts restrain the pyrolysis of weak reducibility coals, but the latter two salts hardly affect the pyrolysis of strong reducibility Pingshuo coal. Alkaline earth salts and transition metal salts can accelerate the formation of containing-O gases during coal pyrolysis, hold back the release of containing-H gases during weak reducibility coal pyrolysis, but accelerate that from strong reducibility coal pyrolysis. Aluminosilicate accelerate weak reducibility coal pyrolysis to release containing-O gases, and restrain to produce containing-H gases, but it is just reverse for strong reducibility coal. Added Ca can accelerate coal pyrolysis to release more H2, CO and CO2. The effect of added Na on coal pyrolysis has connection with types of coal and Na content. It can accelerate coal pyrolysis to produce H2 and CO2, restrain weak reducibility coal pyrolysis to give birth to CH4 and CO, accelerate strong reducibility coal pyrolysis to release CO and haradly influence CH4 release.
     The effect of minerals on coal gasification and combustion is closely interrelated with coal characteristics. It can restrain the gasification and combustion process of strong reducibility coal char; alkaline earth salts, transition metal salts and aluminosilicate can accelerate weak reducibility coal char gasification, but the effect of minerals on the combustion of the weak reducibility coal has to do with types of coal. Added Ca and Na can promote coal char gasification and combustion. Added Na can accelerate remarkably coal combustion and result that the secondary maximum combustion rate of weak reducibility coals is significantly higher than that of the strong reducibility Pingshuo coal.
引文
[1]谢克昌.煤化工发展与规划[M].北京:化学工业出版社, 2005: 27-29.
    [2]朱之培,高晋生.煤化学[M].上海:上海科学技术出版社, 1984: 171-172, 271.
    [3]刘建平,赵钦强.煤的热解及其影响因素[J].大众标准化, 2005, (8):34-37.
    [4] Jüntgen H. Review of the kinetics of pyrolysis and hydropyrolysis in relation to the chemical constitution of coal[J]. Fuel, 1984, 63(6): 731-737.
    [5] Mohindar S. Seehra, Bikas Ghosh, Stephen E. Mullins. Evidence for different temperature stages in coal pyrolysis from in situ e.s.r. spectroscopy[J]. Fuel, 1986, 65(9): 1315-1316.
    [6] Xu W-C., Tomita, A. Effect of coal type on the flash pyrolysis of various coals[J]. Fuel,1987, 66(5): 627-631.
    [7] Calkins W.H., Tyler R.J. Coal flash pyrolysis: 2. Polymethylene compounds in low temperature flash pyrolysis tars[J]. Fuel, 1984, 63(8): 1119-1124.
    [8] Kawashima H., Yamashita Y., Saito I. Studies on structural changes of coal density-separated components during pyrolysis by means of solid-state 13C-NMR spectra[J]. Journal of Analytical and Applied Pyrolysis, 2000, 53(1): 35-50.
    [9] Solomon P. R., Hsiang-Hui King. Tar evolution from coal and model polymers: Theory and experiments[J]. Fuel, 1984, 63(9):1302-1311.
    [10] Kevin R. Squir, Pter R. Solomon, Robert M. Carangelo, et al. Tar evolution from coal and model polymers: 2. The effects of aromatic ring sizes and donatable hydrogens[J]. Fuel, 1986, 65(6): 833-843.
    [11] Solomon P.R., Hamblen D.G., Serio M.A., et a1. Can coal science be predictive[J]. ACS Division of Fuel Chemistry Preprints, 1991, 36(1): 269-297.
    [12] Gavalas G.R., Cheong P.H.K., Jain R. Model of coal pyrolysis 1. qualitative development[J]. Industrial and Engineering Chemistry Fundamentals, 1981, 20(2):113-122.
    [13] Gavalas G.R., Jain R., Cheong P. H. K. Model of coal pyrolysis 2. qualitative formation and results[J]. Industrial and Engineering Chemistry Fundamentals, 1981, 20(2):122-132.
    [14] Gavalas G.R. Coal Science and Technology 4, Coal pyrolysis[M]. New York: Elsevier, 1982: 19-33.
    [15]朱学栋,朱子彬,朱学余等.煤化程度和升温速率对热分解影响的研究[J].煤炭转化, 1999, 22(22): 43-47.
    [16] Schafer H.N.S. Pyrolysis of brown coals. 1. Decomposition of acid groups in coals containing carboxyl groups in the acid and cation forms[J]. Fuel, 1979, 58(9): 677-672.
    [17] Schafer H.N.S. Pyrolysis of brown coals. 2. Decomposition of acid groups on heating in the range 100-900°C[J]. Fuel, 1979, 58(9): 673-679.
    [18] Schafer H.N.S. Pyrolysis of brown coals. 3. Effect of cation content on the gaseous products containing oxygen from Yallourn coal[J]. Fuel, 1980, 59(5): 295-301.
    [19] Schafer H.N.S. Pyrolysis of brown coals. 4. Relation between acidic groups and evolved carbonoxides[J]. Fuel, 1980, 59(5): 302-304.
    [20] Otake Y., Walker P.L. Pyrolysis of demineralized and metal cation loaded lignites[J]. Fuel, 1993, 72(2): 139-149.
    [21] Franklin H.D., Peters W.A., Howard J.B. Effect of mineral matter on the rapid pyrolysis and hydropyrolysis of a bituminous coal[J]. Preprints-Division of Petroleum Chemistry, American Chemical Society 1981, 26(4): 1079-1079.
    [22] Franklin H.D., Peters W.A., Howard J.B. Effect of mineral matter on the rapid pyrolysis and hydropyrolysis of a bituminous coal. 1. Effects on yields of char, tar and light gaseous volatiles[J]. Fuel, 1982, 61(2): 155-160.
    [23] Oztas N.A., Yurum Y. Pyrolysis of Turkish Zonguldak bituminous coal. PartⅠ. Effect of mineral matter[J]. Fuel, 2000, 79(10): 1221-1227.
    [24] Slaghuis J.H., Ferreira L.C., Judd M.R. Effect of inherent mineral matter on volatile material in coal[J]. Fuel, 1991, 70(3): 471-473.
    [25] Mukherjee D.K., Chowdhury P.B. Catalytic effect of mineral matter constituents in a north assam coal on hydrogenation[J]. Fuel, 1976, 55(1): 4-8.
    [26] Liu Q.R., Hu H.Q., Zhou Q., et al. Effect of inorganic mineral on reactivity and kinetics of coal pyrolysis[J]. Fuel, 2004, 83(6): 713-718.
    [27] Kamiya Y., Oikawa S. Effect of coal minerals on the thermal treatment of aromatic ethers and carbonyl compounds[J]. Fuel, 1983, 62(1): 30-33.
    [28]吕太,张翠珍,吴超.粒径和升温速率对煤热分解影响的研究[J].煤炭转化, 2005, 28(1): 17-20.
    [29] Arenillas A., Rubiera F., Pevida C. A comparison of different methods for predicting coal devolatilisation kinetics[J]. Journal of Analytical and Applied Pyrolysis, 2001, 58(9): 685-701.
    [30]吴诗勇,李莉,顾菁等.高碳转化率下热解神府煤焦-CO2高温气化反应性[J].燃料化学学报, 2006, 34(4): 399-403.
    [31] Tomeczek J., Gil S. Volatiles release and porosity evolution during high pressure coal pyrolysis[J]. Fuel, 2003, 82(3): 285-292.
    [32] Gadiou R., Bouzidi Y., Prado G. The devolatilisation of millimetre sized coal particles at high heating rate: the influence of pressure on the structure and reactivity of the char[J]. Fuel, 2002, 81(16): 2121-2130.
    [33] Cai H.Y., Guell A.J, Dugwell D.R, Kandiyoti R. Heteroatom distribution in pyrolysis products as a function of heating rate and pressure[J]. Fuel, 1993, 72(3): 321-327.
    [34] Griffin T.P., Howard J.B., Peters W.A. Pressure and temperature effects in bituminous coal pyrolysis: Experimental observations and a transient lumped-parameter model[J]. Fuel, 1994, 73(4): 591-601.
    [35] Karcz A., Porada S. Kinetics of the formation of C1-C3 hydrocarbons in pressure pyrolysis of coal[J]. Fuel Processing Technology, 1990, 26(1): 1-13.
    [36] Okumura Y., Sugiyama Y., Okazaki K. Evolution prediction of coal-nitrogen in high pressure pyrolysis processes[J]. Fuel, 2002, 81(18): 2317-2324.
    [37]谢克昌.煤的结构与反应性[M].北京:科学出版社, 2002: 274-275.
    [38] Stanislaw Porada. The influence of elevated pressure on the kinetics of evolution of selected gaseous products during coal pyrolysis[J]. Fuel, 2004, 83(7-8): 1071-1078.
    [39]熊源泉,刘前鑫,章名耀.加压条件下煤热解反应动力学的试验研究[J].动力工程, 1999, 19(3): 76-81.
    [40]李保庆.煤加氢热解研究I:宁夏灵武煤加氢热解的研究[J].燃料化学学报, 1995, 23(1): 57-61.
    [41]陈皓侃,李保庆,张碧江.热解和加氢热解煤焦油的组成和煤结构的关系[J].燃料化学学报, 1997, 25(6): 560-564.
    [42]戴中蜀,郑昀晖,马立红.低煤化度煤低温热解脱氧后结构的变化[J].燃料化学学报, 1999, 27(3): 256-261.
    [43] Arendt P., Van H., Heinrich K. Comparative investigations of coal pyrolysis under inert gas and H2 at low and high heating rate pressures to l0 MPa[J]. Fuel, 1981, 60(9): 779-787.
    [44] Cypres R., Furfari S. Fixed-bed pyrolysis of coal under hydrogen pressure at low heating rates[J]. Fuel, 1981, 60(9): 768-778.
    [45] Bolton C., Snape C.E.,óBrien R.J., et al. Influence of carrier gas flow and heating rates in fixed bed hydropyrolysis of coal[J]. Fuel, 1987, 66(10): 1413-1417.
    [46]白向飞,李文华,陈文敏等.我国西部弱还原程度煤分布及煤质特征研究[J].煤炭学报, 2005, 30(4): 502-506.
    [47] Li C.Z., Bartle KD., Kandiyoti R. Vacuum pyrolysis of maceral concentrates in a wire-mesh reactor[J]. Fuel, 1993, 72(11): 1459-1468.
    [48] Li C.Z., Madrali E.S., Wu F., et al. Comparison of thermal breakdown in coal pyrolysis and liquefaction[J]. Fuel, 1994, 73(6): 851-865.
    [49]李文英,谢克昌.平朔气煤的煤岩显微组分结构研究[J].燃料化学学报, 1992, 20(4): 375-383.
    [50]孙庆雷,李文,李保庆.神木煤热解的挥发份收率与岩相组成的关系[J].化工学报, 2003, 54(2): 269-272.
    [51] White A., Maureen R.D., Jones S.D. Reactivity and characterization of coal maceral concentrates[J]. Fuel, 1989, 68(4): 511-519.
    [52] Duxbury J. Prediction of coal pyrolysis yields from BS volatile matter and petrographic analysis[J]. Fuel, 1997, 76 (13): 1337-1343.
    [53] Cai H.Y., Megaritis A., Messenbock Dix M., et al. Pyrolysis of coal maceral concentrates under pf-conditions (1): changes in volatile release and char combustibility as a function of rank[J]. Fuel, 1998, 77 (12): 1273-1282.
    [54] Das T.K. Evolution characteristics of gases during pyrolysis of maceral concentrates of Russain coke coals[J]. Fuel, 2001, 80(4): 489-500.
    [55] Das T.K. Thermogravimetric characterization of maceral concentrates of Russain coking coals[J]. Fuel, 2001, 80(1): 97-106.
    [56]姚强,陈超.洁净煤技术[M].北京:化学工业出版社, 2005: 181-190.
    [57]陈文敏,李文华,徐振刚.洁净煤技术基础[M].北京:煤炭工业出版社, 1997: 236-237.
    [58]张林仙,黄戒介,房倚天等.中国无烟煤焦气化活性的研究[J].燃料化学学报, 2006, 34(3): 265-269.
    [59] Tormp P.J.J. Coal pyrolysis: basic phenomena relevant to conversion processes[M]. Netherlands. 1987: 8-9.
    [60] Takayuki Takarada, Yasukatsu Tamai, Akira Tomita. Reactivities of 34 coals under steam gasification[J]. Fuel, 1985, 64(10): 1438-1442.
    [61] Teresaálvarez, Antonio B. Fuertes, Jose J. Pis, et al. Influence of coal oxidation upon char gasification reactivity[J]. Fuel, 1995, 74(5): 729-735.
    [62]丁华.煤及其显微组分热解气化反应特性研究[D].北京:煤炭科学研究总院, 2006.
    [63] Lindner B., Simonsson D. Comparison of structural models for gas-solid reactions in porous solids undergoing structural changes[J]. Chemical Engineering Science, 1981, 36(9): 1519 -1527.
    [64]向银花.煤部分气化、燃烧集成系统的基础研究[D].山西:中国科学院山西煤炭化学研究所学位论文, 2002.
    [65] Radovic R.I.,Walker P.L., Jenkins R.G. Importance of carbon active site in the gasification of coal chars[J]. Fuel, 1983, 62 (7): 849-856.
    [66] Van Heck K.H., Muhlen I.J. Chemical Kinetics of carbon and char gasification[C], in: Fundamental issues in control of carbon gasification reactivity. Netherlands: Kluwer Academic publishers, 1990: 34.
    [67] Hurt R.H., Sarofim A.F., Longwell J.P. The role of microporous surface area in the gasification of chars from a sub-bituminous coal[J]. Fuel, 1991, 70(9): 1079-1082.
    [68] Molina-Sabio M., Gonzaiez M.T., Rodriguez-Reinoso F., et al. Effect of steam and carbon dioxide activation in the micropore size distribution of activated carbon[J]. Carbon, 1996, 34 (4): 505-509.
    [69]崔洪,徐秀峰,顾永达.煤焦CO2气化的热重分析研究—(I)等温热重研究[J].煤炭转化, 1996, 19(2): 75-79.
    [70]周静,龚欣,于遵宏.煤焦二氧化碳气化动力学研究—(II)非等温热重法[J].煤炭转化, 2003, 26(1): 78-81.
    [71]赵炜,李凡,谢克昌等.英国煤显微组分的分离及常压CO2气化动力学研究[J].煤炭转化, 1996, 19(4): 50-55.
    [72]文芳.热重法研究煤焦H2O气化反应动力学[J].煤炭学报, 2004, 29(3):350-353.
    [73]邱立军,宋得文,高翠玲等.西北地区不粘煤、长焰煤的煤岩特征及某些工艺性质[J].洁净煤技术, 2001, 7(4): 49-51.
    [74] Kodama T., Aoki A., Ohtake H., et al. Thermochemical CO2 gasification of coal using a reactive coal-In2O3 system[J]. Energy & Fuels, 2000, 14(1): 202-211.
    [75]许祥静,刘军.煤炭气化工艺[M].北京:化学工业出版社, 2005: 38.
    [76]廖洪强,邓德敏,李保庆等.煤催化气化研究进展与煤-纸浆黑液共气化[J].煤炭转化, 2000, 23 (3): 1-5.
    [77] Walker P.L., Matsumoto J.S., Hanzawa J., et al. Catalysis of gasification of coal-derived cokes and chars[J]. Fuel, 1983, 62(2):140-149.
    [78] YeboahY.D., Xu Y., Sheth A. Catalytic gasification of coal using eutectic salts: identification of eutectics[J]. Carbon, 2003, 41(2): 203-214.
    [79] Atul C. Sheth, Chandramouli Sastry, Yaw D., et al. Catalytic gasification of coal using eutectic salts: reaction kinetics for hydrogasification using binary and ternary eutectic catalysts[J]. Fuel, 2004, 83(4-5): 557–572.
    [80] Atul S., Yaw D.Y., Anuradha G. Catalytic gasification of coal using eutectic salts: reaction kinetics with binary and ternary eutectic catalysts[J]. Fuel, 2003, 82(3): 305-317.
    [81] Huang Y H, Yamashita H, Tomita A. Gasification reactivity of coal macerals[J]. Fuel Processing Technology, 1991, 29(l): 75-84.
    [82] Czechowski F., Kidawa H. Reactivity and susceptibility to porosity development of coalmaceral chars on steam and carbon dioxide[J]. Fuel Processing Technology, 1991, 29(1): 57-73.
    [83] Sakawa M., Sakurai Y., Hara Y. Influence of coal characteristics on CO2 gasification[J]. Fuel, 1982, 61(8): 717-720.
    [84] Hurt R.H., Longwell J.P., Saeofim A.F. Gasification reactivity of chars from low rank coal litho types[J]. Fuel, 1986, 65 (4): 451-452.
    [85] Ninomiya T., Nishijima T., Iwamoto H., et al. Prepr.26th Conf. Coal Science Japan, Sapporo, Fuel Society of Japan, Tokyo, 1989: 181.
    [86]张永发,谢克昌,凌大琦.显微组分焦样的CO2气化动力学和表面变化[J].燃料化学学报, 1991, 19(4): 359-364.
    [87]路春美,王永征.煤燃烧理论与技术[M].北京:地震出版社, 2001: 46.
    [88]虞继舜.煤化学[M].北京:冶金工业出版社, 1984: 196-198.
    [89] Paolo Davini, Paolo Ghetti, Loretta Bonfanti, et al. Investigation of the combustion of particles of coal[J]. Fuel, 1996, 75(9): 1083-1088.
    [90] Adams K.E., Glasson D.R., Jayaweera S.A.A. Development of porosity during the combustion of coals and cokes[J]. Carbon, 1989, 27(1): 95-101.
    [91]晏蓉,周燕陵,米素娟等.煤中矿物成分影响燃烧性能的实验研究[J].热力发电, 1996, (3): 33-37.
    [92] Walker P.L. Jr., Rusinkoa F. Jr., Austin L.G. Gas Reaction of carbon[J]. Advances in Catalysis, 1959, 11(1): 133-221.
    [93] Cai H.Y., Kandiyoti R. Effect of changing inertinite concentration on pyrolysis yields and char reactivities of two South African coals[J]. Energy & Fuels, 1995, 9(6): 956-961.
    [94]孙庆雷,李文,李宝庆.神木煤显微组分半焦燃烧特性[J].化工学报, 2002, 53(1): 92-95.
    [95] Thomas C.G., Hollombe D., Shibaoka M., et al. In: Sponsored by Member Countries of the International Energy Agency, eds. Proceeding of the International Conference on Coal Science. Tokyo: September 1989: 257.
    [96] Thomas C.G., Shibaoka M., Gawronski E., et al. In: Sponsored by Member Countries of the International Energy Agency, eds. Proceedings of the International Conference on Coal Science. Tokyo: September 1989: 213.
    [97] Milligan J.B., Thomas K.M., Crelling J.C. Temperature-programmed combustion studies of coal and maceral group concentrates[J]. Fuel, 1997, 76(13): 1249-1255.
    [98] Choudhury N., Biswas S., Sarkar P., et al. Influence of rank and macerals on the burnoutbehaviour of pulverized Indian coal[J]. International Journal of Coal Geology, 2008, 74(2): 145-153.
    [99] Choudhury N., Boral P., Tandra Mitra, et al. Assessment of nature and distribution of inertinite in Indian coals for burning characteristics[J]. International Journal of Coal Geology, 2007, 72(2): 141–152.
    [100] Biswas S., Choudhury N., Sarkar P., et al. Studies on the combustion behaviour of blends of Indian coals by TGA and Drop Tube Furnace[J]. Fuel Processing Technology, 2006, 87(3): 191-199.
    [1]周俊虎,平传娟,杨卫娟等.用热重红外光谱联用技术研究混煤热解特性[J].燃料化学学报, 2004, 32(6): 19-23.
    [2] Ochoa J., Cassanello M.C., Bonelli P.R., Cukierman A.L. CO2 gasification of Argentinean coal chars: a kinetic characterization[J]. Fuel Processing Technology, 2001, 74(3): 161–176.
    [3]谢克昌,赵明举,凌大琦.矿物质对煤焦表面性质和煤焦-CO2气化反应性的影响[J].燃料化学学报, 1990, 18(4): 316-323.
    [4] Takayuki Takarada, Yasukatsu Tamai, Akira Tomita. Reactivities of 34 coals under steam gasification[J]. Fuel 1985, 64(10):1438-1442.
    [5]姜秀民,李巨斌,邱健荣.超细化煤粉燃烧特性的研究[J].中国电机工程学报, 2000, 20(6): 71-74.
    [1]白向飞,李文华,陈文敏等.我国西部弱还原程度煤分布及煤质特征研究[J].煤炭学报, 2005, 30(4): 502-506.
    [2]舒新前,王祖讷,徐精求等.神府煤煤岩组分的结构特征及其差异[J].燃料化学学报,1996,24(5): 426-43.
    [3]段旭琴,王祖讷,曲剑午.神府煤惰质组与镜质组的结构性质研究[J].煤炭科学技术, 2004, 32(2):19-23.
    [4]郭崇涛.煤化学[M].北京:化学工业出版社, 1992: 73.
    [5]陈洪博.神东煤显微组分及加氢液化性能研究[D].北京:煤炭科学研究总院, 2005.
    [6] Hergert, L.H. Infrared spectra[M]. In: Sarkanen K.V., Ludwin C.H. Eds., Lignins. Wiley-Interscience, New York, 1974: 267-297.
    [7] Painter P.C., Starsinic M., Coleman, M.M. Determination of functional groups in coal by Fourier transform interferometry[C]. In: Ferraro, J.R., Basile, L.J. Eds., Fourier Transform Infrared Spectroscopy. Vol. 4. Academic Press, New York, 1985: 169–240.
    [8]李文华.东胜-神府煤的煤质特征与转化特性[D].北京:煤炭科学研究总院, 2001.
    [9]王俊宏,常丽萍,谢克昌.现代仪器分析方法在煤热解研究中的应用[J].现代化工, 2006, 26 (增刊2): 386-390.
    [10] Amalia Jiménez, M. JoséIglesias. Effect of the increase in temperature on the evolution of the physical and chemical structure of vitrinite[J]. Journal of Analytical and Applied Pyrolysis, 1999, 50(2): 117–148.
    [11] Lu L., Sahajwalla V., Kong C., et al. Quantitative X-ray diffraction analysis and itsapplication to various coals[J]. Carbon, 2001, 39(12):1821-1833.
    [12]谢克昌.煤的结构与反应性[M].北京:科学出版社, 2002: 285.
    [13]王超,王大庆,宋爱霞等.中、低角区煤的x射线衍射特点初探[J].湘潭矿业学院学报,1996,11(4): 62-66.
    [14] Lin Q., Guet J. M. Characterization of Coals and Macerals by X-ray Diffraction[J]. Fuel, 1990, 69(7): 821-825.
    [1]朱廷钰,汤忠,黄戒介等.煤温和气化特性的热重研究[ J ].燃料化学学报, 1999, 27 (5) : 420-423.
    [2]孙庆雷,李文,李保庆.神木煤显微组分热解特性和热解动力学[J].化工学报, 2002, 53(11): 1122-1127.
    [3] Das T.K. Evolution characteristics of gases during pyrolysis of maceral concentrates of Russian coking coals[J]. Fuel, 2001, 80(4): 489-500.
    [4]孙庆雷,李文,陈皓侃,李保庆.神木煤显微组分热解的TG-MS研究[J].中国矿业大学学报, 2003, 32(6): 664-669.
    [5] Gaveau B., Letolle R., Monthioux M. Evaluation of kinetic parameters from 13C isotopic effect during coal pyrolysis[J]. Fuel, 1987, 66(2): 228–231.
    [6] Galimov E.M. Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks[J]. Chemical Geology, 1988, 71(1-3): 77–95.
    [7]刘生玉.中国典型动力煤及含氧模型化合物在热解过程的化学基础研究[D].太原:太原理工大学, 2004.
    [8]白向飞,李文华,陈文敏等.我国西部弱还原程度煤分布及煤质特征研究[J].煤炭学报, 2005, 30(4): 502-506.
    [9] Artok L., Schobert H.H. Reaction of carboxylic acid under coal liquefaction condition. 1: Under nitrogen atmosphere[J]. Journal of Analytical and Applied Pyrolysis, 2000, 54(1-2): 215-233
    [10] Artok L., Schobert H.H. Reaction of carboxylic acid under coal liquefaction condition. 2: Under hydrogen atmosphere[J]. Journal of Analytical and Applied Pyrolysis, 2000,54(1-2): 235-246
    [11] Artok L., Erbatur O., Schobert H.H. Reaction of dinaphthyl and diphenyl ether at liquefaction condition[J]. Fuel Processing Technology, 1996, 47(2): 153-176.
    [12] JOSéV. IBARRA, EDGAR MU?OZ, RAFAEL MOLINER. FTIR study of the evolution of coal structure during the coalification process[J]. Organic Geochemistry, 1996, 24(6/7): 725-735.
    [13] Li X, Matuschek G, Herrera M, et al. Investigation of pyrolysis of Chinese coals using thermal analysis/mass spectrometry[J]. Journal of Thermal Analysis and Calorimetry, 2003, 71(2): 601-612.
    [14]常丽萍.煤热解、气化过程中含氮化合物的生成与释放研究[D].太原:太原理工大学, 2004.
    [15]林建英.煤及煤岩显微组分热解、气化过程中氮的迁移机理[D].太原:太原理工大学, 2006.
    [16] Hu H., Zhou Q., Zhu S., et al. Product distribution and sulfur behavior in coal pyrolysis[J]. Fuel Processing and Technology, 2004, 85(8-10): 849-861.
    [1] Sun Q., Li W., Chen H., et al. The CO2-gasification and kinetics of Shenmu maceral chars with and without catalyst[J]. Fuel, 2004, 83(13): 1787-1793.
    [2] Wu S., Gu J., Li L., et al. The reactivity and kinetics of Yanzhou coal chars from elevated pyrolysis temperatures during gasification in steam at 900-1200°C[J]. Process Safety and Environmental Protection, 2006, 84(6): 420–428
    [3] Roberts D.G., Harris D.J. Char gasification in mixtures of CO2 and H2O: Competition and inhibition[J]. Fuel, 2007, 86(17-18): 2672–2678.
    [4] Raymond C. Everson, Hein W.J.P. Neomagus, Henry Kasaini, et al. Reaction kinetics of pulverized coal-chars derived from inertinite-rich coal discards: Gasification with carbon dioxide and steam[J]. Fuel, 2006, 85(7-8):1076-1082.
    [5] Shiro Kajitani, Nobuyuki Suzuki, Masami Ashizawa, et al. CO2 gasification rate analysis of coal char in entrained flow coal gasifier[J]. Fuel, 2006, 85(2): 163–169.
    [6]张永发,谢克昌,凌大琦.显微组分焦样的CO2气化动力学和表面变化[J].燃料化学学报, 1991, 19(4): 359-364.
    [7] Messenb?ck R.C., Dugwell D.R., Kandiyotir. CO2 and steam-gasification in a high-pressure wire-mesh reactor: The reactivity of Daw Mill coal and combustion reactivity of its chars[J]. Fuel, 1999, 78(7):781-793.
    [8] Yeasmin H., Mathews J.F., Outyang S. Rapid devolatilisation of Yallourn brown coal at high pressures and temperatures[ J]. Fuel, 1999, 78(1):11-24.
    [9]杨松华,赵庆杰,史占彪.加热速度对煤气化反应性影响的机理[J].东北大学学报(自然科学版), 1998, 19(3): 221-223.
    [10] Cetin E., Moghtaderi B., Gupta Retal. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars[J]. Fuel, 2004, 83(16): 2139-2150.
    [11] Arenillas A., Rubiera F., Parra J. Bet, et al. Influence of char structure on reactivity andnitric oxide emissions[J]. Fuel Processing Technology, 2002, 77-78:103-109.
    [12]徐秀峰,崔洪,朱珍平等. TPR法研究煤焦-CO2气化反应(Ⅰ):碳化条件和掺加金属催化剂对气化反应性的影响[J].煤化工, 1996, (3): 37-41.
    [13]徐秀峰,崔洪,顾永达等.煤焦制备条件对其气化反应性的影响[J].燃料化学学报, 1996, 24(5): 404-410.
    [14]周静,龚欣,于遵宏.气流量和煤样粒度对煤焦-CO2气化反应的影响[J].煤炭转化, 2003, 26(2): 34-38.
    [15] Bhatia S.K., Gupta J.S. Mathematical modelling of gas-solid reactions: effect of pore structure[J]. Reviews in Chemical Engineering, 1992, 8(3–4):177-258.
    [16] Kwon T.W., Kim S.D., Fung D.P.C. Reaction kinetics of char-CO2 gasification[J]. Fuel, 1988, 67(4): 530-535.
    [17]谢克昌.煤的结构与反应性[M].北京:科学出版社, 2002: 307-309.
    [18] Liu G.S., Tate A.G., Bryant G.W., et al. Mathematical modeling of coal char reactivity with CO2 at high pressures and temperatures[J]. Fuel 2000, 79(10): 1145-1154.
    [19] Hampartsoumian E., Murdoch P.L., Pourkashanian M., et al. The reactivity of coal chars gasified in a carbon dioxide environment[J]. Combustion Science and Technology, 1993, 92(1-3): 105-121.
    [1]顾文卿主编.煤炭气化液化新工艺新技术与质量检验检测标准规范实务全书[M].银川:宁夏大地出版社, 2005: 217.
    [2] Pisupati S.V. An examination of burning profiles as a tool to predict then combustion behaviour of coals. American Chemical Society, Division of Fuel Chemistry, 1996, 41(1): 13–18.
    [3] Biswas S., Choudhury N., Sarkar P., et al. Studies on the combustion behaviour of blends of Indian coals by TGA and Drop Tube Furnace[J]. Fuel Processing Technology, 2006, 87(3): 191–199.
    [4] Folgueras M.B., Déaz R.M., Xiberta J., et al. Thermogravimetric analysis of the co-combustion of coal and sewage sludge[J]. Fuel, 2003, 82(15-17): 2051–2055.
    [5]武增华,许玲.用热分析法研究煤的燃烧特性[J].化学世界, 1996,增刊, 195-197.
    [6] Alonso M.J.G., Borrego A.G., Alvarez D., et al. Physicochemical transformations of coal particles during pyrolysis and combustion[J]. Fuel, 2001, 80(13):1857–1870.
    [7] Richard W. Bryers. Investigation of the reactivity of macerals using thermal analysis[J]. Fuel Processing Technology, 1995, 44(1-3): 25-54.
    [8] Kathy E. Benfell, Basil B. Beamish, Peter J. Crosdale, et al. Combustion behaviour of Bowen Basin coals[J]. Fuel Processing Technology, 1999, 60(1): 1–14.
    [9] Choudhury Nandita, Boral P., Mitra Tandra, et al. Assessment of nature and distribution of inertinite in Indian coals for burning characteristics[J]. International Journal of Coal Geology, 2007, 72(2): 141-152.
    [10]周静,何品晶,于遵宏.用热失重仪研究煤快速热解[J].煤炭转化, 2004, 27(2): 30-36.
    [11]岑可法.高等燃烧学[M].杭州:浙江大学出版社, 2002: 255-259.
    [12] Man C.K., Jacobs J., Gibbins J.R. Selective maceral enrichment during grinding and effect of particle size on coal devolatilisation yields[J]. Fuel Processing Technology, 1998, 56(3): 215–227.
    [13] Gurgel Veras C.A., Saastamoinen J., Carvalho J.A. Jr., et al. Overlapping of the devolatilization and char combustion stages in the burning of coal particles[J]. Combustion and Flame, 1999, 116(4): 567-579.
    [14]孙学信.燃煤锅炉燃烧试验技术与方法[M].北京:中国电力出版社, 2001.
    [15]李春柱,谢克昌,凌大琦.影响煤焦反应性的因素分析[J].煤化工, 1988, (1): 32-43.
    [16]吕学珍,黄瀛华,颜涌捷等.煤的快速热解焦燃烧气化特性[J].华东理工大学学报, 1996, 22(2): 136-141.
    [17] Thomas C.G., Gosnell M.E., Gawronski E., et al. The behaviour of inertinite macerals under pulverized fuel (pf ) combustion conditions[J]. Organic Geochemistry, 1993, 20(6): 779–788.
    [18] Borrego A.G., Alvarez D., Menendez R. Effects of inertinite content in coal on char structure and combustion[J]. Energy & Fuels, 1997, 11(3): 702–708.
    [19] Choudhury N., Biswas S., Sarkar P., et al. Influence of rank and macerals on the burnout behaviour of pulverized Indian coal[J]. International Journal of Coal Geology, 2008, 74(2): 145-153.
    [20] ICCP. The new inertinite classification (ICCP System 1994)[J]. Fuel, 2001, 80(4): 459-471.
    [21] Milligan J.B., Thomas K.M., Crelling J.C. Temperature-programmed combustion studies of coal and maceral group concentrates[J]. Fuel, 1997, 76(13):1249-1255.
    [22] Das T.K. Thermogravimetric characterisation of maceral concentrates of Russian coking coals[J]. Fuel, 2001, 80(1): 97-106.
    [1]谢克昌.煤的结构与反应性[M].北京:科学出版社, 2002: 16-21, 356.
    [2]谢克昌,凌大琦.煤的气化动力学和矿物质的作用[M].太原:山西科学教育出版社, 1990: 303-314.
    [3] Liu Q., Hu H., Zhou Q., et al. Effect of inorganic matter on reactivity and kinetics of coal pyrolysis[J]. Fuel, 2004, 83: 713-718.
    [4] Kosminski A., Ross D.P., Agnew J.B. Influence of gas environment on reactions between sodium and silicon minerals during gasification of low-rank coal[J]. Fuel Processing Technology, 2006, 87: 953-962.
    [5] Suphi Ural. Quantification of crystalline (mineral) matter in some Turkish coals using interactive Rietveld-based X-ray diffractometry[J]. International Journal of Coal Geology, 2007, 71(1-2): 176-184.
    [6] Lazaro M.J., Moliner R., Suelves I. Non-isothermal versus isothermal technique to evaluate kinetic parameters of coal pyrolysis[J]. Joural of Analytical and Applied Pyrolysis, 1998, 47(2): 111-125.
    [7]朱廷钰,刘丽鹏,王洋,黄戒介.氧化钙催化煤温和气化研究[J].燃料化学学报, 2000, 28(1): 36-39.
    [8] Hayashi Jun-Ichiro, Iwatsuki Masahiro, Morishita Kayoko, et al. Roles of inherentmetallic species in secondary reactions of tar and char during rapid pyrolysis of brown coals in a drop-tube reactor[J]. Fuel, 2002, 81: 1977–1987.
    [9]卫小芳.碱金属对煤热解气化反应的影响及其变迁规律[D].山西:中国科学院研究生院博士学位论文, 2008.
    [10] Thomas C.G., Gosnell M.E., Gawronski E., et al. The behaviour of inertinite macerals under pulverized fuel (pf) combustion conditions[J]. Organic Geochemistry, 1993, 20(6): 779–788.
    [11] Borrego A.G., Alvarez D., Menendez R. Effects of inertinite content in coal on char structure and combustion[J]. Energy & Fuels, 1997, 11(3): 702–708.
    [12] Ma B.G., Li X.G., Xu L., et al. Investigation on catalyzed combustion of high ash coal by thermogravimetric analysis[J]. Thermochimica Acta, 2006, 445(1): 19–22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700