用户名: 密码: 验证码:
钙钛矿型氧化物半导化掺杂与表面吸附光电特性的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SrTiO3是一种钙钛矿型宽禁带氧化物,室温下禁带宽度3.2eV,对可见光透明。适当掺杂后,SrTiO3可变为良好的半导体和导体,应用于宽禁带透明半导体和透明导电领域,如透明薄膜晶体管(transparent thin film transistor, TTFT)、太阳能电池、有机电致发光器件等。特别是利用n型SrTiO3作为TTFT的有源沟道层,本征多晶SrTiO3充当栅绝缘层,制备出的透明全钙钛矿结构TTFT,其电学性能优于传统的非晶硅TFT,这在很大程度上拓宽了TTFT的应用领域。而层状钙钛矿结构氧化物Sr2TiO4具有和SrTiO3类似的电子结构,是一种潜在的宽禁带透明导电氧化物材料。
     目前,研究者已对SrTiO3的半导化掺杂做了大量的研究工作,并取得了一定的进展,但对其电子结构的了解还很匮乏。对层状钙钛矿型透明导电氧化物Sr2TiO4的半导化掺杂工作尚处于起步阶段,急需理论指导。同时,随着微电子器件尺寸持续减小和比表面积增加,半导体材料表面性质对器件性能的影响越来越突出。CO分子吸附在SrTiO3表面,将极大影响SrTiO3表面的电学性质。然而目前这方面的实验信息非常少,相关理论方面的报道也很少。
     基于此,本论文采用基于密度泛函理论的第一性原理计算方法,首先,选择Nb、Sb、La作为施主元素,In、Sc作为受主元素,研究了半导化掺杂对SrTiO3及Sr2TiO4的电学、光学性质及稳定性的影响,为实验上制备光电性能优良的、可用于TTFT的钙钛矿型透明导电薄膜提供理论依据;其次,在构型计算的基础上,研究了CO分子与SrTiO3(100)表面的作用机制,分析讨论了CO吸附SrTiO3(100)表面行为对材料结构和电导率的影响。主要的研究内容及研究结果如下:
     1、选择Nb、Sb、La作为施主元素,研究了n型半导化掺杂对SrTiO3的电学、光学性质及稳定性的影响。计算结果表明:Nb、Sb、La n型掺杂SrTiO3体系的结构稳定。LaSr缺陷和NbTi缺陷在SrTiO3材料中的形成能小于SbTi缺陷的形成能;La、Nb的电离能亦小于Sb的电离能。因而,La和Nb是较好的n型SrTiO3施主掺杂元素。La3+离子和Nb5+离子在母体化合物SrTiO3中完全电离,费米能级进入导带,体系显示n型简并半导体特征。Sb掺杂后,SrTiO3:Sb体系的导带底发生畸变,有一小部分电子被杂质原子周围的Ti原子所束缚。掺杂后,SrTiO3:Nb和SrTiO3:La体系的可见光透过率均有明显的提高,且可见光透过率均高于90%。
     2、选择In、Sc作为受主元素,研究了p型半导化掺杂对SrTiO3的电学、光学性质及稳定性的影响。计算结果表明:In、Sc p型掺杂SrTiO3体系的结构稳定,掺杂仅引起杂质原子近邻区域的几何结构发生较小的变化。In在SrTiO3中的电离能为0.1336eV,小于Sc在SrTiO3中的电离能0.2088eV。但是,InTi缺陷的形成能远大于ScTi缺陷的形成能,InTi缺陷在SrTiO3中较难生成。即在相同的制备条件下,Sc比In更易于掺入到SrTi03材料的晶格中。掺杂后,SrTiO3:In和SrTiO3:Sc体系光学吸收边发生蓝移,掺杂体系的可见光透过率有了明显的提高,在350-625 nm波长范围透过率高于85%。
     3、研究了本征Sr2TiO4晶体的电子结构及光学性质。计算结果表明:在Sr2TiO4晶体中,SrO层的插入,使得SrTiO3层Ti原子在c轴方向的联系被阻断,Ti原子的相互作用被局限在ab平面内,沿c轴方向的Ti-O(2)键的强度弱于ab平面内Ti-O(1)键的强度。Sr2TiO4晶体的吸收带边强烈依赖于电磁场极化方向,其(001)极化方向的吸收带边远大于(100)、(010)方向。这表明在Sr2TiO4透明导电薄膜的制备过程中,沿(001)方向生长的Sr2TiO4材料具有较好的光学透明性。
     4、选择Nb、La作为施主元素,研究了n型掺杂对Sr2TiO4体系的电学、光学性质及稳定性的影响;分析讨论了本征氧空位缺陷对Sr1.9375La0.0625TiO396875几何结构及电学性质的影响。计算结果表明:Nb、Lan型掺杂Sr2TiO4体系的结构稳定。Sr2TiO4材料中LaSr缺陷的形成能小于NbTi缺陷的形成能;La在Sr2TiO4中的电离能为0.1078eV,小于Nb在Sr2TiO4中的电离能0.1345eV。因而,La是较好的n型Sr2TiO4施主掺杂元素。Nb、La掺杂在母体化合物Sr2TiO4中引入了大量由掺杂原子贡献的自由载流子—电子,费米能级进入导带,体系显示n型简并半导体特征。掺杂后,Sr2Nb0.125Ti0.875O4和Sr1.9375LaO.0625TiO4的光学吸收边发生蓝移,掺杂体系的光学透过率有了明显的提高。
     对Sr1.9375La0.0625TiO3.96875体系,Vo易于出现在ab平面的O(1)位置。引入Vo后,Sr1.9375La0.0625TiO3.96875体系导带底产生了一条杂质能级,该杂质能级局域性很强,电活性很差,因而对Sr1.9375La0.0625TiO3.96875体系电导率的贡献很小。
     5、选择In、Sc作为受主元素,研究了p型掺杂对Sr2TiO4体系的电学、光学性质及稳定性的影响。计算结果表明:In、Sc掺杂后,Sr2In0.125Ti0.875O4和Sr2Sc0.125Ti0.875O4体系显示p型简并半导体特征,掺杂体系的稳定性降低。Sr2TiO4材料中ScTi缺陷的形成能远小于InTi缺陷的形成能,Sc的电离能略大于In的电离能。因而,Sc是较好的p型Sr2TiO4受主掺杂元素。此外,Sr2In0.125Ti0.875O4和Sr2Sc0.125Ti0.875O4体系的吸收边变得平缓,光学吸收边发生红移,掺杂Sr2TiO4体系的可见光透过率显著降低。
     6、选择CO分子作为吸附质,研究了CO分子与SrTiO3(100)表面的作用机制,分析讨论了CO对SrTiO3(100)表面电学性质的影响。计算结果表明:CO以物理吸附的方式吸附到SrTiO3(100)表面。吸附时,CO易于以C端向下的方式垂直吸附在SrTiO3(100)表面,且SrTiO3(100)-TiO2终端表面的化学活性大于SrTiO3(100)-SrO终端表面。吸附前后SrTiO3(100)-TiO2终端表面的电学性质不变。
     在SrTiO3(100)-TiO2终端表面引入氧空位后,CO与SrTiO3(100)-TiO2终端表面的相互作用显著增强。SrTiO3(100)-TiO2缺陷表面的电子态密度分布发生显著变化,费米能级Ef附近产生了局域的表面态,费米能级Ef被钉扎在表面态中,从而增加了SrTiO3材料半导化掺杂的难度,使掺杂难以对SrTiO3材料的电导率产生明显的改善。
Strontium titanate(SrTiO3), a typical perovskite material, is a wide-gap oxide with a band gap of about 3.2eV at room temperature. It is transparent in the visible light region. Properly doped with n-type or p-type impurities, SrTiO3 becomes a good semiconductor or conductor. These characteristics become great advantages when SrTiO3 is used in the field of transparent electronics, such as transparent thin film transistor, solar cell, organic light emitting devices, and so on. In particular, the electronic performance of the all-SrTiO3 transparent thin film transistor, in which n-type doped SrTiO3 acts as a conducting channel and stoichiometric SrTiO3 as a dielectric barrier, is superior to that of the conventional amorphous silicon thin film transistor. While the electronic structure of the layered perovskite oxide Sr2TiO4 is similar to that of SrTiO3. It is a candidate for transparent conductive materials. Up to now, although large numbers of research work in n-type and p-type doped SrTiO3 has been carried out and some progress has been made, the electronic structure of n-type and p-type doped SrTiO3 is rarely reported. Research work in n-type and p-type doped Sr2TiO4 is at the initial stage and much theoretical guidance is needed. Meanwhile, with the size scale downward of devices and the increase of specific surface area of devices, the surface properties of semiconductor materials become more and more dominative in the performance of electronic devices. CO molecule that adsorbs on the surface will greatly affect the electrical properties of SrTiO3 surface. However, until now experiments in this respect is lack, the relevant theoretical work is also lack.
     In this thesis, the first-principles calculation based on the density functional theory has been performed to investigate the effect of acceptor and donor doping on the electrical properties, optical properties and structural stability of SrTiO3 and Sr2TiO4. The selected donor element is Nb, Sb and La, and the acceptor element is In and Sc. The theoretical study of n-type and p-type doped SrTiO3 and Sr2TiO4 will be important for the preparation of the perovskite-type transparent conductive films and manufacture of transparent electronic devices (e.g. the all-perovskite transparent thin film transistor).Moreover, the adsorption mechanism of CO on SrTiO3(100)surface is investigated, and the effect of CO adsorption on the geometrical structure and conductivity of SrTiO3(100)surface is discussed. The main research contents and results are as follows:
     1、The effect of Nb, Sb, and La n-type doping on the structural stability, electronic structure, and optical properties of SrTiO3 was investigated by first principles calculations. The calculated results revealed that the Nb, Sb, and La n-type doped SrTiO3 systems are stable. The dopant formation energy of La and Nb in SrTiO3 is smaller than the dopant formation energy of Sb.The ionization energy of La and Nb is also smaller than that of Sb. Therefore, La and Nb is better than Sb for n-type doping of SrTiO3. The La3+ and Nb5+ ions fully act as electron donor in doped SrTiO3, the Fermi level shifts into the bottom of conduction bands(CBs) and the SrTiO3:Nb and SrTiO3:La systems exhibit n-type degenerate semiconductor feature. As for the Sb-doped SrTiO3:Sb, there is a distortion near the bottom of CBs for SrTiO3:Sb after doping. This is an indication that some of the doped electrons have been trapped by the Ti atoms around the impurity atom. The optical transmittance of SrTiO3:Nb and SrTiO3:La improves significantly after n-type doping, and the transmittance is higher than 90% in the visible range.
     2、The effect of In and Sc p-type doping on the structural stability, electronic structure, and optical properties of SrTiO3 was investigated by first principles calculations. The calculated results revealed that the p-type doped SrTiO3:In and SrTiO3:Sc systems are stable and that the partial substitution of In for Ti (or Sc for Ti) merely result in local structural changes around the impurity atoms. The ionization energy of In in SrTiO3 is 0.1336eV, smaller than the ionization energy of Sc(0.2088eV). However, the dopant formation energy of In in SrTiO3 is much larger than the dopant formation energy of Sc. Moreover, a noticeable blue-shift of the absorption spectral edge is observed after doping. The optical transmittance of SrTiO3:In and SrTiO3:Sc improves significantly after p-type doping and the transmittance is higher than 85% in the wavelength region of 350nm to 625nm.
     3、The electronic structure and optical properties of intrinsic Sr2TiO4 were investigated by the first principles calculations. The calculated results revealed that the interaction between the Ti atoms is localized in the ab plane due to the SrO layers distributed in the perovskite network along the c-axis. The bond strength of the Ti-O(2) bond along the c-axis is weaker than that of the Ti-O(1) bond in the ab plane. The absorption spectral edge of is strongly dependent on the polarization direction of the electromagnetic field. The optical absorption edge ofε2//(ω) along the (001) polarization direction appears at a higher energy region. This implies that the c-axis is the most suitable crystal growth direction for obtaining the Sr2TiO4 materials with a wide transparent region.
     4、The effect of Nb and La n-type doping on the structural stability, electronic structure, and optical properties of Sr2TiO4 was investigated by first principles calculations. The electronic structure of La-doped Sr1.9375La0.0625TiO3.96875 was explored in detail. Emphasis is placed on the changes in structural and electrical properties by the simultaneous substitution of La for Sr and the introduction of oxygen vacancies. The calculated results revealed that the doped Sr2Nb0.125Ti0.875O4 and Sr1.9375La0.0625TiO4 systems are stable. The dopant formation energy of La substituting for Sr site is smaller than that of Nb substituting for Ti site. At the same time, the ionization energy of La in SrTiO3 is 0.1078eV, much smaller than the ionization energy of Nb(0.1345eV). Therefore, La is better than Nb for n-type doping of Sr2TiO4. The Nb5+ and La3+ ions fully act as electron donor in doped Sr2TiO4, the Fermi level shifts into the bottom of CBs and the Sr1.9375La0.0625TiO4 and Sr2Nb0.125Ti0.875O4 systems show n-type degenerate semiconductor character. After doping, a noticeable blue-shift of the absorption spectral edge is observed. The optical transmittances of Sr2Nb0.125Ti0.875O4 and Sr1.9375La0.0625TiO4 improve significantly after doping.
     As for the Sr1.9375La0.0625TiO3.96875 system, the oxygen vacancies have a tendency to distribute in the ab planes of the perovskite SrTiO3 layer. An oxygen vacancy related donor level appears near the bottom of CBs for Sr1.9375La0.0625TiO3.96875.The donor level is highly localized and makes little contribution to the electrical activity of Sr1.9375La0.0625TiO3.96875.
     5、The effect of In and Sc p-type doping on the structural stability, electronic structure, and optical properties of Sr2TiO4 was investigated by first principles calculations. The calculated results revealed that the doped Sr2Ino0.125Ti0.875O4 and Sr2Sc0.125Ti0.875O4 systems are p-type degenerate semiconductors. The structural stability of Sr2TiO4 is weakened after In and Sc doping. The dopant formation energy of Sc substituting for Ti site is much smaller than that of In substituting for Ti site. The ionization energy of Sc in Sr2TiO4 is 0.2348eV, slightly larger than the ionization energy of In(0.2147eV). Therefore, Sc is better than In for p-type doping of Sr2TiO4. At the same time, the optical absorption edge becomes smoother and a noticeable red-shift of the absorption spectral edge is observed after doping. The optical transmittance of the doped Sr2In0.125Ti0.875O4 and Sr2Sc0.125Ti0.875O4 reduces badly in the visible range.
     6、The adsorption mechanism of CO on SrTiO3(100)surface was investigated, and the effect of CO adsorption on the geometrical structure and conductivity of SrTiO3(100)surface was discussed. The calculated results revealed that the CO molecule adsorbs weakly on the SrTiO3 (100) surface and it is a weak physisorption. The CO molecule is preferentially adsorbed on the SrTiO3 (100) surface by C-downward and the TiO2-terminated surface is more benefit for CO adsorption than the SrO-terminated surface. The electrical properties of the TiO2-terminated SrTiO3 (100) surface is not changed after CO adsorption.
     After introducing the oxygen vacancy in TiO2-terminated SrTiO3 (100) surface, the interaction between the CO molecule and the SrTiO3 (100) surface is strengthened significantly. The DOS of the TiO2-terminated SrTiO3 (100) defective surface is changed significantly. The localized surface energy band appears near the Fermi level and the Fermi level is pinned in the localized surface stated. This results in that the conductivity of SrTiO3 can not be significantly improved by semiconducting doping.
引文
[1]Minami T., Miyata T. Present status and future prospects for development of non- or reduced-indium transparent conducting oxide thin films[J]. Thin Solid Films,2008, 517(4):1474-1477
    [2]Kim H., Auyeung R.C.Y., Pique A. Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition[J]. Thin Solid Films,2008,516(15):5052-5056
    [3]Ellmer K., Mientus R. Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide[J]. Thin Solid Films,2008,516(14): 4620-4627
    [4]Hirose Y., Yamada N., Nakao S. Large electron mass anisotropy in a d-electron-based transparent conducting oxide:Nb-doped anatase TiO2 epitaxial films[J]. Phys. Rev. B, 2009,79(16):165108-1-165108-5
    [5]Nayak P. K., Yang J., Kim J., et al. Spin-coated Ga-doped ZnO transparent conducting thin films for organic light-emitting diodes[J]. J. Phys. D:Appl. Phys.,2009,42(3):035102-035107
    [6]Wang H. F., Jiao X. L., Liu Q.Z. et al. Transparent and conductive oxide films of the perovskite LaxSr1-xSnO3 (x≤0.15):epitaxial growth and application for transparent heterostructures[J]. J. Phys. D:Appl. Phys.,2010,43(3):035403-035410
    [7]Heo G. S., Matsumoto Y., Gim I. G. et al. Transparent conducting amorphous Zn-In-Sn-O anode for flexible organic light-emitting diodes[J]. Solid State Commun.,2010,150(3-4): 223-226
    [8]李世涛,乔学亮,陈建国.透明导电薄膜的研究现状及应用[J].激光与光电子学进展,2003,40(7):53-59
    [9]Pearton S.J., Ren F., Wang Y. L., et al. Recent advances in wide bandgap semiconductor biological and gas sensors[J]. Progress in Materials Science,2010,55(1):1-59
    [10]黄跃文,章壮健.不连续Pt薄膜对ITO薄膜气敏特性的影响[J].真空科学与技术,1993,13(5):330-334
    [11]Nomura K., Ohta H., Ueda K., et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor[J]. Science,2003,300(5623),1269-1272
    [12]Kwon Y., Li Y., Heo Y. W. et al. Enhancement-mode thin-film field-effect transistor using phosphorus-doped (Zn, Mg)O channel [J].Appl. Phys. Lett.,2004,84(14),2685-2687
    [13]Siddiqui J., Cagin E., Chen D., et al. ZnO thin-film transistors with polycrystalline (Ba,Sr)TiO3 gate insulators [J]. Appl. Phys. Lett.,2006,88(21),212903-1-212903-3
    [14]Sakai M., Seo K., Ohkawa Y., et al. Electron doping into the surface of SrTiO3 single crystal by using a field effect transistor structure having a polyvinyl alcohol gate insulator layer[J].Thin Solid Films,2009,517 (18):5502-5507
    [15]Zhang H. Z., Cao H. T., Chen A. H., et al. Enhancement of electrical performance in In2O3 thin-film transistors by improving the densification and surface morphology of channel layers[J]. Solid State Electronics,2010, doi:10.1016/j.sse.2009.12.025
    [16]张化福,袁玉珍,刘汉法等.掺Al ZnO柔性透明导电薄膜研究进展[J].半导体技术,2008,33(6):461-465
    [17]Yanagi H., Ueda K., Ohta H., et al. Fabrication of all oxide transparent p-n homojunction using bipolar CulnO2 semiconducting oxide with delafossite structure [J]. Solid State Commun.,2002,121(1):15-17
    [18]宋健全,刘正堂.红外增透膜系软件设计及应用[J].红外技术,2001,23(2):1-5
    [19]Kamiya T., Hosono H. Electronic structures and device applications of transparent oxide semiconductors:What is the real merit of oxide semiconductors? [J]. International Journal of Applied Ceramic Technology,2005,2(4):285-294
    [20]Banerjee A. N., Chattopadhyay K. K. Electro-optical properties of all-oxide p-CuA1O2/n-ZnO:Al transparent heterojunction thin film diode fabricated on glass substrate [J]. Central European Journal of Physics,2008,6(1):57-63
    [21]陈新亮,薛俊明,赵颖,耿新华.太阳电池用绒面ZnO—TCO薄膜制备技术及特性的研究进展[J].材料导报,2009,23(5):98-112
    [22]王海峰.锡酸盐基透明导电膜及其在全钙钛矿铁电薄膜器件中的应用[D].合肥:中国科学技术大学,2008
    [23]李喜峰.新型透明导电氧化物薄膜的研究[D].上海,复旦大学,2006
    [24]Lin J.M.,Zhang Y.Z., Ye Z.Z., et al. Nb-doped ZnO transparent conducting films fabricated by pulsed laser deposition[J]. Appl. Surf. Sci.,2009,255(13-14):6460-6463
    [25]Raoufi D. Morphological characterization of ITO thin films surfaces[J]. Appl. Surf. Sci., 2009,255(6):3682-3686
    [26]孙超,陈猛,裴志亮等.透明导电膜ZnO:Al(ZAO)的组织结构与特性[J].材料研究学报,2002,16(2):113-120
    [27]Pei Z. L., Zhang X. B., Zhang G. P., et al. Transparent conductive ZnO:Al thin films deposited on flexible substrates prepared by direct current magnetron sputtering e[J]. Thin Solid Films,2006,497(1-2):20-23
    [28]薛建设,林炜,马瑞新等.(Al, Zr)共掺杂ZnO透明导电薄膜的结构以及光电性能研究[J].液晶与显示,2007,22(5):560-564
    [29]Minami T. Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes[J]. Thin Solid Films,2008,516(17):5822-5828
    [30]陈兆权,刘明海,刘玉萍等.PECVD制备AZO(ZnO:Al)透明导电薄膜[J].物理学报,2009,58(6):4260-4266
    [31]成立顺,孙本双,钟景明等.ITO透明导电薄膜的研究进展[J].稀有金属快报,2008,27(3):10-16
    [32]Furubayashi Y, Yamada N., Hirose Y, et al. Transport properties of d-electron-based transparent conducting oxide:Anatase Ti1-xNbxO2[J].J. Appl. Phys.,2007,101(9): 093705-1-093705-5
    [33]黄树来,马瑾,刘晓梅等.ZnO-SnO2透明导电膜的低温制备及性质[J].半导体学报,2004,25(1):56-59
    [34]Seyed Dorraji M.S., Aber S. Hosseini M.G., et al. Preparation of ZnO, ZnFe2O4 and ZnO-SnO2 nanocrystals and investigation of their photocatalytic activity [J]. International Journal of Nanotechnology,2009,6(10-11):984-996
    [35]Singh M., Mehta B. R. Effect of structural anisotropy on electronic conduction in delafossite tin doped copper indium oxide thin films [J]. Appl. Phys. Lett.,2008, 93(19):192104-1-192104-3
    [36]Ghosh C. K., Popuri S. R., Mahesh T. U., et al. Preparation of nanocrystalline CuAlO2 through sol-gel route[J]. Journal of Sol-Gel Science and Technology,2009,52(1):75-81
    [37]Tetsuka H., Shan Y.J., Tezuka K., et al. Electronic structure calculations of transparent conductor Cd3TeO6:optical properties and the effect of In-substitution[J]. Solid State
    Commun.,2006,137(7):345-349
    [38]Wang H.F., Liu Q.Z., Chen F., et al. Transparent and conductive oxide films with the perovskite structure:La-and Sb-doped BaSnO3 [J]. J. Appl. Phys.,2007,101(10): 106105-1-106105-5
    [39]Ginley D., Roy B., Ode A., Warmsingh C., et al. Non-vacuum and PLD growth of next generation TCO materials[J]. Thin Solid Flilms,2003,445(2):193-198
    [40]Heo G.S., Matsumoto Y., Gim I.G., et al. Transparent conducting amorphous Zn-In-Sn-O anode for flexible organic light-emitting diodes [J]. Solid State Commun., 2010,150(3-4):223-226
    [41]Fortunato E., Barquinha P., Pimentel A., et al. Recent advances in ZnO transparent thin film transistors[J]. Thin Solid Films,2005,487(1-2):205-211
    [42]Liu Q.Z., Wang H. F., Chen F., et al. Single-crystalline transparent and conductive oxide films with the perovskite structure:Sb-doped SrSnO3 [J]. J. Appl. Phys.,2008, 103(9):093709-1-093709-4
    [43]Wager J.F., Transparent electronics [J]. Science,2003,300(5623),1245-1246
    [44]Dimitrakopoulos C. D., Malenfant P.R. L. Organic Thin Film Transistors for Large Area Electronics [J]. Adv. Mater.,2002,14(2):99-117
    [45]梁俊华,基于薄膜晶体管应用的功能薄膜AlN和ZnO的生长与特性研究[D].浙江,浙江大学,2006
    [46]程松华.ZnO薄膜晶体管有源层的磁控溅射制备研究[D].武汉,华中科技大学,2006
    [47]Fortunato E. M. C., Barquinha P. M. C., Pimentel A. C. M. B. G., et al.Wide bandgap high mobility ZnO thin film transistors produced at room temperature [J]. Appl. Phys. Lett.,2004,85(13):2541-2543
    [48]Hoffman R. L., Norris B. J., Wager J. F. ZnO-based transparent thin film transistors[J]. Appl. Phys. Lett.,2003,82(5):733-735
    [49]Nomura K., Ohta I., Takagi A., et al. Room temperature fabrication of transparent flexible thin film transistors using amorphous oxide semiconductors[J]. Nature,2004,432(25):488-492.
    [50]刘维峰.ZnO:Al透明导电薄膜和ZnO发光器件的制备及特性研究[D].大连,大连理工大学,2006
    [51]Van Benthem, K., Elsassser,C.,French R.H. Bulk electronic structure of SrTiO3: Experiment and theory[J]. J. Appl. Phys.,2001,90(12):6156-6164
    [52]张亦文,李晓民,赵俊亮等.脉冲激光沉积法生长In掺杂SrTiO3薄膜及其微观结构研究[J].无机材料学报,2008,23(3):531-534
    [53]Zhao H., Gao F., Li X., et al. Electrical properties of yttrium doped strontium titanate with A-site deficiency as potential anode materials for solid oxide fuel cells[J].Solid State Ionics,2009,180(2-3):193-197
    [54]Higuchi T., Tsukamoto T., Kobayashi K., et al. Electronic structure in the band gap of lightly doped SrTiO3 by high-resolution x-ray absorption spectroscopy[J].Phys. Rev. B, 2000,61(19):12860-12863
    [55]Wang H. H., Cui D. F., Dai S. Y, et al.Optical and transport properties of Sb-doped SrTiO3 thin films[J]. J. Appl. Phys.,2001,90(9):4664-4667
    [56]Wang H.H., Chen F., Dai S.Y., et al. Sb-doped SrTiO3 transparent semiconductor thin films[J]. Appl. Phys. Lett.,2001,78(12):1676-1678
    [57]Chou J. H., Chou H. J. Optical transparency of metallic La0.5Sr0.5TiO3+δ thin films[J]. Appl. Phys. Lett.2001,79(10):1426-1428
    [58]Pan F., Rogers C.T. Electric field tuning of superconductivity in lanthanum-doped strontium titanate field-effect transistors [J]. Phys. Rev. B,2005,72(9):094520-1-094520-7
    [59]Shibuya K., Ohnishi T., Uozumi T., et al. The effect of annealing on SrTiO3 field-effect transistor devices[J]. Thin Solid Films,2005,486(1-2):195-199
    [60]Z.Wang, S. Tsukimoto, M Saito, et al. Quantum electron transport through-SrTiO3: Effects of dopants on conductance channel [J]. Appl. Phys. Lett:2009, 94(25):252103-1-252103-3
    [61]Bellingeri E., Pellegrino L., Marre D., et al. All-SrTiO3 field effect devices made by anodic oxidation of epitaxialsemiconducting thin films[J]. J. Appl. Phys.,2003, 94(9):5976-5981
    [62]Matsuno J., Okimoto Y, Kawasaki M., et al. Variation of the electronic structure in systematically synthesized Sr2MO4(M=Ti, V, Cr, Mn, and Co)[J].Phys. Rev. Lett.,2005, 95(17):176404-1-176404-4
    [63]Sohn J.H., Inaguma Y., Itoh M., et al. Cooperative interaction of oxygen octahedra for dielectric properties in the perovskite-related layered compounds Srn+1TinO3n+1, Can+1TinO3n+1, Srn+1(Ti0.5Sn0.5)nO3n+1(n=1,2,3 and ∞)[J]. Materials Science and Engineering B,1996,41(1):50-54
    [64]Inaguma Y., Nagasawa D., Katsumata T. Photoluminescence of praseodymium-doped Srn+1TinO3n+1(n=1,2,∞)[J].Japanese Journal of Applied Physics,2005,44(1B):761-764
    [65]崔大复,王焕华,戴守愚等.Sb掺杂SrTiO3透明导电薄膜的光电子能谱研究[J].物理学报,2002,51(1):187-191
    [66]Ianculescu A., Braileanu A., Voicu G. Synthesis, microstructure and dielectric properties of antimony-doped strontium titanate ceramics[J]. Journal of the European Ceramic Society,2007,27(2-3):1123-1127
    [67]Marques A.C., Correia J.G., Wahl U., Soares J.C. Study of point defects and phase transitions in undoped and Nb-doped SrTiO3 using perturbed angular correlations[J]. Nuclear Instruments and Methods in Physics Research B,2007,261(1-2):604-607
    [68]Takizawa M., Maekawa K., Wadati H., et al. Angle-resolved photoemission study of Nb-doped SrTiO3[J].Phys. Rev. B,2009,79(11):113103-1-113103-4
    [69]Leitner A., Rogers C. T., Price J. C., et al. Pulsed laser deposition of superconducting Nb-doped strontium titanate thin films[J].Appl. Phys. Lett.,1998,72(23):3065-3067
    [70]Ishida Y., Eguchi R., Matsunami M., et al. Coherent and incoherent excitations of electron-doped SrTiO3[J]. Phys. Rev. Lett.,2008,100(5):056401-1-056401-4
    [71]Blennow P., Hagen A., Hansen K. K., et al. Defect and electrical transport properties of Nb-doped SrTiO3[J]. Solid State Ionics,2008,179(35-36):2047-2058.
    [71]Sanchez P., Stashans A. Computational study of Nb-doped SrTiO3[J]. Materials Letters, 2003,57(12):1844-1847
    [72]Luo W., Duan W., Louie S.G., et al. Structural and electronic properties of n-doped and p-doped SrTiO3[J].Phys. Rev. B,2004,70(21):214109-1-214109-8
    [73]Irie H.; Maruyama Y. Hashimoto K. Ag+-and Pb2+-doped SrTiO3 photocatalysts. A correlation between band structure and photocatalytic activity[J]. J. Phys. Chem. C, 2007,111(4):1847-1852
    [74]Mi Y.Y., Wang S.J., Chai J.W., et al. Effects of nitrogen doping on optical properties and electronic structures of SfTiO3 films[J].Appl:Phys.Lett.,2006,89(23):231922-1-231922-3
    [75]Higuchi T., Tsukamoto T., Taguchi Y., et al. Electronic structure for the metal-insulator transition in La1-xSrxTiO3 probed by resonant soft-x-ray emission spectroscopy[J]. Physica B,2004,351(3-4):310-312
    [76]Higuchi T., Tsukamoto T., Watanabe M., et al. Crystal-field. splitting and the on-site Coulomb energy of LaxSr1-xTiO3 from resonant soft-x-ray emission spectroscopy[J]. Phys. Rev. B,1999,60(11):7711-7714
    [77]Escudero M.J., Irvine J.T.S., Daza L., et al. Development of anode material based on La-substituted SrTiO3 perovskites doped with manganese and/or gallium for SOFC [J].Journal of Power Sources,2009,192(1):43-50
    [78]Liang S., Wang D.J., Sun J.R., Shen B.G. Effect of oxygen content on the transport properties of La-doped SrTiO3 thin films[J].Solid State Commun.,2008,148(9-10): 386-389
    [79]Higuchi T., Tsukamoto T., Kobayashi K., et al. Electronic structure in the band gap of lightly doped SrTiO3 by high-resolution x-ray absorption spectroscopy[J]. Phys. Rev. B, 2000,61(19):12860-12863
    [80]Liu B. T., Maki K., So Y., et al. Epitaxial La-doped SrTiO3 on silicon:A conductive template for epitaxial ferroelectrics on silicon[J].Appl. Phys.Lett.,2002,80(25): 4801-4803
    [81]Sugimoto W., Shirata M., Takemoto M., et al. Synthesis and structures of carrier doped titanates with the Ruddlesden-Popper structure (Sr0.95 La0.05) n+1TinO3n+1 (n=1,2) [J]. Solid State Ionics,1998,108(1-4):315-319
    [82]Lee K.H., Kim S.W., Ohta H., et al. Ruddlesden-Popper phases as thermoelectric oxides:Nb-doped SrO(SrTiO3)n(n=1,2)[J]. J. Appl. Phys.,2006,100(6):063717-1-063717-7
    [83]Miwa K., Kagomiya I., Ohsato H. et al. Electrical properties of the Sr2Ru1-xTixO4 solid solutions[J]. Journal of the European Ceramic Society,2007,27 (13-15):4287-4290
    [84]Wang Y.F., Lee K.H., Ohta H., et al. Fabracation and thermoelectric properties of heavily rare-earth metal-doped SrO(SrTiO3)h(n=1,2) ceramics[J]. Ceramics International,2008, 34(4):849-852
    [85]Wang Y.F., Lee K.H., Ohta H., et al. Thermoelectric properties of electron doped SrO(SrTiO3)n(n=1,2) ceramics[J]. J. Appl. Phys.,2009,105(10):103701-1-103701-6
    [86]张军.功能ZnO薄膜的制备与性能研究[D].兰州,兰州大学,2007
    [87]陈苏,李嘉烨,吴金平.氧化性与还原性气体对氧化铟及氧化铟锡(100)表面的修饰作用[J].武汉理工大学学报,2009,55(3):273-278
    [88]王雅欣.ZnO:Al透明导电膜的性能研究及其在薄膜太阳能电池上的应用[D].天津,河北工业大学,2004
    [89]Azad S., Engelhard M. H., Wang L. Q. Adsorption and reaction of CO and CO2 on oxidized and reduced SrTiO3(100) Surfaces[J]. J.Phys. Chem. B,2005,109(20): 10327-10331
    [90]Yun J. N., Zhang Z, Y., Zhang F. C. Chin. Phys. Lett.,2008,25(9):3364-3367
    [91]Yun J. N., Zhang Z. Y., Zhang F. C. Chin. Phys. Lett,2010,27(1):017107-1-017107-4
    [92]Schooley J. F., Hosler W. R., Ambler E., et al. Dependence of the superconducting transition temperature on carrier concentration in semiconducting SrTiO3[J]. Phys. Rev.Lett.,1965,14(9):305-307
    [93]Leitner A., Rogers C.T., Price J.C., et al. Pulsed laser deposition of superconducting Nb-doped strontium titanate thin films[J]. Appl. Phys.Lett.,1998,72(23):3065-3067
    [94]Koonce C. S., Cohen M. L., Schooley J. F., et al. Superconducting Transition Temperatures of Semiconducting SrTiO3[J].Phys. Rev. Lett.,1967,163(2):380-390
    [95]Zhao T., Lu H., Chen F., et al. Highly conductive Nb doped SrTiO3 epitaxial thin films grown by laser molecular beam epitaxy [J] Journal of Crystal Growth,2000,212(3-4): 451-455
    [96]Tomio T., Miki H., Tabata, H, et al. Control of electrical conductivity in laser deposited SrTiO3 thin films with Nb doping [J] J. Appl. Phys.,1994,76(10):5886-5890
    [97]Zhu Y. L., Ma X. L., Li D. X., et al. Microstructural analyses of a highly conductive Nb-doped SrTiO3 film[J] Acta Materialia,2005,53(5):1277-1284
    [98]Blennowa P., Hagen; A., Hansen K. K., et al. Defect and electrical transport properties of Nb-doped SrTiO3[J]. Solid State Ionics,2008,179(35-36):2047-2058
    . [99] Guo X.G., Chen X.S., Lu W. Optical properties of Nb doped SrTiO3 from first principles study[J]. Solid State Commun.,2003,126(8):441-446
    [100]Zhang C., Wang C.L., Li J.C., et al. Substitutional position and insulator-to-metal transition in Nb-doped SrTiO3[J].Materials Chemistry and Physics,2008,107(2-3): 215-219
    [101]Hamid A.S. Atomic and electronic structure of oxygen vacancies and Nb-impurity in SrTiO3[J]. Appl. Phys. A,2009,97(4):829-833
    [102]Fujimori A., Hase I., Nakamura M., et al. Doping-induced changes in the electronic structure of LaxSr1_xTiO3:Limitation of the one-electron rigid-band model and the Hubbard model[J].Phys. Rev. B,1992,46(15):9841-9844
    [103]Tokura Y., Taguchi Y., Okada Y, et al. Filling dependence of electronic properties on the verge of metal-Mott-insulator transition in Sr1-xLaxTiO3[J].Phys. Rev. Lett.1993,70(14): 2126-2129
    [104]Olaya D., Pan F., Rogers C.T., et al. Electrical properties of La-doped strontium titanate thin films[J].Appl. Phys. Lett.,2002,80(16):2928-2930
    [105]Zhu X.B., Liu S.M., Hao H.R., et al. Chemical solution deposition preparation of Sr1-xLaxTiO3 (0≤x≤0.4) buffer layers for YBCO coated conductors[J]. Physica C, 2005,418(1-2):59-62
    [106]Olaya D., Pan F., Rogers C.T., et al. Superconductivity in La-doped strontium titanate thin films[J].Appl. Phys. Lett.,2004,84(20):4020-4022
    [107]Kim K., Kwon Y.W., Norton D.P., et al. Epitaxial (La,Sr)TiO3 as a conductive buffer for high temperature superconducting coated conductors [J]. Solid-State Electronics,2003, 47(12):2177-2181
    [108]赵海雷,黄贤良,李雪等.固体氧化物燃料电池LaxSr1-xTiO3阳极材料的电导性能[].材料研究学报,2007,21(3):255-260
    [109]陈乐,刘亲壮,王海峰等.钙钛矿型氧化物透明导电薄膜La:SrTiO3的制备、结构与物性研究[J].低温物理学报,2009,31(2):97-101
    [110]Liebsch A. Doping-driven Mott transition in La1-xSrxTiO3 via simultaneous electron and hole dopingof t2g subbands as predicted by LDA+DMFT calculations[J]. Phys. Rev. B; 2008,77(11):115115-1-115115-5
    [111]Shanthi N., Sarma D. D. Electronic structure of electron doped SrTiO3:SrTiO3-δ and Sr1-xLaxTiO3[J]. Phys. Rev. B,1998,57(4):2153-2158
    [112]Stashans A., Sanchez P. A theoretical study of La-doping in strontium titanate[J]. Materials Letters,2000,44(3-4):153-157
    [113]Thomas B. S., Marks N. A., Harrowell P. Inversion of defect interactions due to ordering in Sr1-3x/2LaxTi03 perovskites:An atomistic simulation study[J]. Phys. Rev. B, 2006,74(21):214109-1-214109-11
    [114]Sanchez P., Stashans A. Computational studies and comparison of Nb- and La-doped SrTiO3[J].Phys. Stat. Sol. (B),2002,230(2):397-400
    [115]Wei W., Dai Y., Guo M., et al. Density functional characterization of the electronic structure and optical properties of N-doped, La-doped, and N/La-codoped SrTiO3[J]. J. Phys. Chem. C,2009,113(33):15046-15050
    [116]王焕华,戴守愚,崔大复等.SrTi1-xSbxO3透明导电薄膜的光电子能谱研究.[J]北京同步辐射装置年报,2000,1:215-218
    [117]Ianculescu A., Braileanu A., Voicu G., et al. Formation and properties of some antimony-doped-strontium titanate ceramics[J]. Journal of Optoelectronics and Advanced Materials,2006,18(2):548-552
    [118]Dai S, Lu H., Chen F., et al. In-doped SrTiO3 ceramic thin films[J]. Appl. Phys. Lett., 2002,80(19):3545-3547
    [119]Guo H., Liu L., Fei Y., et al. Optical properties of p-type In-doped SrTiO3 thin films [J]. J. Appl.Phys.,2003,94(7):4558-4562
    [120]Zhang M., Ma X. L., Li D. X., et al. Patterned nanoclusters in the indium-doped SrTiO3 films[J].Appl. Phys. Lett.,2004,85(24):5899-5901
    [121]Fix T., Bali R., Stelmashenko N., et al. Influence of the dopant concentration in In-doped SrTiO3 on the structural and transport properties [J]. Solid State Commun., 2008,146(9-10):428-430
    [122]Higuchi T., Tsukamoto T., Kobayashi K., et al. Direct evidence of p-type SrTiO3 by high-resolution x-ray absorption spectroscopy[J]. Phys. Rev. B,2001,65(3): 033201-1-033201-4
    [123]Higuchi T., Tsukamoto T., Sata N., et al. Electronic structure of p-type SrTiO3 by photoemission spectroscopy[J].Phys. Rev. B,1998,57(12):6978-6983
    [124]Higuchi T., Tsukamoto T., Sata N., et al. Hole-state and defect structure of proton conductor SrTiO3 observed by high-resolution X-ray absorption spectroscopy[J]. Solid State Ionics,2000,136-137:261-264
    [125]Higuchi T., Tsukamoto T., Sata N., et al. Electronic structures of protonic conductors SrTiO3 and SrCeO3 by O ls X-ray absorption spectroscopy[J]. Solid State Ionics,2002, 154-155:735-739
    [126]Sata N., Ishigame M., Shin S. Optical absorption spectra of acceptor-doped SrZrO3, and SrTiO3 perovskite-type proton conductors[J]. Solid State Ionics,1996,86-88:629-632
    [127]Higuchi T., Tsukamoto T., Yamaguchi S., et al. Observation of acceptor level of p-type SrTiO3 by high-resolution soft-X-ray absorption spectroscopy[J]. Nuclear Instruments and Methods in Physics Research B,2003,199:255-259
    [128]Tkach A., Vilarinho P. M. Scandium doped strontium titanate ceramics:structure, microstructure, and dielectric properties [J]. Bol. Soc. esp. Ceram.,2008,47(4):238-241
    [129]Zhao K.L., Chen D., Li D.X. Electronic structure and optical properties of In doped SrTiO3/MgO(001)[J]. Journal of Alloys and Compounds,2009,485(1-2):598-603
    [130]Yun J.N., Zhang Z.Y., Deng Z.H, et al. First-principle calculation of the electronic structure of Sb-doped SrTiO3[J]. Chinese Journal of Semiconductors.2006,27(9): 1537-1542
    [131]Yun J.N., Zhang Z.Y., Zhang F. C., Study of electronic structure and conductivity of Nb-doped SrTiO3 by density functional theory, Nano/Micro Engineered.and Molecular Systems, NEMS 2008.3rd IEEE International Conference,2008,664-668
    [132]Zhang Z.Y., Yun J.N., Zhang F. C. Study of electronic structure and optical properties of In-doped SrTiO3 by density function theory[J].Chin..Phys.,2007,16(9):2791-2797
    [133]Yun J.N., Zhang Z.Y., Yan J.F.,et al. Electronic structure and optical properties of La-doped SrTiO3 and Sr2Ti04 by density functional theory [J].Chin. Phys. Lett.,2009, 26(1):017107-1-017107-4
    [134]Yun J.N., Zhang Z.Y., Yan J.F.,et al. First principles study of La and Sb-doping effects on the electronic structure and optical properties of SrTiO3[J].Chin. Phys. B,2010, 19(1):017101-1-017101-8
    [135]Yun J.N., Zhang Z.Y., Effect of In and Sc doping on the electronic structure and optical properties of SrTiO3[J]. Acta. Phys. Chim. Sin.,2010,26(3):751-757
    [136]负江妮.基于密度泛函理论的钛酸锶电子结构及属性研究[D].西安,西北大学,2007
    [137]Ueno K., Inoue I. H., Ako H., et al. Field-effect transistor on SrTiO3 with sputtered A12O3 gate insulator[J].Appl. Phys. Lett.,2003,83(9),1755-1757
    [138]Pan F., Olaya D., Price J. C., et al. Field-effect transistor on SrTiO3 with sputtered Al2O3 gate insulator[J].Appl. Phys. Lett.,2004,84(9),1573-1575
    [139]Shibuya K., Ohnishi T., Lippmaa M., et al. Single crystal SrTiO3 field-effect transistor with an atomically flat amorphous CaHfO3 gate insulator[J]. Appl. Phys. Lett.2004, 85(3):425-427
    [140]Shibuya K., Ohnishi T., Uozumi T., et al. Field-effect modulation of the transport properties of nondoped SrTiO3[J].Appl. Phys. Lett.,2006,88(21):212116-1212116-3
    [141]Takahashi K. S., Gabay M., Jaccard D., et al. Local switching of two-dimensional superconductivity using the ferroelectric field effect[J].Nature,2006,441(7090): 195-198
    [142]Ueno K., Nakamuras S., Shimotani H., et al. Electric-field-induced superconductivity in an insulator[J]. Nature Materials,2008,7(11):855-858
    [143]L. Pellegrino, E. Bellingeri, I. Pallecchi, et al. SrTiO3 based side gate field effect transistor realized by submicron scale AFM induced local chemical reactions[J]. Journal of Electroceramics,2004,13:331-337
    [144]Sakai M., Seo K., Ohkawa Y., et al. Electron doping into the surface of SrTiO3 single crystal by using a field effect transistor structure having a polyvinyl alcohol gate insulator layer[J].Thin Solid Films,2009,517(18):5502-5507
    [145]Wise P.L., Reaney I.M., Lee W.E., et al. Structure-microwave property relations in (SrxGa1-x)n+1TinO3n+1[J]. Journal of European Ceramic Society,2001,21(10-11): 1723-1726
    [146]Patel R., Simon C., Weller M. T. LnSrScO4(Ln=La, Ce, Pr, Nd and Sn)systems and structure correlations for A2BO4(K2NiF4)structure types[J]. Journal of Solid State Chemistry,2007,180(1):349-359
    [147]Li Y., Chen G., Zhang H.,et al. Electronic structure and photocatalytic properties of ABi2Ta2O9[J]. Journal of Solid State Chemistry,2008,181(10):2653-2659
    [148]Baek S. W., Kim J. H., Bae J.Characteristics of ABO3 and A2BO4(A=Sm, Sr; B=Co, Fe, Ni) samarium oxide system as cathode materials for intermediate temperature-operating solid oxide fuel cell[J]. Solid State Ionics,2008,179(27-32):1570-1574
    [149]张雪黎,罗来涛.A2BO4类钙钛矿型复合氧化物在催化领域的应用研究进展[J].工业催化,2006,14(3):6-10
    [150]Chatterjee S., Mahapatra P. K., Singh A. K., et al. Structural, electrical and dielectric properties of Na2W4O13 ceramic[J]. Journal of Materials Science Letters,2004, 22(2):99-101
    [151]Paranthaman M., Aruchamy A., Aravamudan G., et al. Photoelectrochehical studies on the mixed oxides, SrTiO3, Sr2TiO4 and Sr3Ti2O7[J]. Materials Chemistry and Physics, 1986,14(4):349-365
    [152]Shimura T., Suzuki K., Iwahara H., Conduction properties of Mg-, Fe-or Co-substituted Sr2Ti04 at elevated temperatures [J]. Solid State Ionics,1999,125(1-4):313-318
    [153]Zhou N., Chen G., Xian H.Z., et al. Synthesis of SrO(SrTiO3)n (n= 1,2, oo) compounds and electronic structure analysis[J].Materials Research Bulletin,2008,43(10): 2554-2562
    [154]Zhou N., Chen G., Zhang H.J., et al. Computational and experimental studies of optical absorption properties of perovskite-layered SrO(SrTiO3)n (n= 1,2,...,∞)[J]. Journal of Alloys and Compounds,2009,477(1-2):L17-L20
    [155]Riedl T., Gemming T., Weissbach T., et al. ELNES study of chemical solution deposited SrO(SrTiO3)n Ruddlesden-Popper films:Experiment and simulation[J]. Ultramicroscopy,2009,110(1):26-32
    [156]Clima S., Pourtois G, Menou N., et al. Sr excess accommodation in ALD grown SrTiO3 and its impact on the dielectric response[J]. Microelectronic Engineering,2009, 86(7-9):1936-1938
    [157]Gutmann E., Levin A. A., Reibold M., et al. Oriented growth of Srn+1TinO3n+1 Ruddlesden-Popper phases in chemical solution deposited thin films[J]. Journal of Solid State Chemistry,2006,179:(6) 1864-1869
    [158]Fisher P., Wang S., Skowronski M., Salvador P.A., A series of layered intergrowth phases grown by molecular beam epitaxy:SrmTiO2+mO2+m(m=1-5). Appl. Phys. Lett.,2007, 91(25):252901-1-252901-3
    [159]Cockroft N. J., Lee S. H., Wright J.C., Site-selective spectroscopy of defect chemistry in SrTiO3, Sr2Ti04, and Sr3Ti207[J]. Phys. Rev. B,1991,44(9):4117-4126
    [160]Haeni J. H., Theis C. D., Schlom D. G., et al. Epitaxial growth of the first five members of the Srn+1TinO3n+1 Ruddlesden-Popper homologous series[J]. Appl. Phys. Lett.,2001, 78(21):3292-3294
    [161]Shibuya K., Mi S., Jia C. L., et al. Sr2TiO4 layered perovskite thin films grown by pulsed laser deposition[J]. Appl. Phys. Lett.,2008,92(24):241918-1-241918-3
    [162]Hungria T., Maclaren I., Fuess H., et al. HREM studies of intergrowths in Sr2[Srn-1TinO3n+1] Ruddlesden-Popper phases synthesized by mechanochemical activation[J]. Materials Letters,2008,62 (17-18):3095-3098
    [163]Mccoy M. A., Grimes R. W., Lee W. E. Phase stability and interfacial structures in the SrO-SrTiO3 system[J]. Philosophical Magazine A,1997,75(3):833-846
    [164]Noguera C. Theoretical investigation of the Ruddlesden-Popper compounds Srn+1TinO3n+1(n=1-3)[J]. Philosophical Magazine Letters,2000,80(3):1.73-180
    [165]Fennie C. J., Rabe K. M. Structural and dielectric properties of Sr2TiO4 from first principles[J].Phys. Rev. B,2003,68(18):184111-1-184111-9
    [166]Weng H., Kawazoe Y, Wan X., Dong J. Electronic structure and optical properties of layered perovskites Sr2MO4(M=Ti, V, Cr, and Mn):An ab initio study[J]. Phys. Rev. B, 2006,74(20):205112-1-205112-9
    [167]陈学龙.Sr2MO4单晶的第一性原理研究[D].济南,山东大学,2008
    [168]Viennois R., Giannini E., Koza M., Sauvajol J. L. Lattice dynamics of Sr2TiO4[J]. Journal of Physics:Conference Series,2007,92(1):012172-1-012172-4
    [169]Yun J. N., Zhang Z. Y, Yan J. F., et al. Effect of In-doping on the electronic structure and opticalproperties of Sr2Ti04[J].Chin. Phys. Lett.,2009,26(6):067102-1-067102-4
    [170]Yun J. N., Zhang Z. Y., Electronic structure and optical properties of Nb-doped Sr2Ti04 by density function theory calculation[J]. Chin. Phys. B,2009,18(7):2945-2952
    [171]Yun J. N., Zhang Z. Y, Yan J. F., et al. First-principles study of structural stability and electronic structure of La-doped Sr1.9375La0.0625TiO3.96875[J]. J.Appl. Phys.,2010, Accepted
    [172]杜娟.P型透明导电氧化物薄膜的研究[D].浙江,浙江大学:2006
    [173]胡军.ZnO材料中的缺陷和掺杂的理论研究[D].合肥,中国科学技术大学,2009
    [174]熊志华.ZnO掺杂改性的第一性原理研究[D].南昌,南昌大学,2008
    [175]张芳英.ZnO系列和过渡金属掺杂GaN体系几何结构与电子性质的第一性原理研究[D].上海,复旦大学,2007
    [176]周昌杰.半导体掺杂和表面若干稳定结构及其性质[D].厦门,厦门大学,2009
    [177]龙闰.金刚石和氮化锌半导体材料电子性质研究[D].济南,山东大学,2008
    [178]李春.氧化锌及其纳米结构:基于第一原理的物理力学研究[D].南京,南京航天航空大学,2007
    [179]Born M., Huang K. Dynamical Theory of Crystal Lattices[M].Oxford:Oxford University Press,1954
    [180]Hartree D. R., Proc. Cam. Phil. Soc.,1928,24:89
    [181]Fock V Z., Phys.,1930,61:209
    [182]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,2000
    [183]Hohenberg P., Kohn W. Inhomogeneous electron gas [J]. Phys. Rev.,1964,136(3B): B864-B871.
    [184]Kohn W. Nobel Lecture:Electronic structure of matter-wave functions and density functionals [J]. Rev. Mod. Phys.,1998,71(5):1253-1266
    [185]Kohn W., Sham L. J. Self-consistent equations including exchange.and correlation effects [J]. Phys. Rev.,1965,140(4A):A1133-A1138
    [186]Sterne P. A., Inkson J. C. Exchange-correlation potential in semiconductors and insulators[J]. J. Phys. C:Solid State Phys.,1984,17 (9):1497-1510
    [187]Lee C., Yang W., Parr R. C. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys.Rev. B,1988,37(2):785-789.
    [188]Ceplerley D. M., Alder B. J. Ground state of the electron gas by a stochastic method [J]. Phys. Rev. Lett.,1980,45(7):566-569
    [189]Perdew J. P., Chevary J. A., Vosko S. H., et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J].Phys. Rev. B,1992,46(11):6671-6687
    [190]Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett.,1996,77(18),3865-3868
    [191]Hammer B., Hansen L. B.,Norskov J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J].Phys. Rev. B,1999,59(11):7413-7421
    [192]Segall M. D., Lindan P. J.. D., Probert M. J., et al., First-principles simulation:ideas, illustrations and the CASTEP code[J]. J. Phys. Cond:Matt.,2002,14(11):2717-2744
    [193]http://www.accelrys.com
    [194]Clark S. J., Segall M. D., Pickard C. J., et al., First principles methods using CASTEP[J]. Zeitschrift fur Kristallographie,2005,220(5-6):567-570
    [195]Hamann D. R.,Schluter M., Chiang C. Norm-conserving pseudopotentials[J]. Phys. Rev. Lett.,1979,43(20):1494-1497
    [196]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys. Rev. B,1990,41(11):7892-7895
    [197]黄昆.固体物理学,高等教育出版社,第一版,1988
    [198]James CM.Li Charged dislocations and plasto-electric effect in ionic crystals[J]. Materials Science and Engineering A,2000,287(2):265-271
    [199]Mulliken R. S. J., Chem. Phys.,1955,23:1833-1846
    [200]Segall M. D., Pickard C. J., Shah R., Payne M. C. Population analysis in plane wave electronic structure calculations[J]., Mol. Phys.,1996,89(2):571-577
    [201]Segall M. D., Pickard C. J., Shah R., Payne, M. C. Population analysis of plane-wave electronic structure calculations of bulk materials[J].Phys. Rev. B,1996,54(23): 16317-16320
    [202]Delley B., B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J].J. Chem. Phys.,1990,92(1):508-517
    [203]Pfrommer B. G., Cote, M., Louie S. G., Cohen M. L. Relaxation of crystals with the Quasi-Newton Method[J]. J. Comput. Phys.,1997,131(1):233-240
    [204]Monkhorst H. J., Pack J. D. Special points for Brillouin-zone integrations [J]. Phys. Rev. B,1976,13(12):5188-5192
    [205]Saha S., Sinha T. P.,Mookerjee, A. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3[J].Phys. Rev. B,2000,62(13):8828-8834
    [206]Xiao B., Feng J., Zhou C. T.,et al.First principles study on the electronic structures and stability of Cr7C3 type multi-component carbides[J].Chemical Physics Letters,2008, 459(1-6):129-132
    [207]Xiao B., Xing J. D., Feng J., et al. Theoretical study on the stability and mechanical property of Cr7C3[J]. Physica B:Condensed Matter,2008,403(13-16):2273-2281
    [208]方俊鑫,陆栋.固体物理学,上海科学技术出版社,第一版,1980
    [209]Hashimoto S., Kindermann L., Poulsen F. W., Mogensen M. A study on the structural and electrical properties of lanthanum-doped strontium titanate prepared in air[J].J. Alloy. Compd.,2005,397(1-2):245-249
    [210]Van de Walle C. G., Neugebauer J. First-principles calculations for. defects and impurities:Applications to Ⅲ-nitrides [J]. J. Appl. Phys.,2004,95(8):3851-3879
    [211]杜娟,季振国.III族元素掺杂对SnO2电子结构及电学性能的影响[J].物理学报,2007,56(4):2388-2392
    [212]王超.p型ZnO薄膜的制备及掺杂机理研究[D].浙江,浙江大学,2006
    [213]Ghebouli B., Ghebouli M.A., Chihi T., et al. First-principles study of structural, elastic, electronic and optical properties of SrMO3 (M=Ti and Sn)[J]. Solid State Commun., 2009,149(47-48):2244-2249
    [214]Sham L. J., Schluter M. Density-functional theory of the energy gap[J]. Phys. Rev. Lett., 1983,51(20):1888-1891
    [215]Burstein E. Anomalous optical absorption limit in InSb[J]. Phys:Rev.,1954,93(3): 632-633
    [216]李标荣,陈万平,庄严.SrTiO3压敏电阻的化学蜕变[J].电子元件与材料,2005,24(2):42-44
    [217]Shen Z.J., Chen W.P., Zhu K., et al. Hydrogen-induced degradation induced SrTiO3-based grain boundary barrier layer ceramic capacitors [J]. Ceramics International, 2009,35:953-956
    [218]Lin F., Wang S., Zheng F., et al. Hydrogen-induced metallicity of SrTiO3 (001) surfaces: A density functional theory study[J]. Phys. Rev. B,2009,79(3):035311-1-035311-7
    [219]Bickel N., Schmidt G., Heinz K., Muller K. Ferroelectric relaxation of the SrTiO3(100) surface[J]. Phys. Rev. Lett.,1989,62(17):2009-2011
    [220]Hikita T., Hanada T., Kudo M., Kawai M. Structure and electronic state of the TiO2 and SrO terminated SrTiO3(100) surfaces[J].Surface Science,1993,287/288:377-381
    [221]Herger R., Willmott P. R., Bunk O., et al. Surface of strontium titanate[J]. Phys. Rev. Lett.,2007,98(7):076102-1-076102-4
    [222]Kareev M., Prosandeev S., Liu J., et al. Atomic control and characterization of surface defect states of TiO2 terminated SrTiO3 single crystals[J].Appl. Phys. Lett.,2008,93(6): 061909-1-061909-3
    [223]Radovic M., Lampis N., Granozio F. M., et al. Growth and characterization of stable SrO-terminated SrTiO3 surfaces[J].Appl. Phys. Lett.,2009,94(2):022901-1-022901-3
    [224]Herger R., Willmott P. R., Bunk O., et al. Surface structure of SrTiO3(001)[J].Phys. Rev. B,2007,76(19):195435-1-195435-18
    [225]Heifets E., Eglitis R. I., Kotomin E. A., et al. Ab initio modeling of surface structure for SrTiO3 perovskite crystals[J]. Phys. Rev. B,2001,64(23):235417-1-235417-5
    [226]Cai M. Q., Zhang Y. J., Yang G. W., et al. Ab initio study of structural and electronic properties of SrTiO3(001) oxygen-vacancy surfaces[J]. J. Chem. Phys.,2006, 124(17):174701-1-174701-7
    [227]Chiaramonti A. N., Lanier C. H., Marks L. D., Stair P. C. Time, temperature, and oxygen partial pressure-dependent surface reconstructions on SrTiO3(111):A systematic study of oxygen-rich conditions [J]. Surface Science,2008,602(18):3018-3025
    [228]Wang J., Fu M., Wu X. S., Bai D. Surface structure of strontium titanate[J].J. Appl. Phys.,2009,105(8):083526-1-083526-8
    [229]Piskunov S., Kotomin E.A., Heifets E., et al. Hybid DFT calculations of the atomic and electronic structure for ABO3 perovskite(001) surfaces[J]. Surface Science,2005, 575(1-2):75-88
    [230]Eglitis R, I., Vanderbilt D. First-principles calculations of atomic and electronic structure of SrTiO3 (001) and (011) surfaces[J]. Phys. Rev. B,2008,77(19): 195408-1-195408-10
    [231]Wang L.Q., Ferris K.F., Herman G.S.Interactions of H2O with SrTiO3(100) surfaces[J]. Journal of Vacuum Science and Technology A,2002,20(1):239-244
    [232]Evarestov R.A., Bandura A.V., Alexandrov V.E. Adsorption of water on (001) surface of SrTiO3 and SrZrO3 cubic perovskites:Hybrid HF-DFT LCAO calculations[J].Surface Science,2007,601(8):1844-1856
    [233]林峰,郑法伟,欧阳方平.H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究[J].物理学报,2009,58(专刊):S193-S198
    [234]Rodriguez J. A., Garcia J., Gonzalez Electronic and chemical properties of mixed-metal oxides:adsorption of SO2 on SrTiO3(001)[J].Chemical Physics Letters,2002, 365(5-6):380-386
    [235]Rodriguez J. A., Azad S., Wang L. Q. Electronic and chemical properties of mixed-metal oxides:adsorption and reaction of NO on SrTiO3(001)[J]. J. Chem. Phys., 2003,118(14):6562-6571
    [236]Zhang H.J., Chen G, Li Z.H. First principles study of SrTiO3(001) surface and adsorption of NO on SrTiO3(001)[J]. Appl. Surf. Sci.,2007,253(20):8345-8351
    [237]Schluter M., Chelikowsky J. R, Louie S. G., Cohen M. L. Self-consistent pseudopotential calculations for Si (111) surfaces:Unreconstructed (l×l) and reconstructed (2×1) model structures[J]. Phys. Rev. B,1975,12(10):4200-4214
    [238]Lide D R, CRC handbook of chemistry and physics[M].73rd. Florida:CRC Press,1992
    [239]Sorescu D. C., Yates J. T. Jr Adsorption of CO on the TiO2(110) surface:A theoretical study[J]. J. Phys. Chem. B,1998.102(23):4556-4565

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700