用户名: 密码: 验证码:
过渡金属(Mn、Cu)掺杂纳米晶的制备和光电子性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子点由于其发光效率高、稳定性好及发射光波长易于调控等特点在生物荧光标记、生物芯片、光电子器件、太阳能电池等应用上发挥出越来越大的潜能。过渡金属掺杂的ZnS/ZnSe量子点在基质选择上迎合了绿色环保的要求,同时相对于非掺杂量子点它具有零自吸收,更好的光化学稳定性,更宽的发射光谱范围等特点而得到广泛的关注。本论文利用高温分解法和飞秒激光消融法制备了高效的稳定的过渡金属(Mn、Cu)掺杂的半导体纳米晶(ZnSe:Cu/Mn、ZnS:Cu/Mn),对纳米晶的生长动力学和发光机理进行了深入的研究。在量子点的制备、光电子性质研究中获得如下创新性的研究结果:
     1.用高温分解法中的成核掺杂方式可重复地合成发光效率高达40-50%的单分散的MnS/ZnS核壳(或者称为ZnS:Mn)量子点。通过分析MnS晶核的大小以及ZnS壳层厚度对量子点发光效率的影响,得到比较小MnS晶核和充分扩散的扩散层以及足够厚的ZnS壳层是制备高发光效率的ZnS:Mn纳米晶的必要条件。另一方面,我们通过生长掺杂方式制备了发光效率达10%的Cu掺杂的ZnSe量子点。对合成过程中的关键因素进行了初步的讨论。
     2.用成核掺杂方式可控的制备出不同壳层厚度的MnS/ZnS量子点,利用光致发光光谱和荧光衰减光谱研究了量子点的壳层依赖的发光机制。得到发光效率随壳层厚度的增加而明显增加的主要原因是量子点中的ZnS基质到Mn离子的能量传递效率提高和处于激发态的Mn离子的非辐射复合率降低这两方面因素引起。实验结果表明,通过控制量子点的壳层厚度可以实现量子点质量优化。
     3.通过对不同壳层厚度的量子点在不同温度下进行热处理,分析影响Mn离子扩散的因素,进而推导在纳米粒子生长过程中Mn离子的扩散机制。实验结果表明,当热处理温度高于220℃时,从荧光淬灭和发光寿命变短证明了Mn离子在热处理过程中由纳米晶的内部扩散到表面。这种扩散在量子点壳层比较薄的时候容易进行,并随热处理温度升高而加快。进而我们推测在纳米晶的生长过程中,Mn离子的扩散主要发生在最初包覆比较薄的ZnS壳层的过程中。基于上面关于扩散过程的推测优化实验路线,制备出高效的量子点,证明了对扩散过程分析的正确性。
     4.对所制备的量子点通过表面配体交换实现由油相到水相的转换,得到发光效率达到30%的水溶性MnS/ZnS量子点。分析了配体交换过程对不同壳层厚度的量子点的发光效率的影响并对其做出合理的解释。把其应用于生物荧光标记,实验证明水溶性量子点表面具有可与生物分子偶联的功能化基团,并适合用于生物学检测。
     5.用飞秒激光消融法制备了分散性好的水溶的ZnS:Cu量子点。据我们文献调研所知,这是首次利用激光直接消融掺杂的体相靶材料来制备掺杂量子点。利用X-Ray衍射谱(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)、紫外可见吸收光谱(Uv-Vis)、荧光光谱(PL)、荧光衰减光谱等表征方法证明,制备的ZnS:Cu纳米晶具有跟靶材料一样的闪锌矿结构并观测到来自Cu杂质能级的发光,而且所制备的量子点尺寸随着激光功率密度的增加而减少。
Semiconductor nanocrystals (NCs) have been widely studied for their fundamental properties and applications, mostly as tunable emitters for biomedical labeling, light emitting diodes, lasers, and sensors. Despite their apparent advantages versus organic dyes, the intrinsic toxicity of cadmium has casted a doubtful future for this promising field. Zinc chalcogenide doped with transition metal ions may generate a cadmium-free nanocrystal emitter and the large ensemble Stokes shift can avoid the reabsorption or the self-absorption process and make the system ideal for different optical applications. We synthesized stable, small, efficient transition metal ions doped Zinc chalcogenide quantum dots by femtosecond laser ablation as well as nucleation-doping strategy. We study on their growth kinetics and luminescent property. The original works are organized as follows:
     1. We synthesized MnS/ZnS core/shell quantum dots (QDs) or called ZnS:Mn QDs via hot solution phase chemistry using nucleation-doping strategy. Efficient PL of Mn ions in the QDs with quantum yield (QY) of about 40-50% is demonstrated in the resulting QDs. The experimental results indicated that highly efficient luminescent ZnS:Mn NCs could be obtained by controlling the diffusion of Mn ions into the ZnS shell via annealing the core/shell NCs and using small sized MnS cores In addition, we also prepared ZnSe:Cu QDs with the PL QY=10% using growth-doping strategy.
     2. We studied the mechanism of photoluminescence (PL) from MnS/ZnS core/shell QDs synthesized using nucleation-doping strategy. The experimental results indicate that the mechanism for improving the PL QY in MnS/ZnS QDs with thick ZnS shell can be understood in terms of significantly enhanced energy transfer from the ZnS shell to Mn ions and slightly decreased nonradiative relaxation rate from Mn ions to surface states/traps of the ZnS shell by the surface passivation of the QDs with a thick ZnS shell.
     3. We studied the diffusion of Mn ions in MnS/ZnS nanocrystals by steady-state and time-resolved photoluminescence spectroscopy. Based on the evolution of the Mn dopant photoluminescence (PL) and its lifetime, we confirmed that the Mn ions can diffuse to the surface of the ZnS shell from the MnS core under long annealing at the temperature above 220°C, resulting in a decrease in PL QY and lifetime. It is found that the diffusion process at the initial growth of the ZnS shell is a key factor for the interface layer between the MnS core and ZnS shell, thus determine the quality of the obtained nanocrystals. We thus modified the synthesis procedure as follows to obtain highly efficient luminescent MnS/ZnS QDs: growing a thin ZnS shell on a small sized MnS core at low temperature, annealing the resulting NCs for effectively diffusing Mn ions into the ZnS shell at high temperature to form a ZnS:Mn diffusion layer, and overcoating a thicker ZnS shell as a passivating layer.
     4. The ligand exchange of the MnS/ZnS QDs was carried out to transfer the QDs into a water solution by using mercaptopropionic acid for biomedical applications. Recognition of a biotin pattern by QDs conjugated with avidine was carried out to illustrate the suitability of these efficient, stable, small, and water soluble QDs as biomedical labeling reagents.
     5. We prepared Cu-doped ZnS (ZnS:Cu) QDs in de-ionized water by femtosecond laser ablation of a bulk ZnS:Cu target. The obtained QDs exhibit good colloidal stability and water solubility, showing narrow and symmetric Cu-related emission. The mean size of the quantum dots varies from 2.1 to 4.0 nm by changing the laser fluence, resulting in a redshift of the emission peak from 375 to 400 nm. The experimental results demonstrate that femtosecond laser ablation is an effective method for preparing doped QDs.
引文
[1]Esaki L,Tsu R.Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Develop.,1970,14:61-65.
    [2]Ekimov A I, Onushchenko A A. Quantum size effect in 3-dimensional microscopic semiconductor crystals[J]. JETP Lett. ,1981, 34:345–349.
    [3] Efros Al L, Efros A L.Interband absorption of light in a semiconductor sphere[J]. Soviet Phys. Semiconductors–USSR, 1982, 16:772–775.
    [4]Muhammed M,Rao K,Kear B. Book of Abstracts of Fourth International Conference on Nanostructured Materials[C] (Stockholm, Sweden, 1998, 159-190).
    [5]Roco M C,Williams R S,Alivisatos P. Nanotechnology Research Dirctions[M]. Kluwer Academic Publishers. 2001.
    [6] Eberl K. Physics World. 1997, 47.
    [7] Klasens H A. On the nature of fluorescent centers and traps in zinc sulfide[J]. J. Electrochem. Soc., 1953, 100:72-80.
    [8] Lambe J and Klick C C. Model for luminescence and photoconductivity in the sulfide[J]. Phys. Rev, 1955, 98:909-914.
    [9] Prener J S and Williams F E. Associated Donor-Acceptor Luminescent Centers[J]. Phys. Rev.,1956, 101:1427-1427.
    [10] Becker W G and Bard A J. Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions[J].J. Phys. Chem.,1983, 87 :4888-4893.
    [11] Bhargava R N, Gallagher D, Hong X, Nurmikko A. Optical Properties ofManganese-Doped Nanocrystals of Zinc Sulfide[J]. Phys. Rev. Lett., 1994, 72: 416–419.
    [12] Murase N, Jagannathan R, Kanematsu Y, Watanabe M, Kurita A, Hirata K, Yazawa Tand Kushida T. Fluorescence and EPR Characteristics of Mn2+-Doped ZnS Nanocrystals Prepared by Aqueous Colloidal Method[J]. Journal of Physical Chemistry B, 1999,103:754-760.
    [13] Khosravi A A , Kundu M, Jatwa L, Deshpande S . Bhagwat U A, Sastry M and Kulkarni S K, Green luminescence from copper doped zinc sulphide quantum particles[J]. Applied Physics Letters, 1995, 67:2702-2704.
    [14] Que Wenxiu, Zhou Y, Lam Y L, Chan Y C, Kam C H, Liu B, Gan L M, Chew C H, Xu G Q, Chua S J, Xu S J and Mendis F V C. Photoluminescence and electroluminescence from copper doped zinc sulphide nanocrystals/polymer composite[J]. Applied Physics Letters, 1998, 73:2727-2729.
    [15] Chen Wei, Malm J-O, Zwiller V, Huang Y N, Liu S M , Wallenberg R, Bovin J-O and Samuelson L. Energy structure and fluorescence of Eu2+ in ZnS:Eu nanoparticles[J]. Physical Review B, 2000, 61:11021-11024.
    [16] Kushida T, Kurita A, Watanabe M, Kanematsu Y, Hirata K, Okubo N and Kanemitsu Y. Optical properties of Sm-doped ZnS nanocrystals[J]. Journal of Luminescence, 2000, 87-89:466-468.
    [17] Soo Y L , Huang, S W Ming Z H, Kao Y H, Smith G C, Goldburt E, Hodel R, Kulkarni B, Veliadis J V D and Bhargava R N, X-ray excited luminescence and local structures in Tb-doped Y2O3nanocrystals[J]. Journal of Applied Physics, 1998, 83:5404-5409.
    [18] Sun L D, Yao J, Liu C H, Liao C S and Yan C H. Rare earth activated nanosized oxide phosphors:synthesis and optical properties[J]. Journal of Luminescence, 2000, 87-89:447-450.
    [19] Alivisatos A P. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals[J]. J. Phys. Chem., 1996, 100:13226-13239.
    [20]Wang Y and Herron N.Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties[J]. J. Phys. Chem., 1991, 95:525-532.
    [21] Peng X G, Schlamp M C, Kadavanich A V, and.Alivisatos A P . Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility[J].J.Am.Chem.Soc.,1997,119:7019-7029.
    [22] Hines M A and Guyot-Sionnest P. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals[J]. J. Phys. Chem.,1996, 100:468-471.
    [23] Song K K and Lee S, Highly luminescent (ZnSe)ZnS core-shell quantum dots for blue to UV emission: synthesis and characterization. Curr. Appl. Phys., 2001, 1: 169-173.
    [24] Yang H and Holloway P H. Efficient and Photostable ZnS-Passivated CdS:Mn Luminescent Nanocrystals[J]. Adv. Funct. Mater, 2004, 14:152-156.
    [25]李义和,王本根,傅圣利等.掺杂ZnS半导体纳米微晶材料的研究进展[J].化学研究与应用, 2000, 12:5-8.
    [26] Suyver J F, Wuister S F, Kelly J J and Meijerink A. Luminescence of nanocrystalline ZnSe:Mn2+[J]. Phys. Chem. Chem. Phys., 2000, 2:5445-5448.
    [27] Norris D J, Yao N, Charnock F T, Kennedy T A. High-Quality Manganese-Doped ZnSe Nanocrystals[J]. Nano Lett., 2001, 1:3–7.
    [28] Erwin S C, Zu L J, Haftel M I, Efros A L, Kennedy T A, Norris D J. Doping semiconductor nanocrystals[J]. Nature, 2005, 436:91-94.
    [29] Yang Y G, Chen O, Angerhofer A, Cao Y C. Radial-Position-Controlled Doping in CdS/ZnS Core/Shell Nanocrystals[J]. J. Am. Chem. Soc., 2006, 128:12428-12429.
    [30] Pradhan N, Goorskey D, Thessing J, Peng X G. An Alternative of CdSe Nanocrystal Emitters: Pure and Tunable Impurity Emissions in ZnSe Nanocrystals[J]. J. Am. Chem. Soc. ,2005, 127: 17586–17587.
    [31] Pradhan N, Peng X G.Efficient and Color-Tunable Mn-Doped ZnSe NanocrystalEmitters: Control of Optical Performance via Greener Synthetic Chemistry[J]. J. Am. Chem. Soc.,2007, 129:3339-3347.
    [32] Chen D G, Viswanatha R J, Ong G L, Xie R G, Balasubramaninan M, Peng X G. Temperature Dependence of“Elementary Processes”in Doping Semiconductor Nanocrystals [J]. J. Am. Chem. Soc., 2009, 131:9333-9339.
    [33] Zheng J J, Yuan X, Ikezawa M, Jing P T, Liu X Y, Zheng Z H, Kong X G., Zhao J J. Masumoto Y, Efficient Photoluminescence of Mn2+ Ions in MnS/ZnS Core/Shell Quantum Dots[J]. J. Phys. Chem. C., 2009, 113:16969-16974.
    [34] Zeng R, Rutherford M,Xie R, Zou B, Peng X Synthesis of Highly Emissive Mn-Doped ZnSe Nanocrystals without Pyrophoric Reagents [J]. Chem. Mater., 2010,22(6) :2107-2113
    [35] Turnbull D. Formation of Crystal Nuclei in Liquid Metals[J]. J. Appl. Phys., 1950, 21:1022-1028.
    [36] Mikulec F V, Kuno M, Bennati M, Hall D A, Griffin R G and Bawendi M G. Organometallic Synthesis and Spectroscopic Characterization of Manganese-Doped CdSe Nanocrystals[J]. J. Am. Chem. Soc., 2000, 122:2532-2540.
    [37] Dalpian G M, Chelikowsky J R. Self-Purification in Semiconductor Nanocrystals[J]. Phys. Rev. Lett.,2006, 96:226802-226805.
    [38] Jamil N Y, Shaw D.The diffusion of Mn in CdTe. Semicond[J]. Sci. Technol., 1995, 10:952-958.
    [39] Bruchez M J, Moronne M, Gin P, Weiss S, Alivisatos A P. Semiconductor Nanocrystals as Fluorescent[J] . Biological Labels Science, 1998, 281:2013-2016.
    [40] Chan W C, Nie S. Quantum Dot Bioconjugates for Uhrasensitire Nonisotopic Detection[J]. Science, 1998, 281:2016–2018.
    [41] Dubertret B, Skourides P, Norris D J, Noireaux V, Brivanlou A H, Libchaber . In vivo imaging of quantum dots encapsulated in phospholipids micelles[J]. Science, 2002, 298:1759-1762.
    [42] Dabbousi B O, Rodriguea-Viejo J, Mikulec F V, Heine J R, Mattouddi H, Ober R, Jenden K F and Bawendi M G. (CdSe)ZnS Core?Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites[J]. J. Phys. Chem. B, 1997,101:9463-9475.
    [43] Uren R F. Cancer surgery joins the dots[J]. Nature Biotechol. ,2004, 22:38-39.
    [44] Kim S, Lim Y T, Soltesz E G, De Grand A M, Lee J, Nakayama A, Parker J A, Mihaljevic T, Laurence D M, Cohn L H, Bawendi M G, Frangioni J V. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping[J]. Nature Biotechnol., 2003, 22:93-97.
    [45] Hines M A,Guyotsionnest P.Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals[J].J.Phys.Chem.,1996,100:468-471.
    [46] Peng Z A,Peng X G. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor[J].J.Am.Chem.Soc.,2001,123:183—184.
    [47] Akerman M E ,Chan W C, Laakkonen P. Nanocrystal targeting in vivo [J]. Proc.Nat. Acad.Sci. U S A., 2002, 99(20):12617-12621.
    [48] Uren R F. Cancer surgery joins the dots[J]. Nature Biotechol, 2004, 22: 38-39.
    [49] Mattoussi H,et al. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein[J].J. Am. Chem. Soc., 2000, 122:12142-12150.
    [50] Goldman E R, Anderson G P,Tran P T, et al. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays[J]. Anal.Chem., 2002, 74:841-847.
    [51] Goldman E R, Balighian E D, Mattoussi H. Avidin: a natural bridge for quantum dot antibody conjugates[J]. J. Am. Chem. Soc., 2002, 124:6378-6382.
    [52] Gerion D, Parak W J, Williams S C, et al. Sorting fluorescent nanocrystals with DNA[J].J.Am.Chem.Soc., 2002, 124:7070-7074.
    [53] Mitchell G P,Mirkin C A ,Letsinger R L. Programmed assembly of DNA functionalized quantum dots[J]. J.Am.Chem.Soc., 1999, 121:8122-8123.
    [54] Abileah A, Harkonen K, Pakkala A ,Smid G. Transparent Electroluminescent (EL) Diplays, Planar Systems: Beaverton, OR,2008.
    [55] Wood V, Halpert J E, Panzer M J, Bawendi M J, Bulovic V.Alternating Current Driven Electroluminescence from ZnSe/ZnS:Mn/ZnS Nanocrystals[J]. Nano Lett.,2009, 9 (6):2367-2371.
    [56] Yang H S, Holloway P H, Ratna B B. Photoluminescent and electroluminescent properties of Mn-doped ZnS nanocrystals[J]. J. Appl. Phys.,2003, 93:586-592.
    [57]Arnim H.Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles [J],Chem.Rev.,1989,89(8) :1861-1873.
    [58]Brus L.Luminescence of silicon materials:chains,sheets, nanocrystals, nano-wires,microcrystals,and porous silicon[J],J.Phys.Chem.,1994,53(14) :465-474.
    [59]Alivisatos A P.Semiconductor Clusters, Nanocrystals, and Quantum Dots[J]. Science,1996,271:933-937.
    [60]Alivisatos A P. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals[J].J.Phys.Chem.,1996,100(31) :13226-13239.
    [61]Steigerwald M L,Brus L E. Semiconductor crystallites: a class of large molecules[J]. Acc.Chem.Res.,1990,23(6):183-188.
    [62]Wang Y,Herron N,Mahler W,Suna A. Linear- and nonlinear-optical properties of semiconductor clusters[J].J.Opt.Soc.Am.B ,1989,6(4):808-813.
    [63]Brus L E.Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state [J].J.Chem.Phys,1984,80:4403-4409.
    [64]Mattila M,Hakkarainen T,Lipsanen H, Jiang H and Kauppinen E I. Enhanced luminescence from catalyst-free grown InP nanowires[J].Appl. Phys. Lett.,2007, 90:033101-033103.
    [65]Murray C B,Norris D B,Bawendi M G. Synthesis and characterization of nearly monodisperse CdE semiconductor nanocrystallites[J].J.Am.Chem.Soc.,1993,115(19) :8706-8715.
    [66] Becerra L R,Murray C B,Griffin R G, Bawendi M G. Investigation of the surface morphology of capped CdSe nanocrystallites by 31P nuclear magnetic resonance [J].J.Phys.Chem.,1994,100:3297-3300.
    [67] Chakoumakos B C, Loong C -K and Schultz A J.Low-Temperature Structure and Dynamics of Brucite[J].J.Phys.Chem.B ,1997,101:9458–9462.
    [68] M.J.福克等.实用场致发光学.北京:科学出版社1978,56-68.
    [69] Shionoya S and Yen W M, William. Phosphor Handbook[M]. New York:CRC Press,2000,169-173.
    [70] Klasens H A,Zahm P and Huysman F O, Philips Res. Repts., 1953, 8:441-446.
    [71] Narita K. Energy Spectrum of Mn++ Ion in Calcium Fluorophosphate[J]. J. Phys. Soc. Jpn., 1961, 16:99-105.
    [72] Stevels A L N.Red Mn-luminescence in hexagonal aluminates[J].J. Lumin., 1979, 20:99-109.
    [73] Ryan F M and Vodoklys F M.The optical properties of Mn2+in calcium halophosphate phosphor[J]. J. Electrochem. Soc., 1971, 118:1814-1819.
    [74]Mitsuo Y, Yuki M, Sakuta S, Nobuhiro K and keiko K, Radiative and nonradiative decay processes responsible for long-lasting phosphorescence of Eu2+-doped barium silicates[J], Phys. Rev. B, 2005, 71:205102-205106.
    [75]赵敏光.晶体场和电子顺磁共振理论,北京:科学出版社.1991,125-129.
    [76] Artemyev M V, Woggon U, Wannemacher R, et al. Light Trapped in a Photonic Dot: Microspheres Act as a Cavity for Quantum Dot Emission[J].Nano Lett.,2001, 1:309-314.
    [77] Klimov V I, Mikhailovsky A A, Xu S, et al. Optical gain and stimulated emission in nanocrystal quantum dots[J]. Science, 2000, 290:314-317.
    [78] Lee J, Sundar V C, Heine J R, et al. Full color emission from II-VI semiconductor quantum dot-polymer composites[J]. AdV Mater. 2000, 12:1102-1105.
    [79] Schlamp M C, Peng X G, Alivisatos A P. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer[J]. J Appl Phys., 1997, 82:5837-5842.
    [80] Yang D, Xu S, Chen Q. Applications of Quantum Dots to Biological Probes[J]. Spectroscopy and Spectral Analysis, 2008, 27:1807-1810.
    [81] Qu L, Peng X. Control of Photoluminescence Properties of CdSe Nanocrystals in Growth[J]. J Am Chem Soc., 2002, 124:2049-2055.
    [82] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites [J].J. Am. Chem. Soc., 1993,115:8706-8715.
    [83] Hines M A, Guyot-Sionnest P. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals [J]. J. Phys. Chem., 1996, 100:468-471.
    [84] Colvin V L,Schlamp M C, Alivisatos A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature,1994, 370:354-357.
    [85] Klimov V I, Mikhailovsky A A, Xu S, Malko A, Hollingsworth J A,Leatherdale C A, Eisler H, Bawendi M G. Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots [J].Science,2000, 290:314-317.
    [86] Lee J, Sundar V C, Heine J R, Bawendi M G. AdV. Mater.,2000,12: 1102-1105.
    [87] Norris D J, Yao N, Charnock F T,Kennedy T A. High-Quality Manganese-Doped ZnSe Nanocrystals[J]. Nano Lett.,2001, 1(1) :3-7.
    [88] Mikulec F V , Kuno M, Bennati M, Hall D A ,Griffin R G,Bawendi M G. Organometallic Synthesis and Spectroscopic Characterization of Manganese-Doped CdSe Nanocrystals[J]. J. Am. Chem. Soc., 2000, 122(11):2532-2540.
    [89] Zeng R, Rutherford M,Xie R, Zou B, Peng X Synthesis of Highly Emissive Mn-Doped ZnSe Nanocrystals without Pyrophoric Reagents [J]. Chem. Mater., 2010,22(6) :2107-2113
    [90]Lippens E,Lannoo M. Calculation of the band gap for small CdS and ZnS Crystallites[J]. Phys. Rev. B, 1989,39:10935-10942.
    [91]Aldana J,Wang Y A, Peng X. Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols[J] J. Am. Chem. Soc., 2001,123:8844-8850.
    [92]Pradhan N,Battaglia D M,Liu Y, Peng X. Efficient, Stable, Small, and Water-Soluble Doped ZnSe Nanocrystal Emitters as Non-Cadmium Biomedical Labels[J]. Nano Lett., 2007,7:312–317.
    [93]Brus L E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites[J]. J. Chem. Phys., 1983。79:5566-5571.
    [94] Quan Z W,Wang Z L,Yang P P,Lin J, Fang J Y. Multicolor Tuning of Manganese-Doped ZnS Colloidal Nanocrystals[J]. Inorg. Chem.,2007,46:1354-1360.
    [95] Cao L X,Zhang J H,Ren S L,Huang S H. Luminescence enhancement of core-shell ZnS:Mn/ZnS nanoparticles[J]. Appl. Phys. Lett.,2002,80:4300-4302.
    [96]Peng X G, Schlamp M C , Kadavanich A V, Alivisatos A P. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility[J]. J. Am. Chem. Soc., 1997,119:7019-7029.
    [97]Karar N, Chander H, Shivaprasad S M. Enhancement of luminescent properties of ZnS:Mn nanophosphors by controlled ZnO capping[J]. Appl. Phys. Lett., 2004,85:5058-5060.
    [98]Yang H, Holloway P H. Efficient and Photostable ZnS-Passivated CdS:Mn Luminescent Nanocrystals[J]. AdV. Funct. Mater., 2004,14:152-156.
    [99] Qian L, Bera D, Holloway P. Photoluminescence from ZnS/CdS:Mn/ZnS quantum well quantum dots[J]. Appl. Phys. Lett., 2008,92:093103-093105.
    [100]Yang Y G, Chen O, Angerhofer A, Cao Y. Radial-Position-Controlled Doping of CdS/ZnS Core/Shell Nanocrystals: Surface Effects and Position-DependentProperties[J]. Chem.Eur. J.,2009, 15,13:3186-3197.
    [101]Chen W,Sammynaiken R,Huang Y N,Malm J O,Wallenberg R,Bovin J O,Zwiller V, Kotov N A. Crystal field, phonon coupling and emission shift of Mn2+ in ZnS:Mn nanoparticles[J]. J. Appl. Phys., 2001,89:1120-1129.
    [102]Ithurria S,Guyot-Sionnest P,Mahler B, Dubertret B. Mn2+ as a Radial Pressure Gauge in Colloidal Core/Shell Nanocrystals[J]. Phys. ReV. Lett.,2007(99) :265501
    [103]Chen W, Su F, Li G,Joly A G, Malm J -O, Bovin J -O . Temperature and pressure dependences of the Mn2+ and donor–acceptor emissions in ZnS:Mn2+ nanoparticles[J]. J. Appl. Phys., 2002,92:1950-1955.
    [104]黄昆.晶格驰豫.和多声子跃迁理论.物理学进展[M] 1981,1(1):31—84.
    [105]Chen W, Aguekian V F,Vassiliev N,Serov A Y, Filosofov N G. New Observations on the Luminescence Decay Lifetime of Mn2+ in ZnS:Mn2+ Nanoparticles[J]. J. Chem. Phys., 2005,123:124707-124781.
    [106]Su F H,Ma B S, Fan Z L,Ding K, Li G H, Chen W. Temperature behaviour of the orange and blue emissions in ZnS:Mn nanoparticles[J]. J. Phys.: Condens. Matter, 2002,14:12657.
    [107] Morello G,Anni M , Cozzoli P D, Manna L, Cingolani R .Giorgi M D. Picosecond Photoluminescence Decay Time in Colloidal Nanocrystals: The Role of Intrinsic and Surface States[J]. J. Phys. Chem. C, 2007,111:10541-10545.
    [108]Beaulac R, Archer P I,Ochsenbein S T,Gamelin D R. Mn2+-Doped CdSe Quantum Dots: New Inorganic Materials for Spin-Electronics and Spin-Photonics[J].AdV. Funct. Mater., 2008,18:3873-3891.
    [109]Jamil N Y, Shaw D. The diffusion of Mn in CdTe. Semicond[J]. Sci. Technol., 1995,10:952–958.
    [110]Pandey K C. Diffusion without vacancies or interstitials: a new concerted exchange mechanism[J]. Phys. Rev. Lett., 1986,57:2287–2290.
    [111]Foulkes W M C, Mitas L, Needs R J, Rajagopal G. Quantum minte-carlosimulations of solids[J]. ReV. Mod. Phys., 2001,73: 33–83.
    [112]Shaw D J.Introduction to Colloid and Surface Chemistry[M]. Butterworth- Heinemann: Oxford, U.K., 1992.
    [113]Zu L J, Norris D J, Kennedy T A, Erwin S C, Efros A L. Impact of Ripening on Manganese-Doped ZnSe Nanocrystals[J]. Nano Lett., 2006,6:334-340.
    [114] Pradhan N, Reifsnyder D, Xie R G, Aldana J, Peng X G.Surface Ligand Dynamics in Growth of Nanocrystals[J]. J. Am. Chem. Soc., 2007,129:9500–9509.
    [115]Jing P T, Zheng J J, Ikezawa M, Liu X Y, Lv S Z, Kong X G,Zhao J L, Masumoto Y. Temperature-Dependent Photoluminescence of CdSe-Core CdS/CdZnS/ZnS-Multishell Quantum Dots[J]. J. Phys. Chem. C, 2009,113:13545–13550.
    [116]Goede O, Heimbrodt W. Optical Properties of (Zn, Mn) and (Cd, Mn) Chalcogenide Mixed Crystals and Superlattices[J]. Phys. Status Solidi B, 1988,146:11-62.
    [117]孟宪赓,赵崇军,邱建荣.飞秒激光在金属纳米材料制备和材料微结构加工中的应用[M].激光与光电子学进展, 2004,41:48-52.
    [118] Gong W W, Zheng Z H, Zheng J J,Hu X B,Gao W. Water soluble CdS nanoparticles with controllable size prepared via femtosecond laser ablation[J]. J. Appl. Phys., 2007,102:064304-064307.
    [119] Ammosov M V, Delone N B, Krainov V P. Tunnel Ionization of ComplexAtoms and Atomic Ions in an Alternating Electromagnetic Field[J]. Soviet Physics-JETP, 1986 64:1191-1194.
    [120]Ye M,Grigoropoulos C P. Study of femtosecond laser-induced plumes[J]. Proceedings of SPIE, 2001,4276:90-98.
    [121]Choi S -H, Sasaki T, Shimizu Y, et al. Preparation of ZnS semiconductor nanocrystals using pulsed laser ablation in aqueous surfactant solutions[J]. Journal of Physics: Conference Series, 2007,59:388-391.
    [122]Ganeev R A,Ryasnyansky A I, Tugushev R I, et al. Investigation of nonlinear refraction and nonlinear absorption of semiconductor nanoparticle solutions prepared by laser ablation[J]. J. Opt. A: Pure Appl. Opt.,2003,5:409-417.
    [123]Anikin K V, Melnik N N, Simakin A V. Formation of ZnSe and CdS quantum dots via laser ablation in liquids[J]. 2002,366: 357-360.
    [124]Liu J M. Simple technique for measurements of pulsed Gaussian-beam spot sizes[J]. Opt. Lett., 1982,7:196-198.
    [125] Prathap P,Revathi N,Subbaiah Y P V,Reddy K T R. Thickness effect on the microstructure, morphology and optoelectronic properties of ZnS films[J]. J. Phys. Condens. Matter, 2008,20:035205.
    [126]Peka P,Schulz H J. Empirical one-electron model of optical transitions inCu-doped ZnS and CdS[J]. Physica B, 1994,193:57-65.
    [127]Shionoya S, Koda T,Era K, Fujiwara H. Nature of Luminescence Transitions in ZnS Crvstals[J]. J. Phys. Soc. Japan, 1964,19:1157-1167.
    [128]Huang J,Yang Y,Xue S,Yang B,Liu S,Shen J.Photoluminescence and electroluminescence of ZnS:Cu nanocrystals in polymeric networks[J]. Appl. Phys. Lett., 1997,70:2335-2337.
    [129]Yang p,Lu M,Xu D,Yuan D,Zhou G, Photoluminescence properties of ZnS nanoparticles co-doped with Pb2+ and Cu2+[J]. Chem. Phys. Lett., 2001,336:76-78.
    [130]Khosravi A A,Kundu M, Jatwa L,Deshpande S K. Green luminescence from copper doped zinc sulphide quantum particles[J].Appl. Phys. Lett.1995,67:2702-2704.
    [131]李丹,刘俊业,孟继武等.掺杂Cu2+的ZnS纳米超微粒的荧光衰减[J].发光学报, 1998,19:85-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700