用户名: 密码: 验证码:
几种典型植物对大气CO_2浓度升高的生理和病理响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自18世纪中叶工业革命以来,大气CO2浓度由过去的约280 ppm快速升高到目前的380 ppm以上,并预计到本世纪末将达到730-1020 ppm。CO2是植物光合作用的底物,植物对CO2升高的响应与适应机制是揭示以大气CO2浓度上升为主要特征的未来全球气候变化下生物圈碳循环和平衡、评估未来全球初级生产力变化的主要依据,成为近年来的一大研究热点。国内外关于植物对CO2升高响应的研究取得了很大进展,但该领域研究很少考虑植物病害因素的影响,对水生植物影响的研究鲜见报道,对CO2加富与其他环境因子复合作用影响的研究也相对不足,而这些都是影响植物系统在气候变化下发展趋势的重要因素。因此,本研究以西葫芦-白粉菌系统(Cucurbita pepo-Podosphaera xanthii)、葡萄-白粉菌系统(Vitis vinifera L.-Uncinula necator).以及水生入侵植物水葫芦(Eichhornia crassipes)为研究对象,利用人工气候室或或半控制开放型CO2加富系统模拟不同环境条件,分别探讨了它们对CO2加富(800 ppm)与温度升高(基准温度+4℃)或者不同营养水平(贫营养、中营养、富营养和超富营养)复合效应的响应情况,以便为未来气候变化下的植物生产力评估提供依据。主要研究结果如下:
     1.单独CO2浓度升高(EC)较对照CO2浓度(450 ppm)明显促进了西葫芦的光合作用(P<0.05),改善了植株生长和果实生产;同时提高CO2浓度和温度(ECT)也促进了西葫芦光合作用(P<0.05),加速了植物器官发育,但限制了叶片叶绿素合成和叶片面积增长,最终使植株地上部分干物质积累和果实产量显著降低(P<0.05)。
     2.EC处理对西葫芦-白粉菌植病互作系统中病菌的生长繁殖没有明显影响,由于改善了西葫芦对白粉菌的抗病性,使植物病情指数略有下降(P≥0.05);而ECT处理极显著地促进了植病系统内白粉菌的发育繁殖,极大提高了病原菌落发展规模和产孢能力(P<0.01),极显著加剧了植物病情指数(P<0.01),使作物严重减产(P<0.01)。
     3.试验初期,EC处理较对照明显提高了葡萄叶片叶绿素含量和净光合能力(P<0.05);ECT处理也提高了叶绿素含量,且增幅高于EC处理(P<0.05),但对Pn的促进作用通常不显著。试验后期EC和ECT下的植株都发生了光合适应现象,ECT的植株Pn甚至低于对照。EC处理降低了葡萄叶片气孔导度,同时升高温度或白粉菌侵染都加剧了这一影响。
     4.两个葡萄品种中,Barbera品种较Moscato更易受白粉病菌侵染和环境影响,但二者对环境的响应趋势相似。EC处理对植株发病率和病情指数影响不大,但倾向于降低白粉菌为害程度;而ECT处理通常明显提高了植株叶片发病率(P<0.05),加重了病情指数(P<0.05)。
     5.CO2促进了各营养水平下水葫芦的光合作用和生长发育,CO2加富对水葫芦生长的促进作用甚至能够完全补偿小范围营养下降对植物生长带来的负面影响。CO2浓度升高下贫营养的水葫芦鲜重比对照CO2下中营养的水葫芦鲜重高出5.02-11.5%。但当营养水平下降幅度较大时,CO2加富则不能完全补偿营养短缺对水葫芦生长抑制。另外,CO2加富对水葫芦生长的促进作用受到营养水平的影响,贫营养或超富营养时都会降低其促进程度。在富营养条件下,水葫芦光合能力和生物量随CO2加富分别增加了46%和40%,明显高于其他一般植物的平均增幅(28%和17%)。
     6.水葫芦对CO2加富表现出较明显的形态学响应。CO2加富带来的同化物增量更多分配到根系部位,更多分配到分蘖子株而非保存在初始母株。这些响应有助于改善水葫芦的营养吸收效率,提高营养性繁殖,从而有助于其在入侵时快速占据新的生态位。
     7.CO2升高降低了水葫芦组织单位生物量的氮磷含量,但CO2加富下水葫芦生物量的更大增幅使其单位植株的氮磷总量仍然增加。水葫芦组织氮磷含量下降可能是CO2加富使植株碳同化产物增多对氮素的稀释作用所致,也可能是植物营养利用率提高的结果,这意味着其保持生长所需最低氮磷含量极限值很可能会下降。而植株氮磷总量的增加表明将其用于富营养化水体氮磷去除的生物修复能力可能会提高。
     总之,本研究结果表明,就西葫芦-白粉菌和葡萄-白粉菌植病互作系统来讲,未来以大气CO2浓度和温度同时升高为特征的气候变化倾向于对植物生长生产不利。同时,未来气候变化情景可能有利于水葫芦生长泛滥,并提高其入侵能力。因此,有必要开展更多深入研究以更好地评估未来气候变化下的植物系统初级生产力。
Atmospheric CO2 concentration has rapidly increased from about 280 ppm pre-industry to more than 380 ppm nowadays, and is predicted to reach 730-1020 ppm by the end of this century. As CO2 is one of the substrate for plant photosynthesis, how plants would response to elevated CO2 becomes a main basis for disclosing the cycle and balance of carbon, as well as the global primary production in the context of future climate change. Though great progress has been obtained on this subject, there are still some shortcomings:Firstly, the existing researches have rarely considered responses of plant diseases. Secondly, the study on aquatic plants has largely lagged behind those on terrestrial plants. Thirdly, compared to the effects only by single elevated CO2, less is known of plant responses to the combined effects of elevated CO2 with other environmental factors. In this study, zucchini-powdery mildew(Cucurbita pepo-Podosphaera xanthii) pathosystem, grapevine-powdery mildew (Vitis vinifera L.-Uncinula necator) pathosystem, and water hyacinth(Eichhornia crassipes) were selected as research objects. By using phytotrons to simulate different environmental conditions, their responses to elevated CO2 (800 ppm) with rising temperature (4℃upper) or different nutrient levels (respectively as oligo-, meso-, eu-, and hypertrophic) were monitored. The main findings are as following:
     1. Elevated CO2 (EC) significantly enhanced the net photosynthesis rate (Pn) of zucchini plants (P<0.05), and produced more aboveground biomass and zucchini fruits than those in control treatment with 450 ppm CO2 (P>0.05). Elevated both CO2 and temperature (ECT) also enhanced Pn but with less enhancement (P<0.05), and greatly accelerated the plant development with more open leaves and male flowers (P<0.05). However, ECT reduced both chlorophyll content index (CCI) and area of zucchini leaf (P>0.05), finally resulting significantly decreased dry biomass accumulation (aboveground) and zucchini fruits production than the control treatment (P<0.05).
     2. Compared to the control, no evident effects on P. xanthii growth and development were found in the C. pepo-P. xanthii pathosystem with EC, and the plant disease index (DI) slightly reduced because of the improved plant resistance due to increase of atmospheric CO2. However, the fungal development of P. xanthii with ECT greatly improved, with significantly greater colony size and conidiophore production (P<0.01), as well as much heavier DI (P<0.01) with much lower yield of zucchini fruits (P<0.01).
     3. At earlier days after inoculation, EC greatly improved CCI and Pn of grapevine (P<0.05), while ECT also enhanced CCI even with more enhancement and Pn but with less enhancement. But grapevine plants with both EC and ECT treatment showed photosynthetic acclimation, with Pn under ECT even lower than that under control. The stomatal conductance of grapevine was reduced by EC, and it was reduced more when with higher temperature or powdery mildew infection.
     4. The disease incidence and disease severity showed nonsignificant decrease toward CO2 enrichment, whereas they generally showed significant increase under ECT (P<0.05). Finally, our result also suggested that although the two varieties of grapevine showed similar response trend to environmental conditions, the extent was varied, with Barbera probably being more subjectable.
     5. Overall, EC consistently enhanced photosynthesis and growth of water hyacinth at all nutrient levels. The positive effects due to EC could even overbalance the inhabitation by nutrient decline between narrow ranges, whereas it could only partly compensate the inhabitation by nutrient decline between wide ranges. Moreover, the enhancement extent caused by elevated CO2 varied among nutrient availabilities, being more in eu-and hypertrophic levels and less in meso-and oligotrophic levels. Further, the plant with relative suit nutrient would show higher CO2-induced improvement of Pn and biomass than other ordinary plants.
     6. E. crassipe showed flexible plasticity to EC. The CO2-enrichment deduced assimilation was allocated more to plant roots than shoots which would improve the nutrient absorption capacity, and mostly transferred to offspring ramets rather than maintained at the mother ramet which would benefit the vegetative reproduction. All these flexible responses would be helpful for its invasion.
     7. Under EC, the nitrogen (N) and phosphorus (P) contents of E. crassipe slightly decreased. This might be resulted from a dilution effect by more CO2-induced assimilation, and/or improved nutrient use efficiency under EC. This finding suggests that there might be increased difficulties in preventing infestation of E. crassipe by reducing N and/or P in eutrophic waters. Nevertheless, the total N and P accumulation per plant increased suggesting higher bioremediation efficiency of using water hyacinth for water eutrophication.
     In summary, our results indicate that in future climate characterized by both EC and rising temperature, the powdery mildew would cause more damage on both zucchini and grapevine. There could be more water hyacinth infestations in natural waters benefited by elevated atmospheric CO2. More studies are needed to better understand and manage those crops in a future changing climate.
引文
Ainsworth EA, Davey PA, Hymus GJ, Osborne CP, Rogers A, Blum H, Nosberger J, Long SP. Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under Free Air CO2 Enrichment (FACE)[J]. Plant, Cell and Environment.2003,26(5):705-714
    Ainsworth EA, Long SP. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2[J]. New Phytologist.2005, 165(2):351-372
    Ainsworth EA, Rogers A. The response of photosynthesis and stomatal conductance to rising [CO2]:mechanisms and environmental interactions [J]. Plant, Cell and Environment.2007,30(3):258-270
    Ainsworth EA, Rogers A, Vodkin LO, Walter A, Schurr U. The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves[J]. Plant Physiology.2006,142(1):135-147
    Allen LH, Drake BG, Rogers HH, Shinn JH. Field techniques for exposure of plants and ecosystems to elevated CO2 and other trace gases[J]. Critical Reviews in Plant Sciences.1992,11(2):85-119
    Allen MF, Klironomos JN, Treseder KK, Oechel WC. Responses of soil biota to elevated CO2 in a chaparral ecosystem[J]. Ecological Applications.2005,15(5): 1701-1711
    Aranjuelo I, Irigoyen JJ, Nogues S, Sanchez-Diaz M. Elevated CO2 and water-availability effect on gas exchange and nodule development in N2-fixing alfalfa plants [J]. Environmental and Experimental Botany.2009,65(1):18-26
    Arp WJ. Effects of source-sink relations on photosynthetic acclimation to elevated CO2[J]. Plant Cell Environ.1991,14:869-875
    Arp WJ, Drake BG. Increased photosynthetic capacity of Scirpus olneyi after 4 years of exposure to elevated CO2[J]. Plant, Cell& Environment.2006,14(9):1003-1006
    Baxter R, Ashenden TW, Farrar JF. Effect of elevated CO2 and nutrient status on growth, dry matter partitioning and nutrient content ofPoa alpina var. vivipara L[J]. Journal of Experimental Botany.1997,48(7):1477-1486
    Bertoni GP, Becker WM. Expression of the cucumber hydroxypyruvate reductase gene is down-regulated by elevated CO2[J]. Plant Physiology.1996,112(2):599-605
    Bielski RL. Phosphare pools, phosphate transport, and phosphate availability[J]. Annual Review of Plant Physiology.1973,24:225-252
    Bindi M, Fibbi L, Miglietta F. Free Air CO2 Enrichment (FACE) of grapevine (Vitis vinifera L.):II. Growth and quality of grape and wine in response to elevated CO2 concentrations [J]. European Journal of Agronomy.2001,14(2):145-155
    Boland GJ, Melzer MS, Hopkin A, Higgins V, Nassuth A. Climate change and plant diseases in Ontario[J]. Canadian Journal of Plant Pathology.2004,26(3):335-350
    Bourgeois G, Bourque A, Deaudelin G. Modelling the impact of climate change on disease incidence:a bioclimatic challenge[J]. Canadian Journal of Plant Pathology. 2004,26(3):284-290
    Bowes G. Facing the inevitable:plants and increasing atmospheric CO2[J]. Annual Review of Plant Physiology and Plant Molecular Biology.1993,44(1):309-332
    Bruck RI, Shafer SR. A role for plant pathologists in global climate change research[J]. Plant Disease.1991,75(5):437
    Brunel S. How to manage invasive aline plants? The case study of Eichhornia crassipes.[J]. EPPO Bulletin.2008,38:451
    Bryant J, Taylor G, Frehner M. Photosynthetic acclimation to elevated CO2 is modified by source:sink balance in three component species of chalk grassland swards grown in a free air carbon dioxide enrichment (FACE) experiment [J]. Plant, Cell and Environment.2002,21(2):159-168
    Bunce JA. Response of respiration of soybean leaves grown at ambient and elevated carbon dioxide concentrations to day-to-day variation in light and temperature under field conditions[J]. Annals of Botany.2005,95(6):1059-1066
    Calonnec A, Cartolaro P, Naulin JM, Bailey D, Langlais M. A host-pathogen simulation model:powdery mildew of grapevine[J]. Plant Pathology.2008,57(3): 493-508
    Campbell CD, Sage RF. Interactions between the effects of atmospheric CO2 content and P nutrition on photosynthesis in white lupin (Lupinus albus L.)[J]. Plant, Cell and Environment.2006,29(5):844-853
    Chakraborty S. Potential impact of climate change on plant-pathogen interactions[J]. Australasian Plant Pathology.2005,34(4):443-448
    Chakraborty S, Datta S. How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate?[J]. New Phytologist.2003,159(3):733-742
    Chakraborty S, Luck J, Hollaway G, Freeman A, Norton R, Garrett KA, Percy K, Hopkins A, Davis C, Karnosky DF. Impacts of global change on diseases of agricultural crops and forest trees[J]. CAB Reviews.2008,3:1-15
    Chakraborty S, Murray GM, Magarey PA, Yonow T, O'Brien RG, Croft BJ, Barbetti MJ, Sivasithamparam K, Old KM, Dudzinski MJ. Potential impact of climate change on plant diseases of economic significance to Australia[J]. Australasian Plant Pathology.1998,27:15-35
    Chakraborty S, Pangga IB, Lupton J, Hart L, Room PM, Yates D. Production and dispersal of Colletotrichum gloeosporioides spores on Stylosanthes scabra under elevated CO2[J]. Environmental Pollution.2000,108(3):381-387
    Chakraborty S, Tiedemann AV, Teng PS. Climate change:potential impact on plant diseases[J]. Environmental Pollution.2000,108(3):317-326
    Chandler JM. Handbook of Pest Management in Agiriculture [M]. Boca Raton:CRC Press.1981:95-109
    Clark JS, Carpenter SR, Barber M, Collins S, Dobson A, Foley JA, Lodge DM, Pascual M, Jr RP, Pizer W. Ecological forecasts:an emerging imperative [M].2001: 657-660
    Coakley SM. Biospheric change:will it matter in plant pathology?[J]. Canadian Journal of Plant Pathology.1995,17(2):147-153
    Coakley SM, Scherm H, Chakraborty S. Cliamte change and plant disease management[J]. Annual Review of Phytopathology.1999,37:399-426
    Cotrufo MF, Ineson P, Scott A. Elevated CO2 reduces the nitrogen concentration of plant tissues[J]. Global Change Biology.1998,4(1):43-54
    Crookshanks M, Taylor G, Broadmeadow M. Elevated CO2 and tree root growth: contrasting responses in fraxinus excelsior, Quercus petraea and Pinus sylvestris[J]. New Phytologist.1998,138(2):241-250
    Crous KY, Walters MB, Ellsworth DS. Elevated CO2 concentration affects leaf photosynthesis-nitrogen relationships in Pinus taeda over nine years in FACE[J]. Tree Physiology.2008,28(4):607-614
    Cure JD, Acock B. Crop responses to carbon dioxide doubling:a literature survey[J]. Agricultural and Forest Meteorology.1986,38(1-3):127-145
    Dahlman RC. CO2 and plants:revisited[J]. Plant Ecology.1993,104-105(1):339-355 de Souza AP, Gaspar M, Da Silva EA, Ulian EC, Waclawovsky AJ, Nishiyama JR. MY, Dos Santos RV, Teixeira MM, Souza GM, Buckeridge MS. Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane[J]. Plant, Cell and Environment.2008,31(8):1116-1127
    Del Pozo A, Perez P, Morcuende R, Alonso A, Martinez-Carrasco R. Acclimatory responses of stomatal conductance and photosynthesis to elevated CO2 and temperature in wheat crops grown at varying levels of N supply in a Mediterranean environment[J]. Plant Science.2005,169(5):908-916
    Drake BG, Gonzalez-Meler MA, Long SP. More efficient plants:a consequence of rising atmospheric CO2?[J]. Annual Review of Plant Physiology and Plant Molecular Biology.1997,48(1):609-639
    Duchene E, Schneider C. Grapevine and climatic changes:a glance at the situation in Alsace[J]. Agronomy for sustainable development.2005,25(1):93-99
    Dukes JS, Mooney HA. Does global change increase the success of biological invaders?[J]. Trends in Ecology& Evolution.1999,14(4):135-139
    Dunigan EP, Phelan RA, Shamsuddin ZH. Use of waterhyacinths to remove nitrogen and phosphorus from eutrophic waters [J]. Hyacinth Control Journal.1975,13: 59-61
    Evans N, Baierl A, Semenov MA, Gladders P, Fitt BDL. Range and severity of a plant disease increased by global warming[J]. Journal of the Royal Society Interface. 2008,5(22):525-531
    Fangmeier A, De Temmerman L, Black C, Persson K, Vorne V. Effects of elevated CO2 and/or ozone on nutrient concentrations and nutrient uptake of potatoes[J]. European Journal of Agronomy.2002,17(4):353-368
    Farage PK, McKee IF, Long SP. Does a low nitrogen supply necessarily lead to acclimation of photosynthesis to elevated CO2?[J]. Plant Physiology.1998,118(2): 573-580
    Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology.1982,33(1):317-345
    Feng X. Long-term ci/ca response of trees in western North America to atmospheric CO2 concentration derived from carbon isotope chronologies [J]. Oecologia.1998, 117(1):19-25
    Franklin O, McMurtrie RE, Iversen CM, Crous KY, Finzi AC, Tissue DT, Ellsworth DS, Oren R, Norby RJ. Forest fine-root production and nitrogen use under elevated CO2:contrasting responses in evergreen and deciduous trees explained by a common principle[J]. Global Change Biology.2009,15(1):132-144
    Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE. Climate change effects on plant disease:genomes to ecosystems[J]. Annual Reviews.2006,44:489-509
    Gerloff GC, Krombholz PH. Tissue analysis as a measure of nutrient availability for the growth of angiosperm aquatic plants[J]. Limnology and Oceanography.1966, 11(4):529-537
    Ghini R, Hamada E, Bettiol W. Climate change and plant diseases[J]. Scientia Agricola. 2008,65:98-107
    Gielen B, Ceulemans R. The likely impact of rising atmospheric CO2 on natural and managed Populus:a literature review[J]. Environmental Pollution.2001,115(3): 335-358
    Glawe DA. The powdery mildews:A review of the world's most familiar (yet poorly known) plant pathogens[J]. Annual Review of Phytopathology.2008,46(1):27-51
    Gordon TR, Duniway JM. Effects of powdery mildew infection on the efficiency of CO2 fixation and light utilization by sugar beet leaves[J]. Plant Physiology.1982, 69(1):139-142
    Gupta G. Potential applications of water hyacinth for water, air recycling in closed systems[J]. Water, Air, and Soil Pollution.1982,17(2):199-205
    Heagle AS, Body DE, Heck WW. An open-top field chamber to assess the impact of air pollution on plants[J]. Journal of Environmental Quality.1973,2(3):365
    Hibberd JM, Whitbread R, Farrar JF. Effect of elevated concentrations of CO2 on infection of barley by Erysiphe graminis[J]. Physiological and Molecular Plant Pathology.1996,48(1):37-53
    Hoagland DR, Arnon DI. The water culture method for growing plants without soil[J]. California Agricultural Experiment Station Circular.1950,347:1-32
    Huber SC. Relation between photosynthetic starch formation and dry-weight partitioning between the shoot and root[J]. Canadian journal of botany.1983,61(10): 2709-2716
    Hyvonen-Olsson R, Agren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems:a literature review[J]. New Phytologist. 2007,173(3):463-480
    Idso SB, Kimball BA. Effects of atmospheric CO2 enrichment on photosynthesis, respiration, and growth of sour orange trees[J]. Plant Physiology.1992,99(1): 341-343
    Jenkyn JF, Bainbridge A. Biology and pathology of cereal powdery mildews [M]//Spencer DM.The Powdery Mildews. London:Academic Press.1978:283-321
    Korner C, Asshoff R, Bignucolo O, H ttenschwiler S, Keel S, Pel¨cez-Riedl S, Pepin S, Siegwolf RTW, Zotz G. Exposing a mature Swiss forest to elevated atmospheric CO2 increased the flux of carbon through the trees and soils but did not increase net forest growth or carbon storage[J]. Science.2005,309:1360-1362
    Kimball BA, LaMorte RL, Seay RS, Pinter Jr PJ, Rokey RR, Hunsaker DJ, Dugas WA, Heuer ML, Mauney JR, Hendrey GR. Effects of free-air CO2 enrichment on energy balance and evapotranspiration of cotton[J]. Agricultural and Forest Meteorology. 1994,70(1-4):259-278
    Koch KE, Jones PH, Avigne WT, Allen Jr LH. Growth, dry matter partitioning, and diurnal activities of RuBP carboxylase in citrus seedlings maintained at two levels of CO2[J]. Physiologia Plantarum.2006,67(3):477-484
    Korner C. Nutrients and sink activity drive plant CO2 responses:caution with literature-based analysis[J]. New Phytologist.2003,159(3):537-538
    Kretzschmar FdS, Aidar MPM, Salgado I, Braga MR. Elevated CO2 atmosphere enhances production of defense-related flavonoids in soybean elicited by NO and a fungal elicitor[J]. Environmental and Experimental Botany.2009,65(2-3):319-329
    Kruger WM, Carver TLW, Zeyen RJ. Effects of inhibiting phenolic biosynthesis on penetration resistance of barley isolines containing seven powdery mildew resistance genes or alleles[J]. Physiological and Molecular Plant Pathology.2002, 61(1):41-51
    Lake JA, Wade RN. Plant-pathogen interactions and elevated CO2:morphological changes in favour of pathogens[J]. Journal of Experimental Botany.2009,60(11): 3123-3131
    Larigauderie A, Roy J, Berger A. Long term effects of high CO2 concentration on photosynthesis of water hyacinth (Eichhornia crassipes (Mart.) Solms)[J]. Journal of Experimental Botany.1986,37(9):1303-1312
    Le Treut H, Somerville R, Cubasch U, Y. Ding, C. Mauritzen, A. Mokssit, T. Peterson, M. Prather. Historical Overview of Climate Change [R].Cambridge, UK and New York, USA:Cambridge University Press,2007
    Leadley PW, Drake BG. Open top chambers for exposing plant canopies to elevated CO2 concentration and for measuring net gas exchange[J]. Plant Ecology.1993, 104(1):3-15
    Leavitt SW, Idso SB, Kimball BA, Burns JM, Sinha A, Stott L. The effect of long-term atmospheric CO2 enrichment on the intrinsic water-use efficiency of sour orange trees[J]. Chemosphere.2003,50(2):217-222
    Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B. Altered ecosystem carbon and nitrogen cycles by plant invasion:a meta-analysis[J]. New Phytologist. 2008,177(3):706-714
    Liu L, Hoogenboom G, Ingram KT. Controlled-environment sunlit plant growth chambers[J]. Critical Reviews in Plant Sciences.2000,19(4):347-375
    Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL. Prioritizing climate change adaptation needs for food security in 2030[J]. Science. 2008,319(5863):607
    Longstreth DJ. Photosynthesis and photorespiration in freshwater emergent and floating plants[J]. Aquatic Botany.1989,34(1):287-299
    Madsen TV, Maberly SC, Bowes G. Photo synthetic acclimation of submersed angiosperms to CO2 and HCO3-[J]. Aquatic Botany.1996,53(1-2):15-30
    Martinez-Carrasco R, Perez P, Morcuende R. Interactive effects of elevated CO2, temperature and nitrogen on photosynthesis of wheat grown under temperature gradient tunnels[J]. Environmental and Experimental Botany.2005,54(1):49-59
    Martin DF, Hewes KA. Studies on utilization of treated stack gas. II. Growth of waterhyacinths (Eichhornia crassipes) in carbon dioxide-rich atmospheres[J]. Journal of Environmental Science and Health, Part A:Toxic/Hazardous Substances
    & Environmental Engineering.1984,19(4):433-443
    McGrath MT, Thomas CE. Powdery mildew [M]//Zitter TA, Hopkins DL, Thomas CE.Compendium of Cucurbit Diseases. London:Academic Press.1996:28-30
    McGuire AD, Melillo JM, Joyce LA. The role of nitrogen in the response of forest net primary production to elevated atmospheric carbon dioxide[J]. Annual Review of Ecology and Systematics.1995,26(1):473-503
    McLeod AR, Long SP. Free-air carbon dioxide enrichment (FACE) in global.change research:a review[J]. Advances in Ecological Research.1999:1-56
    Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC Global Climate Projections [R].Cambridge, UK and New York, USA:Cambridge University Press,2007
    Mitchell CE, Reich PB, Tilman D, Groth JV. Effects of elevated CO2, nitrogen deposition, and decreased species diversity on foliar fungal plant disease[J]. Global Change Biology.2003,9(3):438-451
    Mott KA. Do stomata respond to CO2 concentrations other than intercellular? [J]. Plant Physiology.1988,86(1):200-203
    Mott KA. Sensing of atmospheric CO2 by plants[J]. Plant, Cell and Environment.1990, 13(7):731-737
    Moutinho-Pereira J, Correia C, Falco V. Effects of elevated CO2 on grapevines grown under Mediterranean field conditions-impact on grape and wine composition[J]. EFITA, UTAD.2005,
    Murray DR. Plant responses to carbon dioxide[J]. American Journal of Botany.1995, 82(5):690-697
    Mycroft EE, Zhang JY, Adams G, Reekie E. Elevated CO2 will not select for enhanced growth in white spruce despite genotypic variation in response [J]. Basic and Applied Ecology.2009,10(4):349-357
    Niklaus PA, Leadley PW, Schmid B, Korner C. A long-term field study on biodiversityxelevated CO2 interactions in grassland[J]. Ecological Applications. 2001,71(3):341-356
    Norby RJ. Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide[J]. Plant and Soil.1994,165(1):9-20
    Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R. Tree responses to rising CO2 in field experiments:implications for the future forestfJ]. Plant, Cell& Environment. 1999,22(6):683-714
    Nowak RS, Ellsworth DS, Smith SD. Functional responses of plants to elevated atmospheric CO2:do photo synthetic and productivity data from FACE experiments support early predictions?[J]. New Phytologist.2004,162:253-280
    Osborne CP, La Roche J, Garcia RL, Kimball BA, Wall GW, Pinter Jr. PJ, La Morte RL, Hendrey GR, Long SP. Does leaf position within a canopy affect acclimation of photosynthesis to elevated CO2? Analysis of a wheat crop under Free-Air CO2 Enrichment[J]. Plant Physiology.1998,117(3):1037-1045
    Pangga IB, Chakraborty S, Yates D. Canopy size and induced resistance in Stylosanthes scabra determine anthracnose severity at high CO2[J]. Phytopathology. 2004,94(3):221-227
    Pasini C, D'Aquila F, Curir P, Gullino ML. Effectiveness of antifungal compounds against rose powdery mildew (Sphaerotheca pannosa var. rosae) in glasshouses[J]. Crop Protection.1997,16(3):251-256
    Pettersson R, McDonald AJS. Effects of nitrogen supply on the acclimation of photosynthesis to elevated CO2[J]. Photosynthesis Research.1994,39(3):389-400
    Plessl M, Elstner EF, Rennenberg H, Habermeyer J, Heiser I. Influence of elevated CO2 and ozone concentrations on late blight resistance and growth of potato plants[J]. Environmental and Experimental Botany.2007,60(3):447-457
    Pons TL, Flexas J, von Caemmerer S, Evans JR, Genty B, Ribas-Carbo M, Brugnoli E. Estimating mesophyll conductance to CO2:methodology, potential errors, and recommendations [J]. Journal of Experimental Botany.2009,60(8):2217-2234
    Poorter H. Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration[J]. Plant Ecology.1993,104(1):77-97
    Pritchard SG, Rogers HH, Prior SA, Peterson CM. Elevated CO2 and plant structure:a review[J]. Global Change Biology.1999,5(7):807-837
    Rawat P, Srivastva M. Development of Handmade Paper Sheets using water Hyacinth: an exploratory Study[J]. Man Made Textiles in India.2007,50(4):137
    Reich PB, Oleksyn J, Wright IJ. Leaf phosphorus influences the photosynthesis-nitrogen relation:a cross-biome analysis of 314 species[J]. Oecologia.2009,
    Robertson EJ, Leech RM. Significant changes in cell and chloroplast development in young wheat leaves (Triticum aestivum cv Hereward) grown in elevated CO2[J]. Plant Physiology.1995,107(1):63-71
    Rogers A, Allen DJ, Davey PA, Morgan PB, Ainsworth EA, Bernacchi CJ, Cornic G, Dermody O, Dohleman FG, Heaton EA. Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their life-cycle under Free-Air Carbon dioxide Enrichment [J]. Plant, Cell and Environment.2004,27(4):449-458
    Rogers A, Ellsworth DS. Photosynthetic acclimation of Pinus taeda (loblolly pine) to long-term growth in elevated pCO2 (FACE)[J]. Plant, Cell and Environment.2002, 25(7):851-858
    Rogers A, Humphries SW. A mechanistic evaluation of photosynthetic acclimation at elevated CO2[J]. Global Change Biology.2000,6(8):1005-1011
    Rogers HH, Prior SA, Runion GB, Mitchell RJ. Root to shoot ratio of crops as influenced by CO2[J]. Plant and Soil.1995,187(2):229-248
    Rogers HH, Runion GB, Krupa SV. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere[J]. Environmental Pollution.1994, 83(1-2):155-189
    Rogers HH, Runion GB, Prior SA, Price AJ, Torbert HA, Gjerstad DH. Effects of elevated atmospheric CO2 on invasive plants:comparison of purple and yellow nutsedge (Cyperus rotundus L. and C. esculentus L.)[J]. Journal of Environmental Quality.2008,37(2):395-400
    Rosenzweig C, Parry ML. Potential impact of climate change on world food supply [J]. Nature.1994,367:133-138
    Rowland-Bamford AJ, Baker JT, Allen Jr LH, Bowes G. Acclimation of rice to changing atmospheric carbon dioxide concentration[J]. Plant, Cell and Environment. 2006,14(6):577-583
    Runion GB, Curl EA, Rogers HH, Bachman PA, Rodriguez-Kabana R, Helms BE. Effects of free-air CO2 enrichment on microbial populations in the rhizosphere and phyllosphere of cotton[J]. Agricultural and Forest Meteorology.1994,70:117-130
    Sage RF. Acclimation of photosynthesis to increasing atmospheric CO2:the gas exchange perspective [J]. Photosynthesis Research.1994,39(3):351-368
    Sage RF. Atmospheric modification and vegetation responses to environmental stress[J]. Global Change Biology.1996,2(2):79-83
    Salinari F, Giosue S, Rossi V, Tubiello FN, Rosenzweig C, Gullino ML. Downy mildew outbreaks on grapevine under climate change:elaboration and application of an empirical-statistical model[J]. EPPO Bulletin.2007,37(2):317-326
    Schmidhuber J, Tubiello FN. Global food security under climate change[J]. Proceedings ofthe National Academy of Sciences.2007,104(50):19703
    Sharma S, Williams DG. Carbon and oxygen isotope analysis of leaf biomass reveals contrasting photosynthetic responses to elevated CO2 near geologic vents in Yellowstone National Park[J]. Biogeosciences.2009,6:25-31
    Sherf AF, MacNab AA. Vegetable diseases and their control (2nd edition)[M]. USA: John Wiley and Sons, Inc.,1986
    Sitterly WR. Powdery mildew of cucurbits [M]//Spencer DM. The Powdery Mildews. London:Academic Press.1978:359-379
    Slade AJ, Hutchings MJ. The effects of nutrient availability on foraging in the clonal herb Glechoma hederacea[J]. The Journal of Ecology.1987,75(1):95-112
    Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR, Nowak RS. Elevated CO2 increases productivity and invasive species success in an arid ecosystem[J]. Nature.2000,408(6808): 79-82
    Smith TM, Karl TR, Reynolds RW. How accurate are climate simulations? [J]. Science, 2002,296:483-484
    Song L, Wu J, Li C, Li F, Peng S, Chen B. Different responses of invasive and native species to elevated CO2 concentration[J]. Acta Oecologica.2009,35(1):128-135
    Spencer W, Bowes G. Photosynthesis and growth of water hyacinth under CO2 enrichment[J]. Plant Physiology.1986,82(2):528-533
    Stitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition:the physiological and molecular background[J]. Plant, Cell and Environment.1999,22(6):583-621
    Strange RN, Scott PR. Plant disease:a threat to global food security[J]. Annual Review of Phytopathology.2005,43(1):83-116
    Tans P. Trends in atmospheric carbon dioxide [M]. Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA).2009
    Tazoe Y, von Caemmerer S, Badger MR, Evans JR. Light and CO2 do not affect the mesophyll conductance to CO2 diffusion in wheat leaves[J]. Journal of Experimental Botany.2009,60(8):2291-2301
    Teskey RO, Dougherty PM, Wiselogel AE. Design and performance of branch chambers suitable for long-term ozone fumigation of foliage in large trees [J]. Journal of Environmental Quality.1991,20(3):591
    Thompson GB, Drake BG. Insects and fungi on a C3 sedge and a C4 grass exposed to elevated atmospheric CO2 concentrations in open-top chambers in the field[J]. Plant, Cell and Environment.1994,17(10):1161-1167
    Tingey DT, Johnson MG, Phillips DL. Independent and contrasting effects of elevated CO2 and N-fertilization on root architecture in Pinus ponderosa[J]. Trees.2005, 19(1):43-50
    Tissue DT, Thomas RB, Strain BR. Long-term effects of elevated CO2 and nutrients on photosynthesis and rubisco in loblolly pine seedlings[J]. Plant, Cell and Environment.1993,16(7):859-865
    Tissue DT, Thomas RB, Strain BR. Atmospheric CO2 enrichment increases growth and photosynthesis of Pinus taeda:a 4 year experiment in the field[J]. Plant, Cell and Environment.1997,20(9):1123-1134
    Van TK, Haller WT, Bowes G. Comparison of the photosynthetic characteristics of three submersed aquatic plants[J]. Plant Physiology.1976,58(6):761-768
    Villamagna AM. Ecological effects of water hyacinth (Eichhornia crassipes) on Lake Chapala, Mexico[D].2009
    Wall GW, Adam NR, Brooks TJ, Kimball BA, Pinter PJ, LaMorte RL, Adamsen FJ, Hunsaker DJ, Wechsung G, Wechsung F. Acclimation response of spring wheat in a free-air CO2 enrichment (FACE) atmosphere with variable soil nitrogen regimes.2. Net assimilation and stomatal conductance of leaves[J]. Photosynthesis Research. 2000,66(1):79-95
    Wand SJE, Midgley GF, Jones MH, Curtis PS. Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration:a meta-analytic test of current theories and perceptions [J]. Global Change Biology.1999,5(6):723-741
    Watson DJ. Comparative physiological studies on the growth of field crops:I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years [J]. Annals of Botany.1947,11(1):41-76
    Weltzin JF, Belote RT, Sanders NJ. Biological invaders in a greenhouse world:will elevated CO2 fuel plant invasions? [J]. Frontiers in Ecology and the Environment. 2003,1(3):146-153
    Williams AE, Duthie HC, Hecky RE. Water hyacinth in Lake Victoria:Why did it vanish so quickly and will it return?[J]. Aquatic Botany.2005,81(4):300-314
    Wilson JR, Holst N, Rees M. Determinants and patterns of population growth in water hyacinth[J]. Aquatic Botany.2005,81(1):51-67
    Xu DQ, Gifford RM, Chow WS. Photo synthetic acclimation in pea and soybean to high atmospheric CO2 partial pressure[J]. Plant Physiology.1994,106(2):661-671
    Yan X, Yu D, Li Y-K. The effects of elevated CO2 on clonal growth and nutrient content of submerge plant Vallisneria spinulosa[J]. Chemosphere.2006,62(4): 595-601
    Yang L, Wang Y, Huang J, Zhu J, Yang H, Liu G, Liu H, Dong G, Hu J. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on phosphorus uptake and utilization of rice at three levels of nitrogen fertilization[J]. Field Crops Research. 2007,102(2):141-150
    Yelle S, Beeson Jr RC, Trudel MJ, Gosselin A. Acclimation of two tomato species to high atmospheric CO2:I. sugar and starch soncentrations[J]. Plant Physiology.1989, 90(4):1465-1472
    Yoon ST, Hoogenboom G, Flitcroft I, Bannayan M. Growth and development of cotton {Gossypium hirsutum L.) in response to CO2 enrichment under two different temperature regimes[J]. Environmental and Experimental Botany.2009, In Press, Corrected Proof
    Zeiger E, Farquhar GD, Cowan IR. Stomatal Function[M]. Standford:Standford University Press,1987
    Zhu YL, Zayed AM, Qian JH, De Souza M, Terry N. Phytoaccumulation of trace elements by wetland plants:II. Water hyacinth[J]. Journal of Environmental Quality. 1999,28(1):339
    Zitter TA, Hopkins DL, Thomas CE. Compendium of cucurbit diseases[M]. St. Paul, MN, USA:APS Press 1996
    Zou X, Shen QJ, Neuman D. An ABA inducible WRKY gene integrates responses of creosote bush (Larrea tridentata) to elevated CO2 and abiotic stresses [J]. Plant Science.2007,172(5):997-1004
    Kimball BA,朱建国,程磊,Kobayashi K, Bindi M.开放系统中农作物对空气CO2浓度增加的响应[J].应用生态学报.2002,13(10):1323-1338
    WMO.WMO 2007年温室气体公报[R1.日内瓦,2008
    鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000
    曹际玲,朱建国,马红亮,朱春梧,颜建,曾青,寇太记,谢祖彬.不同氮素水平下冬小麦叶片酚酸类物质代谢对FACE的响应[J].中国生态农业学报.2009,17(5):837-841
    曹若彬.果树病理学(第三版)[M].北京:中国农业出版社,1997
    程伯瑛,李海真,贾长才,武峻新.西葫芦白粉病发生特点及药剂防治技术研究[J].北方园艺.2006,(5):166-167
    段洪浪,刘菊秀,邓琦,陈小梅,张德强.CO2浓度升高与氮沉降对南亚热带森林生态系统植物生物量积累及分配格局的影响[J].植物生态学报.2009,33(3):570-579
    高素华,王春乙.CO2对冬小麦和大豆籽粒成分的影响[J].环境科学.1994,15(5):65-66
    高志奎,刘彦民,何俊萍,杨萍,向军.西葫芦光合作用特性[J].园艺学报.1996,23(3):305-306
    范桂枝,蔡庆生,王春明,万建民,朱建国.水稻株高性状对大气CO2浓度升高的响应[J].作物学报.2007,33(3):433-440
    韩梅,吉成均,左闻韵,贺金生.CO2浓度和温度升高对11种植物叶片解剖特征的影响[J].生态学报.2006,26(2):326-333
    侯桂玲,滕年军,罗茂春,林金星,黄勇,赵遵田.大气CO2浓度升高对拟南芥茎秆结构及化学成分的影响[J].西北植物学报.2007,27(8):1499-1506
    蒋高明,韩兴国,林光辉.大气CO2浓度升高对植物的直接影响—国外十余年来模拟实验研究之主要手段及基本结论[J].植物生态学报.1997,21(6):489-502
    蒋高明,渠春梅.北京山区辽东栎林中几种木本植物光合作用对CO2浓度升高的响应[J].植物生态学报.2000,24(2):204-208
    蒋跃林,张仕定,张庆国.大气CO2浓度升高对茶树光合生理特性的影响[J].茶叶科学.2005,25(1):43-46
    康辉.环境CO2浓度升高对植物的影响研究[J].安徽农学通报.2008,14(22):42-44
    赖侃宁.中国葡萄白粉菌有性世代的生物学特性研究[D].西北农林科技大学,2008
    李永华,王献,孔德政,叶庆生.长期CO2加富对苗期红掌(Anthurium andraeanumL.)植株生长和光合作用的影响[J].生态学报.2007,27(5):1852-1857
    李伏生,康绍忠,张富仓.大气CO2浓度和温度升高对作物生理生态的影响[J].应用生态学报.2002,13(9):1169-1173
    李华.欧亚种葡萄(Vitis vinifera)品种的自交和杂交后代对霜霉病抗性的分析[J].中国农业科学.1988,21(1):68-72
    廖建雄,王根轩.干旱,CO2和温度升高对春小麦光合,蒸发蒸腾及水分利用效率的影响[J].应用生态学报.2002,13(5):547-550
    林伟宏,白克智,匡廷云.大气CO2浓度和温度升高对水稻叶片及群体光合作用的影响[J].植物学报.1999,41(6):624-628
    刘钢,韩勇,朱建国,冈田益己,中村浩史,吉本真由美.稻麦轮作FACE系统平台Ⅰ.系统结构与控制[J].应用生态学报.2002,13(10):1253-1258
    刘家尧,张其德,赵可夫,白克智,梁峥.大气C02倍增和盐度对滨藜离子水平和叶绿素荧光诱导动力学的效应[J].环境科学学报.1998,18(5):533-538
    刘会宁,李华.欧亚种葡萄对白粉病与霜霉病的抗性研究[J].东北农业大学学报.2004,35(3):302-308
    刘会宁,郑琦.葡萄对白粉病的抗性[J].果树学报.2002,19(6):430-432
    毛丽萍,郭尚.回归相关法测定西葫芦叶面积研究[J].上海蔬菜.2008,(5):74-75
    彭长连,林植芳,林桂珠.加富CO2条件下水稻叶片抗氧化能力的变化[J].作物 学报.1999,25(1):39-43
    彭长连,林植芳,孙梓健,林桂珠,陈贻竹.水稻光合作用对加富CO2的响应[J].植物生理学报.1998,24(3):272-278
    彭少麟,向言词.植物外来种入侵及其对生态系统的影响[J].生态学报.1999,19(4):560-568
    齐淑艳,郭晓华,赵明.CO2与O3浓度升高对入侵植物牛膝菊叶片形态特征的影响[J].东北师大学报:自然科学版.2009,(2):149-153
    任会利,李萍,申卫军,任海,杨帆.荒漠生态系统对大气CO2浓度升高响应的干湿年差异[J].热带亚热带植物学报.2006,14(5):389-396
    宋莉英,吴海昌,彭少麟.二氧化碳浓度升高对植物入侵的影响[J].生态环境.2006,15(1):158-163
    孙加伟,赵天宏,付宇,赵艺欣,史奕.CO2浓度升高对玉米叶片光合生理特性的影响[J].玉米科学.2009,17(2):81-85
    王春乙,白月明,温民.模拟大气C02浓度增加对玉米产量影响的试验研究[J].环境科学学报.1996,16(3):331-335
    王江涛.保护地西葫芦增施CO2增产效应研究[J].山西农业科学.2003,31(4):64-65
    王建林,于贵瑞,房全孝,姜德锋,齐华,王秋凤.不同植物叶片水分利用效率对光和CO2的响应与模拟[J].生态学报,2008,28(2):525-533
    王精明,李永华,黄胜琴,叶庆生.CO2浓度升高对凤梨叶片生长和光合特性的影响[J].热带亚热带植物学报.2004,12(6):511-514
    王月.CO2浓度升高对不同供磷番茄根系生长和根系分泌物的影响[D].杭州:浙江大学,2008
    王跃进,贺普超.中国葡萄属野生种叶片抗白粉病遗传研究[J].中国农业科学.1997,30(1):19-25
    王钊.人工气候室的发展和应用[J].植物生理学通讯.1982,5:9-13
    谢强,石磊,杜峰,杨天仪,许文平,王世平.CO2,温度对葡萄群体光合作用的影 响[J].上海交通大学学报:农业科学版.2007,25(2):110-114
    谢永宏,于丹,耿显华.CO2浓度升高对沉水植物菹草叶表型及生理生化特征的影响[J].植物生态学报.2003,27(2):218-222
    徐长亮,李军营,谢辉,朱建国,范桂枝,蔡庆生.开放式空气CO2浓度升高对稻米品质的影响[J].中国农学通报.2008,24(9):391-397
    徐智广,邹定辉,张鑫,刘树霞,高坤山.CO2和硝氮加富对龙须菜(Gracilaria lemaneiformis)生长,生化组分和营养盐吸收的影响[J].生态学报.2008,28(8):3752-3759
    杨连新,王余龙,黄建晔,杨洪建,刘红江.开放式空气CO2浓度增高对水稻生长发育影响的研究进展[J].应用生态学报.2006,17(7):1331-1337
    张守仁,樊大勇,Strasser RJ.植物生理生态学研究中的控制实验和测定仪器新进展[J].植物生态学报.2007,31(5):982-987
    张小全,徐德应,赵茂盛,陈仲庐.CO2增长对杉木中龄林针叶光合生理生态的影响[J].生态学报.2000,20(3):390-396
    赵天宏,孙加伟,赵艺欣,付宇,王岩,史奕.CO2和O3浓度升高及其复合作用对玉米(Zea mays L.)活性氧代谢及抗氧化酶活性的影响[J].生态学报.2008,28(8):3644-3653
    赵甍,王秀伟,毛子军.不同氮素浓度下CO2浓度,温度对蒙古栎(Quercus mongolica)幼苗叶绿素含量的影响[J].植物研究.2006,26(3):337-341
    郑凤英,彭少麟.植物生理生态指标对大气CO2浓度倍增响应的整合分析[J].植物学报:英文版.2001,43(11):1101-1109
    周洪华,陈亚宁,李卫红,陈亚鹏.干旱区胡杨光合作用对高温和CO2浓度的响应[J].生态学报.2009,29(6):2797-2810
    左闻韵,贺金生,韩梅,吉成均,Flynn DFB,方精云.植物气孔对大气CO2浓度和温度升高的反应-基于在CO2浓度和温度梯度中生长的10种植物的观测[J].生态学报.2005,25(3):565-574

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700