用户名: 密码: 验证码:
低血磷性佝偻病/骨软化的遗传学研究进行性骨化性纤维组织结构不良的基因突变检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分低血磷性佝偻病/骨软化的遗传学研究
     背景
     低血磷性佝偻病/骨软化症(hypophosphatemic rickets/osteomalacia,以往称为维生素D-抵抗的软骨病/佝偻病)是一组并不罕见的致畸/致残性疾病,如果发生在儿童,会出现方颅、鸡胸、肋骨串珠、下肢弯曲畸形,表现为“O”型或“X”型腿以及生长发育迟缓等;如果发生在成人,则会表现为乏力、体形改变、身材变矮、多发骨折、骨痛甚至致残。其中最常见的类型,X连锁显性遗传的低血磷性佝偻病(XLH)的致病基因是位于X染色体的PHEX基因,迄今在世界各人种已报道有260个不同类型的PHEX基因突变,但有关XLH的表型和基因型间的关系尚存在争议,发病机制也未完全阐明。对于临床上有典型XLH表现的患者进行PHEX基因突变的检测在产前诊断和预后方面有非常重要的意义。而对于PHEX蛋白功能的研究可进一步揭示其对肾脏磷的转运,骨骼矿化的影响,探求PHEX蛋白与FGF23、MEPE、DMP1和ASARM等调磷因子间的相互作用方式,为从分子水平改善XLH低磷血症的药物研究提供理论依据。
     目的
     1.筛查和检测低血磷性佝偻病/骨软化患者的致病基因
     2.分析和总结XLH患者的临床特点
     3.分析XLH患者的表型及基因型间的关系
     4.研究PHEX基因突变的蛋白质的功能
     对象和方法
     1.研究对象:北京协和医院收治的128例低血磷性佝偻病/骨软化患者
     2.研究方法:
     1)在签署知情同意书后,采集受试者的血液和尿液标本,提取DNA和进行生化指标的检测;同时提取50例健康志愿者的全血DNA标本作为研究对照
     2)基因突变分析:针对检测基因(PHEX、FGF23、DMP1、SLC34A3)设计PCR扩增引物,对所有受试者的DNA进行PCR扩增,扩增产物进行琼脂糖凝胶纯化,使用测序仪直接测序,测序结果与参考序列比对后寻找变异点;所有突变点均在50例健康志愿者中进行验证
     3) PHEX功能研究:对PHEX蛋白的野生型表达质粒pCDNA3/RSV/PHEX和PCMV6-Entry/PHEX,利用定点诱变的方法构建突变型的质粒,突变点为在128例低血磷性佝偻病/骨软化患者中发现的c.254G>C、c.1216 T>A和c.1843A>C三个未经报导的错义突变。使用脂质体法转染HEK293细胞,通过RT-PCR检测目的基因的mRNA表达,通过Western-Blot对蛋白的表达进行检测;底物反应所使用的物质为重组的人FGF23纯品和人工合成的ASARM多肽,检测方法包括ELISA和液相色谱-串联质谱。
     4)统计学分析:表型和基因型关系研究采用以家系为单位的Fisher's精确检验(双向)。
     结果
     1.对128例低血磷性佝偻病患者进行了致病基因突变的检测,包括PHEX、FGF23、DMP1和SLC34A3基因。在其中33例患者发现了PHEX基因的突变,一例患者发现了FGF23基因的突变,其余患者尚未发现以上各基因的突变。
     2.对33例确诊为XLH的患者(其中包括8个家系型XLH患者)进行了临床资料的总结和分析。患者的就诊年龄从10个月到58岁,发病平均年龄为18个月,低磷血症、骨骼畸形和牙齿疾患是最常见的临床表现。有24例患者(占72.7%)存在下肢膝内翻畸形,有18例患者存在牙齿疾患(占54.5%)。临床生化检查除了血磷低,有29例患者(占87.9%)有血ALP增高的表现。5例患者在长时间口服中性磷和活性维生素D治疗后,出现了肾脏钙化或钙质沉积,具体原因尚不清楚。
     3.本研究发现的33个PHEX基因突变中,有20个是国内外尚未报导的突变,有9个突变位于保守序列区域。突变类型有多种,包括7个错义突变(c.565 C>Tc.254G>C、c.1735G>A、c.10G>C、c.1216 T>A、c.1843A>C、c.1601 C>T),7个无义突变(c.58C>T、c.670C>T、c.1103 G>A、c.2140C>T、c.365A>C、c.28G>T和c.2104 C>T),5个剪切位点的突变(c.664-1G>C、c.1174-2 A>G、c.1645+2 G>A、c.933+1G>A、c.1645+6 T>C),3个缺失突变(c.464_465del C、c.1480_1487delCTGTAAG、c.997_999 del T),还有7个小片段插入突变(c.2006_2007insCTTGA、c.2063_2064ins GTTA、c.2029_2030ins GGCATCA、c.1919 1920 ins G、c.1909 1910 ins GGTCAAGGGGA、c.2062 2063 Ins GTT)。
     4.在对33例XLH患者的表型和基因型的关系的分析中,本研究选取了发病年龄和牙齿疾病作为两个最主要的表型,基因型则分为氨基酸的截短和非截短突变,649位氨基酸的5’端和3’端的突变两类。以家庭为单位进行统计学分析后发现,不管是发病年龄还是牙齿疾病,与突变类型间都没有发现显著的统计学关联。
     5.对一个常染色体显性遗传低血磷性佝偻病(ADHR)的家系进行了临床特点的分析和基因突变的检测。先证者为女性,除了严重的低磷血症外,还具有发病晚、病情隐匿、骨骼畸形不明显等特点。家系的4名成员的血清i-FGF23均未出现显著的升高。此外,先证者、其弟弟和母亲存在FGF23基因c.527G>A (p.R176Q)的突变,但除先证者外均无低磷血症和佝偻病的临床表现。
     6.研究选取了3个未报导的错义突变点c.254G>C (p.C85S)、c.1216 T>A(p.C406S)和c.1843A>C (p.T615P)进行了PHEX基因功能的研究。研究成功构建了PHEX基因的突变型的两种表达质粒PCMV6/PHEX和pCDNA3/RSV/ PHEX,并成功转染了HEK293细胞进行PHEX野生型和突变型蛋白的表达(RNA和蛋白水平均得到验证)。
     结论
     本研究对128例临床诊断低血磷性佝偻病/骨软化的患者进行了遗传学的筛查和检测,涉及的基因包括PHEX、FGF23、SLC34A3和DMP1,在33例患者中发现了PHEX基因的突变,其中包括20个尚未见报导的突变点,在1例患者发现了FGF23基因的突变。在对33例XLH患者的表型和基因型的关系的分析中,发病年龄和牙齿疾病与突变类型间未发现显著的统计学关联。在选取了3个未报导的错义突变点c.254G>C (p.C85S)、c.1216 T>A (p.C406S)和c.1843A>C (p.T615P)进行了PHEX基因功能的研究中,成功构建了PHEX基因的突变型的两种表达质粒PCMV6/PHEX和pCDNA3/RSV/PHEX,并成功转染了HEK293细胞进行PHEX野生型和突变型蛋白的表达(RNA和蛋白水平均得到验证)。
     第二部分进行性骨化性纤维组织结构不良的基因突变检测
     背景
     进行性骨化性纤维组织结构不良(FOP)是一种少见的先天性结缔组织病,临床上以先天性大脚趾畸形,再发的软组织疼痛和肿胀并出现异位骨化为特征。最近的研究发现与该病相关的致病基因是ACVR1,该基因编码骨形态发生蛋白(BMP)的Ⅰ型受体蛋白。
     目的
     对两例诊断FOP的中国患者进行临床资料的总结和ACVR1基因的突变检测,以求发现FOP的临床特点和遗传学改变。
     研究对象和方法
     1.研究对象:本研究的对象为2006年-2008年间就诊于北京协和医院内分泌科的两例诊断为进行性骨化性纤维组织结构不良(FOP)的患者及其一级亲属。
     2.临床资料:患者1,18岁男性,13岁时主因“发现骨性结节10年”就诊,3岁时后颈部出现无痛性骨性结节,呈渐进性,逐渐发展到髋部和背部,平时外伤后受伤部位会逐渐出现骨性结节,足部有大脚趾短畸形,走路步态僵硬,张口受限,颈部和腰部活动中度受限;患者2,16岁男性,主因“多关节痛13年伴关节渐进性强直”就诊,3岁时开始出现皮下骨性硬结,由头部发展到背部、髋部及大腿,并出现腰背部疼痛,疼痛不剧烈,关节活动逐渐受限发展为强直状态,在外伤后受伤部位会逐渐形成骨性结节,脊柱及双髋关节活动严重受限,抬腿受限。足部有大脚趾短畸形,拇外翻畸形。两例患者家族中均无类似疾病患者。
     3. ACVR1基因的突变检测:签署知情同意书后,采集两例患者及其家系成员的外周血。基因组DNA用全血DNA提取试剂盒从外周血白细胞中抽提。ACVR1基因的编码序列和内含子/外显子交接区片断采用PCR的方法扩增。扩增产物直接纯化和测序。突变分析是将测得序列与基因组参考序列比对而得。
     4.采用限制性内切酶酶切的方法验证突变。对患者的父母以及50例健康志愿者(对照)的DNA行PCR所得产物使用Cac8Ⅰ酶切后行琼脂糖凝胶电泳验证。
     结果
     对于两例FOP患者ACVR1的基因检测,发现一个杂合的错义突变c.617G>A(p,R206H)。在患者家庭里这是个新发突变。在中国患者中这个突变是再发的。
     结论
     通过对两个FOP家系进行的致病基因ACVR1的突变检测,发现了2例先证者都存在一个位于4号外显子的杂合突变c.617G>A (p.R206H),该突变为存在于各种族FOP患者中的一个热点突变。
Part I Genetic analysis of patients with hypophosphatemic rickets/Osteomalacia
     Introduction
     X-linked dominant hypophosphatemia, the most prevalent form of inherited rickets in humans, is a dominant disorder of phosphate homeostasis characterized by growth retardation, rachitic and osteomalacic bone disease, hypophosphatemia, and renal phosphate wasting. The gene responsible for XLH was identified as PHEX (formerly PEX) to depict a phosphate regulating gene with homology to endopeptidases on the X chromosome. Some previous studies of genotype-phenotype relationship analysis showed that there was no correlation between severity of disease and type and location of PHEX mutation. However, the conclusion is controversial. Moreover, functional study about PHEX gene will reveal the precise mechanism of this kind of disease, which provides more advices of follow-up and treatment.
     Objective
     1. To analyze the clinical manifestations of the patients diagnosed with XLH.
     2. To detect the disease-causing gene mutations in total 128 patients with hypophosphatemic rickets/osteomalacia in Department of Endocrinology of PUMCH.
     3. To find the phenotype-genotype association of the patients with XLH.
     4. To find the functional change of PHEX protein via in vitro study.
     Subjects and Methods
     Subjects:128 patients with hypophosphatemic rickets/osteomalacia in Department of Endocrinology of PUMCH.
     Methods
     1. All the clinical information was analyzed.
     2. After obtaining appropriate consent, blood samples were taken from the patients and their family members. Genomic DNA was extracted from peripheral blood of the patient and 50 ethnically matched controls.
     3. PHEX, FGF23, DMP1 and SLC34A3 gene fragments covering the entire coding region and intron/exon boundaries were amplified by PCR. The amplified products were directly purified and sequenced. Mutations were identified by comparing the sequences against the DNA of reference gene sequences. All the mutations were confirmed in the 50 ethnically matched controls.
     4. We constructed the PHEX expression vectors (with or without mutation) and transfected the vectors into HEK293 cells. After 36 hours expression, we extracted the total RNA from cells and performed RT-PCR to detect PHEX mRNA. We performed Western-Blot to detect the expressed PHEX protein. The substrates of PHEX we used in the proteolysis study include human recombined i-FGF23 and ASARM polypeptide and we used ELISA kit and LC-MS/MS to detect the product.
     5. Statistical analysis:we performed Fisher's exact test in the phenotype-genotype association study.
     Results
     1. We performed gene mutation analysis in 128 patients with hypophosphatemic rickets/osteomalacia and found 33 PHEX gene mutations and one FGF23 gene mutation.
     2. After summarizing all the clinical information from 33 patients with XLH (including 8 familial cases), we found that some characteristic features such as early onset of disease (mean age of onset=18 months), severe hypophosphatemia, skeletal deformities and dental problems are most common. Many patients had increased serum ALP concentration. Several patients were found to have nephrolithiasis after long-time treatment of neutral phosphorus and active vitamin D. The reason is not clear.
     3. PHEX gene analysis of the 33 Chinese pedigrees revealed 29 different mutations, including 20 novel mutations and nine mutations that have been previously described in the literature or entered in PHEXdb as personal submission. It consists of 7 missense (24.1%),7 nonsense (24.1%),3 deletions (10.3%),7 insertions (24.1%) and 5 splice site mutations (17.2%). The 29 mutations are scattered widely throughout the whole gene and 9 of them (31%) located in conserved domains. Of the 20 novel mutations,3 were missense,3 were nonsense,3 were deletions,6 were insertions and 5 were splice site mutations. And 6 of them (30%) were found in familial cases.
     4. The phenotype-genotype association study showed no significant relationship between the age of onset or dental problems and gene mutations.
     5. We reported a family of Chinese ethnic with ADHR. The diagnosis was confirmed based on the clinical and molecular genetic analysis. A single heterozygous c.527G>A (p.R176Q) mutation in the FGF23 gene was detected in three of the family members including the proband, her brother and their mother.
     6. A functional study was performed to elucidate the effect of three missense mutations including c.254G>C (p.C85S),c.1216 T>A (p.C406S) and c.1843A>C (p.T615P) on proteolysis of PHEX protein. We successfully established the HEK293 expression cell culture model, and the expression of wild type and the mutant PHEX gene were proved similar. More studies are necessary for functional analysis and the mechanism remains to elucidate.
     Conclusion
     In the present study we concluded the clinical manifestations and analyzed the PHEX gene mutations in 33 Chinese pedigrees with XLH, including familial and sporadic cases. The phenotype-genotype association study showed no significant relationship between the age of onset or dental problems and gene mutations. We reported a family of Chinese ethnic with ADHR carrying a heterozygous c.527G>A (p.R176Q) mutation in the FGF23 gene. A functional study was performed to elucidate the effect of three missense mutations including c.254G>C (p.C85S),c.1216 T>A (p.C406S) and c.1843A>C (p.T615P) on proteolysis of PHEX protein. We successfully established wildtype and mutanted expression plasmid. However, more investigations should be performed to elucidate the precise mechanism of how PHEX involved in the pathology of those phosphate-wasting diseases.
     Part II Mutation analysis of ACVR1 gene in two Chinese patients with fibrodysplasia ossificans progressiva
     Introduction
     Fibrodysplasia ossificans progressiva (FOP, OMIM 135100) is a rare heritable disorder of connective tissue characterized by congenital malformations of the great toes and recurrent episodes of painful soft-tissue swelling, leading to heterotopic ossifications. First described in 1692, FOP has been documented in all races. In 1982, the incidence of FOP was estimated to be approximately 1:1640000. Autosomal dominant transmission with variable expressivity has been established. Recently, Shore et al. successfully mapped FOP to chromosome 2q23-24 by genome-wide linkage analysis. They identified an identical heterozygous mutation (c.617G> A; p.R206H) in the glycine-serine (GS) activation domain of ACVR1 (OMIM 102576; also known as Alk2 or ActRIA), a BMP type I receptor, in all affected individuals examined. The c.617G> A mutation in the ACVR1 gene is also recurrent in Asian patients with FOP. In this study, we investigated the ACVR1 gene mutation in two Chinese patients diagnosed as FOP.
     Objective
     Our study is amied to investigate the ACVR1 gene mutation in two Chinese patients diagnosed with FOP.
     Subjects and methods
     1. Subjects:We observed two Chinese patients suffered from progressive pain and ankylosis of major joints with congenital bilateral hallus valgo deformation, neck stiffness and several post-traumatic ossified lesions on the head and dorsum. Both of them were diagnosed with FOP. Patient 1 is an 18 year old boy, suffered from multiple progressive painful swellings in synovial joints including hips and knee joints over 13 years. He also had limitation of the spinal movement and progressive ankylosis of lumbar spine. He was found to have bilateral hallus valgo deformation, neck stiffness and several post-traumatic ossified lesions on the head (temporal), dorsum and left hip since he was 3 years old. Patient 2 was a 16 year old boy who suffered from multiple progressive painful swellings in synovial joints, including hips and knee joints, over 13 years. From the age of 3 years, the patient had several post-traumatic ossified lesions on the head, dorsum and right hip. The patient had scoliosis and cervical stiffness since the age of 4. He had bilateral hallus valgus malformation. The family history of both patients was negative.
     2. After obtaining appropriate consent, blood samples were taken from the patient2, the parents of the two families and 50 ethnically-matched unrelated controls. Genomic DNA was isolated from extracted from peripheral blood of the patient and his parents by standard Phenol-chloroform extraction procedure. The ACVR1 gene fragments covering the entire coding region and intron/exon boundaries were amplified by PCR. The amplified products were directly purified and sequenced. Mutations were identified by comparing the sequences against the DNA of the ACVR1 gene.
     3. Mutation confirmed by restriction enzyme digestion. Samples from parents of the patient's family and 50 healthy controls were amplified by PCR. The production were digested by Cac8I and the digested samples were underwent electrophoreses.
     Results
     We detected a heterozygote missense mutation 617G>A (R206H) in the ACVR1 gene in two Chinese patients with FOP. The 617G>A mutation was de novo in their families. It was a recurrent mutation of ACVR1 gene in two Chinese patients.
     Conclusions
     We investigated the ACVR1 gene mutation in two Chinese patients diagnosed with FOP. As we expected, we found the 617G> A (R206H) mutation in two Chinese FOP patients. It was a recurrent mutation of ACVR1 gene in Chinese patients.
引文
1. Econs MJ, Francis F (1997) Positional cloning of the PEX gene:new insights into the pathophysiology of X-linked hypophosphatemic rickets. Am J Physiol 273:F489-498
    2. Primer on the Metabolic Bone Disease and Disorders of Mineral Mtabolism. Sixth Edition.
    3. The HYP Consortium. (1995) A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Genet 11:130-136
    4. ADHR Consortium. (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26:345-348
    5. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, Gershoni-Baruch R, Albers N, Lichtner P, Schnabel D, Hochberg Z, Strom TM (2006) Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet 78:193-201
    6. Lorenz-Depiereux B, Bastepe M, Benet-Pages A, Amyere M, Wagenstaller J, Muller-Barth U, Badenhoop K, Kaiser SM, Rittmaster RS, Shlossberg AH, Olivares JL, Loris C, Ramos FJ, Glorieux F, Vikkula M, Juppner H, Strom TM. (2006) DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nature Genet. 38:1248-1250
    7. Whyte MP, Armamento R (1996) X-linked hypophosphataemia:a search for gender, race, anticipation, or parent of origin effects on disease expression in children. J Clin Endocrinol Metab 81:4075-4080
    8. 黎海芪.营养性维生素D缺乏.儿科学.第6版.人民卫生出版社,2004:73-81
    9. Makitie O, Kooh SW, Cole WG, Daneman A, Schett E (2003) Early treatment improves growth and biochemical and radiographic outcome in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab 88:3591-3597
    10. Seikaly MGB, R; Baum, M (1997) The effect of recombinant human growth hormone in children with X-linked hypophosphatemia. Pediatrics 100:879-884
    11. Langman GACB. (2007) Growth in X-linked hypophosphatemic rickets. Eur J Pediatr 166:303-309
    12. Xia W, Meng X, Jiang Y, Li M, Xing X, Pang L, Wang O, Pei Y, Yu LY, Sun Y, Hu Y, Zhou X (2007) Three novel mutations of the PHEX gene in three Chinese families with X-linked dominant hypophosphatemic rickets. Calcif Tissue Int 81:415-420
    13. Petersen DJ, Schranck FW, Rupich RC, Whyte MP. (1992) X-linked hypophosphatemic rickets:a study (with literature review) of linear growth response to calcitriol and phosphate therapy. J Bone Miner Res 7:583-597
    14. Cho HY, Lee BH, Kang JH, Ha IS, Cheong HI, Choi Y (2005) A clinical and molecular genetic study of hypophosphatemic rickets in children. Pediatr Res 58:329-333
    15. Song HR, Park JW, Cho DY, Yang JH, Yoon HR, Jung SC (2007) PHEX gene mutations and genotype-phenotype analysis of Korean patients with hypophosphatemic rickets. J Korean Med Sci 22:981-986
    16. Kiela PR, Ghishan FK. (2009) Recent advances in the renal-skeletal-gut axis that controls phosphate homeostasis Laboratery Investigation 89:7-14
    17. Bai X, Miao D, Goltzman D, Karaplis AC (2003) The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency. J Biol Chem 278:9843-9849
    18. Weber TJ, Liu S, Indridason OS, Quarles LD (2003) Serum FGF23 levels in normal and disordered phosphorus homeostasis. J Bone Miner Res 18:1227-1234
    19. Yamashita T (2005) Structural and biochemical properties of fibroblast growth factor 23. Ther Apher Dial 9:313-318
    20. Mirams M RB, Mason RS, Nelson AE. (2004) Bone as a source of FGF23: regulation by phosphate? Bone 35:1192-1199
    21. Liu S, Gupta A, Quarles LD (2007) Emerging role of fibroblast growth factor 23 in a bone-kidney axis regulating systemic phosphate homeostasis and extracellular matrix mineralization. Curr Opin Nephrol Hypertens 16:329-335
    22. Endo I, Ozono K, Namba N, Tanaka H, Inoue D, Minagawa M, Sugimoto T, Yamauchi M, Michigami T, Matsumoto T. (2008) Clinical usefulness of measurement of fibroblast growth factor 23 (FGF23) in hypophosphatemic patients Proposal of diagnostic criteria using FGF23 measurement. Bone 42:1235-1239
    23. Imel EA, Econs MJ (2007) FGF23 concentrations vary with disease status in autosomal dominant hypophosphatemic rickets. J Bone Miner Res 22:520-526
    24. Benet-Pages A, Lorenz-Depiereux B, Zischka H, White KE, Econs MJ, Strom TM 2004 FGF23 is processed by proprotein convertases but not by PHEX. Bone 35:455-462
    25. Bresler D, Bruder J, Mohnike K, Fraser WD, Rowe PS (2004) Serum MEPE-ASARM-peptides are elevated in X-linked rickets (HYP):implications for phosphaturia and rickets. J Endocrinol 183:R1-9
    26. Liu S, Rowe PS, Vierthaler L, Zhou J, Quarles LD (2007) Phosphorylated acidic serine-aspartate-rich MEPE-associated motif peptide from matrix extracellular phosphoglycoprotein inhibits phosphate regulating gene with homologies to endopeptidases on the X-chromosome enzyme activity. J Endocrinol 192:261-267
    27. Addison W, Nakano Y, Loisel T, Crine P, McKee MD (2008) MEPE-ASARM peptides control extracellular matrix mineralization by binding to hydroxyapatite:an inhibition regulated by PHEX cleavage of ASARM. J Bone Miner Res 23:1638-1649
    28. Holm IA, Huang X, Kunkel LM (1997) Mutational analysis of the PEX gene in patients with X-linked hypophosphatemic rickets. Am J Hum Genet 60:790-797
    29. Gaucher C, Walrant-Debray O, Nguyen TM, Esterle L, Garabedian M, Jehan F (2009) PHEX analysis in 118 pedigrees reveals new genetic clues in hypophosphatemic rickets. Hum Genet 125:401-411
    30. Baroncelli GI, Bertelloni S, Sodini F, Galli L, Vanacore T, Fiore L, Saggese G (2004) Genetic advances, biochemical and clinical features and critical approach to treatment of patients with X-linked hypophosphatemic rickets. Pediatr Endocrinol Rev 1:361-379
    31. Glorieux FH (1996) Hypophosphatemic vitamin D-resistant rickets. In:Favus MJ, ed. Primer on the metabolic bone diseases and disorders of mineral metabolism.3rd ed. New York:Lipincott-Raven; 316-325
    32. Pronicka E, Rowinska E, Arasimowicz E, Syczewska M, Jurkiewicz D, Lebiedowski M. (2004) Anthropometric Characteristics of X-Linked Hypophosphatemia. Am J Med Genet A 126A:141-149
    33. 汪伶伶 吴光驰 (2006) 低磷酸盐性佝偻病30例 实用儿科临床杂志21(14):929-932
    34. Petje G, Meizer R, Radler C, Aigner N, Grill F (2008) Deformity correction in children with hereditary hypophosphatemic rickets. Clin Orthop Relat Res 466:3078-3085
    35. Pereira CM, de Andrade CR, Vargas PA, Coletta RD, de Almeida OP, Lopes MA (2004) Dental alterations associated with X-linked hypophosphatemic rickets. J Endod 30:241-245
    36. Boukpessi T. SD, Bagga S. Garabedian M. Goldberg M. Chaussain-Miller C. (2006) Dentin alteration of deciduous teeth in human hypophosphatemic rickets. Calcif Tissue Int 79:294-300
    37. Firth R, Riggs, B. L (1985) Development of hypercalcemic hyperparathyroidism after long-term phosphate supplementation in hypophosphatemic osteomalacia:report of two cases. Am J Med 78 (4):669-73
    38. Verge CF, Simpson, J. M; Cowell, C. T; Howard, N. J (1991) Effects of therapy in X-linked hypophosphatemic rickets. New Eng J Med 325
    39. Davies MK, Valentine R (1984) Impaired hearing in X-linked hypophosphataemic (vitamin-D-resistant) osteomalacia. Ann Intern Med 100:230-232
    40. Rivkees SAe-H-F, G; Brown, E. M; Crawford, J. D (1992) Tertiary hyperparathyroidism during high phosphate therapy of familial hypophosphatemic rickets. J Clin Endocr Metab 75 75:1514-1518
    41. Stickler GB (1969) Familial hypophosphatemic vitamin D resistant rickets:the neonatal period and infancy. Acta Paediat Scand 58:213-219
    42. Rowe PS, Francis F, Sinding C, Pannetier S, Econs MJ, Strom TM, Meitinger T, Garabedian M, David A, Macher MA, Questiaux E, Popowska E, Pronicka E, Read AP, Mokrzycki A, Glorieux FH, Drezner MK, Hanauer A, Lehrach H, Goulding JN, O'Riordan JL (1997) Distribution of mutations in the PEX gene in families with X-linked hypophosphataemic rickets (HYP) Hum Mol Genet 6:539-549
    43. Holm IA, Robinson BG, Mason RS, Marsh DJ, Cowell CT, Carpenter TO.
    (1998)Mutational Analysis of PHEX Gene in X-Linked Hypophosphatemia. J Clin Endocrinol Metab 83:3889-3899
    44. Lorenz-Depiereux B, Schnabel D, Tiosano D, Hausler G, Strom TM (2010) Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet 86:267-272
    45. Levy-Litan V, Avizov L, Leventhal N, Bercovich D, Chalifa-Caspi V, Manor E, Buriakovsky S, Hadad Y, Goding J, Parvari R. (2010) Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet 86:273-278
    46. Either EM, Striver CR, Glorieux FH. (1976) Hypophosphatemia:mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proc Natl Acad Sci USA:4667-4671
    47. Dixon PH, Christie PT, Wooding C, Trump D, Grieff M, Holm I, Gertner JM, Schmidtke J, Shah B, Shaw N, Smith C, Tau C, Schlessinger D, Whyte MP, Thakker RV (1998) Mutational analysis of PHEX gene in X-linked hypophosphatemia. J Clin Endocrinol Metab 83:3615-3623
    48. Cho HY, Kang JH, Ha IS, Cheong HI, Choi Y. (2005) A clinical and molecular genetic study of hypophosphatemic rickets in children. Pediatr Res 58:329-333
    49. Holm IA, Nelson AE, Robinson BG, Mason RS, Marsh DJ, Cowell CT, Carpenter TO (2001) Mutational analysis and genotype-phenotype correlation of the PHEX gene in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab 86:3889-3899
    50. Wilson DR, Jaworski ZF, Yendt ER (1965) Studies in hypophosphatemic vitamin D-refractory osteomalacia in adults:oral phosphate supplements as an adjunct to therapy. Medicine 44:99-134
    51. Harrison HE, Lifshitz F, Johnson AD (1966) Growth disturbance in hereditary hypophosphatemia. Am J Dis Child 112:290-297
    52. Negri AL, Negrotti T, Alonso G, Pasqualini T (2004) [Different forms of clinical presentation of autosomal dominant hypophosphatemic rickets caused by a FGF23 mutation in one family]. Medicina (B Aires) 64:103-106
    53. Gribaa M, Younes M, Bouyacoub Y, Korbaa W, Ben Charfeddine I, Touzi M, Adala L, Mamay O, Bergaoui N, Saad A (2010) An autosomal dominant hypophosphatemic rickets phenotype in a Tunisian family caused by a new FGF23 missense mutation. J Bone Miner Metab 28(1):111-5
    54. Econs M, PT. (1997) Autosomal dominant hypophosphatemic rickets/osteomalacia:clinical characterization of a novel renal phosphate-wasting disorder. J Clin Endocr Metab 82:674-681
    55. Kruse K, Woelfel D, Strom TM (2001) Loss of renal phosphate wasting in a child with autosomal dominant hypophosphatemic rickets caused by a FGF23 mutation. Horm Res 55:305-308
    56. Perwad F, Tenenhouse HS, Portale AA. (2007) Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-lalpha-hydroxylase expression in vitro. Am J Physiol Renal Physiol 293:1577-1583
    57. White KE, Cam G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ (2001) Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int 60:2079-2086
    58. Bai XY MD, Goltzman D, Karaplis AC (2003) The Autosomal Dominant Hypophosphatemic Rickets R176Q Mutation in Fibroblast Growth Factor 23 Resists Proteolytic Cleavage and Enhances in Vivo Biological Potency. J Biol Chem 278:9843-9849
    59. Jonsson KB, Larsson T, White KE, Sugimoto T, Imanishi Y, Yamamoto T, Hampson G, Koshiyama H, Ljunggren O, Oba K, Yang IM, Miyauchi A, Econs MJ, Lavigne J, Juppner H. (2003) Fibroblast Growth Factor 23 in Oncogenic Osteomalacia and X-Linked Hypophosphatemia. N Engl J Med 348:1656-1663
    60. Laroche M, Jahafar H, Allard J, Tack I (2009) Normal FGF23 Levels in Adult Idiopathic Phosphate Diabetes Calcif Tissue Int 84:112-117
    61. Sabbagh Y, Boileau G, DesGroseillers L, Tenenhouse HS (2001) Disease-causing missense mutations in the PHEX gene interfere with membrane targeting of the recombinant protein. Hum Mol Genet 10:1539-1546
    62. Bland ND PJ, Thomas JE, Turner AJ, Isaac RE (2008) Bioinformatic analysis of the neprilysin (M13) family of peptidases reveals complex evolutionary and functional relationships.. BMC Evol Biol 8
    63. Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, Yamamoto T, Hampson G, Koshiyama H, Ljunggren O, Oba K, Yang IM, Miyauchi A, Econs MJ, Lavigne J, Juppner H (2003) Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med .348:1656-1663
    64. Bresler D, Mohnike K, Fraser WD, Rowe PS (2004) Serum MEPE-ASARM-peptides are elevated in X-linked rickets (HYP):Implications for phosphaturia and rickets. J Endocrinol 183
    65. Sabbagh Y, Campos M, Carmona AK, Tenenhouse HS. (2003) Structure and Function of Disease-Causing Missense Mutations in the PHEX Gene. J Clin Endocrinol Metab 88:2213-2222
    66. Sabbagh Y, DesGroseillers L, Tenenhouse HS. (1998) Disease-causing missense mutations in the PHEX gene interfere with membrane targeting of the recombinant protein. Hum Mol Genet 10:1539-1546
    1. Kaplan FS, Shore EM, Connor JM (2002) Fibrodysplasia ossificans progressiva (FOP). In:Royce PM, Steinmann B (eds) Connective tissue and its heritable disorders:molecular, genetic, and medical aspects,2nd edn. Wiley-Liss, New York, p 827-840
    2. Connor JM, Evans DAP (1982) Genetic aspects of fibrodysplasia ossificans progressiva. J Med Gent 19:35-39
    3. Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Brown MA, Kaplan FS (2006) A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38:525-527
    4. Lin GT, Chang HW, Liu CS, Huang PJ, Wang HC, Cheng YM (2006) De novo 617G>A nucleotide mutation in the ACVR1 gene in a Taiwanese patient with fibrodysplasia ossificans progressiva. J Hum Genet 51:1083-1086
    5. Nakajima M, Haga N, Takikawa K, Manabe N, Nishimura G, Ikegawa S (2007) The ACVR1 617G>A mutation is also recurrent in three Japanese patients with fibrodysplasia ossificans progressiva. J Hum Genet 52:473-475
    6. Furuya H, Ikezoe K, Wang L, Ohyagi O, Motomura K, Fujii N, Kira J, Fukumaki Y (2008) A unique case of fibrodysplasia ossificans progressiva with an ACVR1 mutation, G356D, other than the common mutation (R206H). Am J Med Genet Part A 146:459-63
    7. Schaffer AA, Kaplan FS, Tracy MR, O'Brien ML, Dormans JP, Shore EM, Harland RM, Kusumi K (2005) Developmental anomalies of the cervical spine in patients with fibrodysplasia ossificans progressiva are distinctly different from those in patients with Klippel-Feil syndrome:Clues from the BMP signaling pathway. Spine 30:1379-1385
    8. Groppe JC, Shore EM, Kaplan FS (2007) Functional modeling of the ACVR1 (R206H) mutation in FOP. Clin Orthop Relat Res 462:87-92
    9. Zhang D, Rosier RN (2003) ALK2 functions as a BMP type Ⅰ receptor and induces Indian hedgehog in chondrocytes during skeletal development. J Bone Miner Res 18:1593-1604
    10. Shafritz AB, Shore EM, Gannon FH, Zasloff MA, Taub R, Muenke M, Kaplan FS (1996) Overexpression of an osteogenic morphogen in fibrodysplasia ossificans progressiva. N Engl J Med 335:555-561
    11.Olmsted EA, Kaplan FS, Shore EM (2003) Bone morphogenetic protein-4 regulation in fibrodysplasia ossificans progressiva. Clin Orthop 408:331-343
    12.de la Pena LS, Billings PC, Fiori JL, Ahn J, Kaplan FS, Shore EM (2005) Fibrodysplasia ossificans progressiva (FOP), a disorder of ectopic osteogenesis, misregulates cell surface expression and trafficking of BMPRIA. J Bone Miner Res 20:1168-1176
    13. Billings PC, Fiori JL, Bentwood JL, O'Connell MP, Jiao X, Nussbaum B, Caron RJ, Shore EM, Kaplan FS (2008) Dysregulated BMP signaling and enhanced osteogenic differentiation of connective tissue progenitor cells from patients with fibrodysplasia ossificans progressiva (FOP). J Bone and Miner Res 3:305-313
    14. Kan L, Hu M, Gomes WA, Kessler JA (2004) Transgenic mice overexpressing BMP4 develop a fibrodysplasia ossificans progressiva (FOP)-like phenotype. Am J Patho 165:1107-1115
    15. Kaplan FS, Shore EM, Gupta R, Billings PC, Glaser DL, Pignolo RJ, Graf D, Kamoun M (2005) Immunological features of fibrodysplasia ossificans progressiva and the dysregulated BMP4 pathway. Clin Rev Bone Miner Metab 3:189-193
    16. Rogers JG, Geho WB (1979) Fibrodysplasia ossificans progressiva-A survey of forty two cases. J Bone Joint Surg Am 61:909-914
    17. Dua T, Kabra M, Kalra Familial V. (2001) Fibrodysplasia ossificans progressiva: trial with etidronate disodium. Indian Pediatr 38:1305-1309
    18. Kaplan FS, Xu M, Glaser DL, Collins F, Connor M, Kitterman J, Sillence D, Zackai E, Ravitsky V, Zasloff M, Ganguly A, Shore EM (2008) Early diagnosis of fibrodysplasia ossificans progressiva. Pediatrics 121:1295-1300
    19. Hao Z, Dadi J, Zongsen J, Hanqing W (2002) Myositis ossificans progressiva (MOP):literature review of 51 MOP cases in China. Chinese J Clin Rehab 22:3384-3385
    20. Kaplan FS, Shen Q, Lounev V, Seemann P, Groppe J, Katagiri T, Pignolo RJ, Shore EM (2008) Skeletal metamorphosis in fibrodysplasia ossificans progressiva (FOP). J Bone Miner Metab 26:521-530
    21. Kaplan FS, Xu M, Seemann P, Connor JM, Glaser DL, Carroll L, Delai P, Fastnacht-Urban E, Forman SJ, Gillessen-Kaesbach G, Hoover-Fong J, Koster B, Pauli RM, Reardon W, Zaidi SA, Zasloff M, Morhart R, Mundlos S, Groppe J, Shore EM (2009) Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type Ⅰ receptor ACVR1. Hum Mutat.30:379-90
    22. Kitterman JA, Kantanie S, Rocke DM, Kaplan FS (2005) Iatrogenic harm caused by diagnostic errors in fibrodysplasia ossificans progressiva. Pediatrics 116:654-661
    23. Harradine KA, Akhurst RJ (2006) Mutations of TGF-P signaling molecules in human disease. Ann Med 38:403-414
    24. Groppe JC, Shore EM, Kaplan FS (2007) Functional modeling of the ACVR1 (R206H) mutation in FOP. Clin Orthop Relat Res 462:87-92
    1. Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H. (2006) SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaP (i)-Ⅱc in maintaining phosphate homeostasis. Am. J. Hum. Genet.78:179-192
    2. Primer on the Metabolic Bone Disease and Disorders of Mineral Mtabolism. Sixth Edition.
    3. Michael J. Econs and Fiona Francis. (1997) Positional cloning of the PEX gene new insights into the pathophysiology of X-linked hypophosphatemic rickets. Am J Physiol Renal Physiol,273:489-498
    4. Sabbagh, Y; Jones, A.O; Tenenhouse, H. S (2000) PHEXdb, a locus-specific database for mutations causing X-linked hypophosphatemia. Hum. Mutat.16:1-6
    5. Winters, R. W; Graham, J. B; Williams, T. F; McFalls, V. W; Burnett, C. H (1958) A genetic study of familial hypophosphatemia and vitamin D-resistant rickets with a review of the literature. Medicine 37:97-142
    6. HYP Consortium (1995) A gene (HYP) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nature Genet.11: 130-136
    7. Francis F, Strom TM, Hennig S, Boddrich A, Lorenz B, Brandau O, Mohnike KL, Cagnoli M, Steffens C, Klages S, Borzym K, Pohl T, Oudet C, Econs MJ, Rowe PS, Reinhardt R, Meitinger T, Lehrach H. (1997) Genomic Organization of the Human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res, (7):573-585
    8. Ruchon AF, Tenenhouse HS, Marcinkiewicz M, Siegfried G, Aubin JE, DesGroseillers L, Crine P, Boileau G (2000) Developmental expression and tissue distribution of Phex protein:effect of the Hyp mutation and relationship to bone markers. J Bone Miner Res.15:1440-1450
    9. Thompson DL, Sabbagh Y, Tenenhouse HS, Roche PC, Drezner MK, Salisbury JL, Grande JP, Poeschla EM, Kumar R (2002) Ontogeny of Phex/PHEX protein expression in mouse embryo and subcellular localization in osteoblasts. J Bone Miner Res.17 (2):311-320
    10. Turner AJ, Tanzawa K. (1997) Mammalian embrane metallopeptidases:NEP, ECE, Kell and PEX. FASEB 11:355-364
    11. Bland ND, Pinney JW, Thomas JE, Turner AJ, Isaac RE (2008) Bioinformatic analysis of the neprilysin (M13) family of peptidases reveals complex evolutionary and functional relationships. BMC Evol Biol 8:16
    12. Cho HY, L. B., Kang JH, Ha IS, Cheong HI, Choi Y. (2005). "A clinical and molecular genetic study of hypophosphatemic rickets in children." Pediatr Res. 58(2):329-33
    13. Rowe PS, O. C., Francis F, Sinding C, Pannetier S, Econs MJ, Strom TM, Meitinger T, Garabedian M, David A, Macher MA, Questiaux E, Popowska E, Pronicka E, Read AP, Mokrzycki A, Glorieux FH, Drezner MK, Hanauer A, Lehrach H, Goulding JN, O'Riordan JL (1997). "Distribution of mutations in the PEX gene in families with X-linked hypophosphataemic rickets (HYP)" Hum Mol Genet.6(4):539-549
    14. Sato K, T. T., Nakae J, Adachi M, Asakura Y, Tachibana K, Suwa S, Katsumata N, Tanaka T, Hayashi Y, Abe S, Murashita M, Okuhara K, Shinohara N, Fujieda K. (2000). "Three Novel PHEX Gene Mutations in Japanese Patients with X-Linked Hypophosphatemic Rickets." Pediatr Res 48(4):536-40
    15. Song HR, P. J., Cho DY, Yang JH, Yoon HR, Jung SC. (2007). "PHEX gene mutations and genotype-phenotype analysis of Korean patients with hypophosphatemic rickets." J Korean Med Sci.22(6):981-6
    16. Xia W, M. X.,Jiang Y, Li M, Xing X, Pang L, Wang O, Pei Y, Yu LY, Sun Y, Hu Y, Zhou X. (2007). "Three Novel Mutations of the PHEX Gene in Three Chinese Families with X-linked Dominant Hypophosphatemic Rickets" Calcif Tissue Int. 81(6):415-20
    17. Econs MJ, Friedman NE, Rowe PS, Speer MC, Francis F, Strom TM, Oudet C, Smith JA, Ninomiya JT, Lee BE, Bergen H. (1998) A PHEX Gene Mutation Is Responsible for Adult-Onset Vitamin D-Resistant Hypophosphatemic Osteomalacia:Evidence That the Disorder Is Not a Distinct Entity from X-Linked Hypophosphatemic Rickets. J Clin Endocrinol Metab.83(10):3459-62
    18. Reid IR, H. D., Murphy WA, Teitelbaum SL, Bergfeld MA, Whyte MP. (1989). "X-linked hypophosphatemia:a clinical, biochemical, and histopathologic assessment of morbidity in adults." Medicine (Baltimore).68(6):336-52
    19. Davies, M; Kane, R; Valentine, J (1984) Impaired hearing in X-linked hypophosphataemic (vitamin-D-resistant) osteomalacia. Ann. Intern. Med.100: 230-232
    20. O'Malley, S; Ramsden, R. T; Latif, A; Kane, R; Davies, M:(1985) Electrocochleographic changes in the hearing loss associated with X-linked hypophosphataemic osteomalacia. Acta Otolaryng.100:13-18
    21. Holm IA, N. A., Robinson BG Mason RS, Marsh DJ, Cowell CT, Carpenter TO. (2001). "Mutational Analysis and Genotype-Phenotype Correlation of the PHEX Gene in X-Linked Hypophosphatemic Rickets." J Clin Endocrinol Metab 86(8): 3889-3899
    22. Michael P. W, Francine W. S, and Reina A. (1996) X-linked hypophosphatemia a search for gender, race, anticipation, or parent of origin effects on disease expression in children. J Clin Endocrinol Metab.81(11):4075-80
    23. Dixon PH, Christie PT, Wooding C, Trump D, Grieff M, Holm I, Gertner JM, Schmidtke J, Shah B, Shaw N, Smith C, Tau C, Schlessinger D, Whyte MP, Thakker RV. (1998) Mutational Analysis of PHEX Gene in X-Linked Hypophosphatemia. J Clin Endocrinol Metab 83(10):3615-23
    24. Pettifor, J. M. (2008). "What's new in hypophosphataemic rickets " Eur J Pediatr 167:493-499
    25. Liu S, B. T., Zhou J, Xiao ZS, Awad H, Guilak F, Quarles LD. (2005). "Role of Matrix Extracellular Phosphoglycoprotein in the Pathogenesis of X-Linked Hypophosphatemia." J Am Soc Nephrol 16(6):1645-1653
    26. Kumar, R. (2002). "New insights into phosphate homeostasis fibroblast growth factor 23 and frizzled-related protein-4 are phosphaturic factors derived from tumors associated with osteomalacia." Curr Opin Nephrol Hypertens
    27. Kiela PR, Ghishan FK. (2009) Recent advances in the renal-skeletal-gut axis that controls phosphate homeostasis. Lab Invest 89:7-14
    28. Ye L, Mishina Y, Chen D, et al. Dmpl-deficient mice display severe defects in cartilage formation responsible for a chondrodysplasia-like phenotype. J Biol Chem 2005; 280:6197-6203
    29.汪伶伶,吴光驰.(2006) 低磷佝偻病30例 实用儿科临床杂志J Appl Clin Pediatr,21(14) 929-932
    30. Nesbitt T, Coffman TM, Griffiths R, Drezner MK (1992) Cross transplantation of kidneys in normal and Hyp mice. Evidence that the Hyp mouse phenotype is unrelated to an intrinsic renal defect. J Clin Invest 89:1453-1459
    31. Schiavi S and Kumar R (2004) The phosphatonin pathway:New insights in phosphate homeostasis. Kidney International,65:1-14
    32. Suzanne M. Jan DB, Michael AL. (2002) Molecular pathogenesis of hypophosphatemic rickets. J Clin Endocrinol Metab,87(6):2467-2473
    33. Liu S, G. A., Quarles L. D (2007). "Emerging role of fibroblast growth factor 23 in a bone-kidney axis regulating systemic phosphate homeostasis and extracellular matrix mineralization." Curr Opin Nephrol Hypertens.16:329-335
    34. Quarles, L. D. (2003). "FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization " Am J Physiol Endocrinol Metab 285: E1-E9
    35. Shimada T, Muto T, Urakawa I, Yoneya T, Yamazaki Y, Okawa K, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T. (2002) Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology; 143:3179-82
    36. Jonsson KB, Z. R., Larsson T, White KE, Sugimoto T, Imanishi Y, Yamamoto T, Hampson G, Koshiyama H, Ljunggren O, Oba K, Yang IM, Miyauchi A, Econs MJ, Lavigne J, Juppner H. (2003). Fibroblast Growth Factor 23 in Oncogenic Osteomalacia and X-Linked Hypophosphatemia. N Engl J Med.348(17): 1656-63
    37. Weber TJ, L. S., Indridason OS, Quarles LD. (2003). Serum FGF23 Levels in Normal and Disordered Phosphorus Homeostasis. J Bone Miner Res 18(7): 1227-34
    38. Benet-Pages A, L.-D. B., Zischka H, White KE, Econs MJ, Strom TM. (2004). FGF23 is processed by proprotein convertases but not by PHEX. Bone 35:455-462
    39. Rowe PS, de Zoysa PA, Dong R, Wang HR, White KE, Econs MJ, Oudet CL (2000) MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia. Genomics 67:54-68
    40. Guo R, Rowe PS, Liu S, Simpson LG, Xiao ZS, Darryl Quarles LD (2002) Inhibition of MEPE cleavage by Phex. Biochem Biophys Res Commun 297: 38-45
    41. Argiro L, Desbarats M, Glorieux FH, Ecarot B (2001) Mepe, the gene encoding a tumor-secreted protein in oncogenic hypophosphatemic osteomalacia, is expressed in bone. Genomics 74:342-351
    42. Bresler D, Bruder J, Mohnike K, Fraser WD, Rowe PS (2004) Serum MEPE-ASARM-peptides are elevated in X-linked rickets (HYP):Implications for phosphaturia and rickets. J Endocrinol 183:R1-R9
    43. Liu S, R. P., Vierthaler L, Zhou J, Quarles LD. (2007). "Phosphorylated acidic serine-aspartate-rich MEPE-associated motif peptide from matrix extracellular phosphoglycoprotein inhibits phosphate regulating gene with homologies to endopeptidases on the X-chromosome enzyme activity." J Endocrinol.192(1): 261-7
    44. Campos M, Couture C, Hirata IY, Juliano MA, Loisel TP, Crine P, Juliano L, Boileau G, Carmona AK. (2003) Human recombinant endopeptidase PHEX has a strict S1' specificity for acidic residues and cleaves peptides derived from fibroblast growth factor-23 and matrix extracellular phosphoglycoprotein. Biochem J.373:271-279
    45. Lorenz-Depiereux B, Bastepe M, Benet-Pages A, Amyere M, Wagenstaller J, Miiller-Barth U, Badenhoop K, Kaiser SM, Rittmaster RS, Shlossberg AH, Olivares JL, Loris C, Ramos FJ, Glorieux F, Vikkula M, Juppner H, Strom TM. (2006) DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nature Genet.38: 1248-1250
    46. Liu S, Zhou J, Tang W, Menard R, Feng JQ, Quarles LD. (2008) Pathogenic role of Fgf23 in Dmpl null mice. Am J Physiol Endocrinol Metab; 295:E254-E261
    47. Martin A, David V, Laurence JS, Schwarz PM, Lafer EM, Hedge AM, Rowe PS. (2008) Degradation of MEPE, DMP1, and release of SIBLING ASARM-peptides (Minhibins):ASARM peptide(s) are directly responsible for defective mineralization in HYP. Endocrinology.149:1757-1772
    48. Makitie O, Doria A, Kooh SW, Cole WQ Daneman A, Sochett E. (2003) Early treatment improves growth and biochemical and radiographic outcome in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab.88(8):3591-7
    49. Pronicka E, P. E., Rowinska E, Arasimowicz E, Syczewska M, Jurkiewicz D, Lebiedowski M. (2004). "Anthropometric Characteristics of X-Linked Hypophosphatemia." Am J Med Genet A 126A(2):141-149
    50. Juppner, M. B. H. (2008). "Inherited_hypophosphatemic disorders in children and the evolving mechanisms of phosphate regulation." Rev Endocr Metab Disord 9: 171-180
    51. Econs MJ, McEnery PT (1997) Autosomal dominant hypophosphatemic rickets/osteomalacia:Clinical characterization of a novel renal phosphate-wasting disorder. J Clin Endocr Metab 82:674-681
    52. Bianchine JW, Stambler AA, Harrison HE (1971) Familial hypophosphatemic rickets showing autosomal dominant inheritance. Birth Defects Orig Art Ser VII:287-294
    53. Negri AL, Negrotti T, Alonso G, Pasqualini T (2004) Different forms of clinical presentation of an autosomal dominant hypophosphatemic rickets caused by a fgf23 mutation in one family. Medicina (B Aires) 64:103-106
    54. Imel EA HS, Econs MJ (2007) Fgf23 concentrations vary with disease status in autosomal dominant hypophosphatemic rickets. J Bone Miner Res 22:520-526
    55. ADHR Consortium:(2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nature Genet.26:345-348
    56. Weber TJ, Liu S, Indridason OS, Quarles LD (2003) Serum FGF23 Levels in Normal and Disordered Phosphorus Homeostasis. J Bone Miner Res. 18(7):1227-34
    57. Bettina Lorenz-Depiereux, Anna Benet-Pages et al. (2006) Hereditary Hypophosphatemic Rickets with Hypercalciuria Is Caused by Mutations in the Sodium-Phosphate Cotransporter Gene SLC34A3. Am. J. Hum. Genet, 78:193-201.
    58. Rasmussen H, Tenenhouse HS (1989) Hypophosphatemias. In:Striver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic Basis of Inherited Disease.
    59. Tieder, M.; Modai, D.; Samuel, R.; Arie, R.; Halabe, A.; Bab, I.; Gabizon, D.; Liberman, U. A. (1985) Hereditary hypophosphatemic rickets with hypercalciuria. New Eng. J. Med.312:611-617
    60. Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type Ⅱ Na/Pi cotransporter. J Biol Chem 277:19665-19672
    61. Murer H, Forster I, Biber J (2004) The sodium phosphate cotransporter family SLC34. Pflugers Arch 447:763-767
    62. Ohkido I, Segawa H, Yanagida R, Nakamura M, Miyamoto K.Cloning, (2003) gene structure and dietary regulation of the type-Ⅱc Na/Pi cotransporter in the mouse kidney.Pflugers Arch.446(1):106-15
    63. Miyamoto K, Segawa H, Ito M, Kuwahata M (2004) Physiological regulation of renal sodium-dependent phosphate cotransporters. Jpn J Physiol 54:93-102
    64. Lu Y, Zhang S, Xie Y, Pi Y, Feng JQ (2005). Differential regulation of dentin matrix protein 1 expression during odontogenesis. Cells Tissues Organs 181:241-247
    65. Lu Y, Xie Y, Zhang S, Dusevich V, Bonewald LF, Feng JQ (2007a).DMP1-targeted Cre expression in odontoblasts and osteocytes. J Dent Res 86:320-325
    66. Ogbureke KU, Fisher LW (2004). Expression of SIBLINGs and their partner MMPs in salivary glands. J Dent Res 83:664-670
    67. Ogbureke KU, Fisher LW (2005). Renal expression of SIBLING proteins and their partner matrix metalloproteinases (MMPs). Kidney Int 68:155-166
    68. Ogbureke KU, Fisher LW (2007). SIBLING expression patterns in duct epithelia reflect the degree of metabolic activity. J Histochem Cytochem 55:403-409
    69. Narayanan K, Ramachandran A, Hao J, He G, Park KW, Cho M, George A. (2003). Dual functional roles of dentin matrix protein 1. Implications in biomineralization and gene transcription by activation of intracellular Ca2+ store. J Biol Chem 278:17500-17508
    70. Lorenz-Depiereux B, Schnabel D, Tiosano D, Hausler G, Strom TM. (2010) Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets.Am J Hum Genet.12; 86(2):267-72
    71. Levy-Litan V, Hershkovitz E, Avizov L, Leventhal N, Bercovich D, Chalifa-Caspi V, Manor E, Buriakovsky S, Hadad Y, Goding J, Parvari R. (2010) Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene.Am J Hum Genet.12; 86(2):273-8
    72. Terkeltaub, R. (2006). Physiologic and pathologic functions of the NPP nucleotide pyrophosphatase/phosphodiesterase family focusing on NPP1 in calcification. Purinergic Signal.2,371-377
    73. Terkeltaub, R.A. (2001). Inorganic pyrophosphate generation and disposition in pathophysiology. Am. J. Physiol. Cell Physiol.281, C1-C11
    74. Rutsch, F., Rui, N., Vaingankar, S., Toliat, M. R., Suk, A., Hohne, W., Schauer, G., Lehmann, M., Roscioli, T., Schnabel, D., Epplen, J. T., Knisely, A., (2003).and 10 others Mutations in ENPP1 are associated with 'idiopathic' infantile arterial calcification. Nature Genet. vol.34,379-381
    75. Cheng, K.-S., Chen, M.-R., Ruf, N., Lin, S.-P., Rutsch, F. (2005) Generalized arterial calcification of infancy:different clinical courses in two affected siblings. Am. J. Med. Genet. vol.136A,210-213
    76. Lewiecki EM UEJ, Williams RC Jr (2008) Tumor-induced osteomalacia:lessons learned. Arthritis Rheum 58:773-777
    1. Kaplan FS, Shore EM, Connor JM (2002) Fibrodysplasia ossificans progressiva (FOP). In:Royce PM, Steinmann B (eds) Connective tissue and its heritable disorders:molecular, genetic, and medical aspects,2nd edn. Wiley-Liss, New York, p 827-840
    2. Tuente, W.; Becker, P. E.; Von Knorre, G. V. Zur Genetik der (1967) Myositis ossificans progressiva. Humangenetik 4:320-351
    3. Connor JM, Evans DAP. (1982) Genetic aspects of fibrodysplasia ossificans progressiva. J Med Gent 19:35-39
    4. Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho T-J, Choi IH, Connor JM, Delai P, Glaser DL, Le Merrer M, Morhart R, Rogers JQ Smith R, Triffi tt JT, Urtizberea JA, Zasloff M, Brown MA, Kaplan FS (2006) A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38:525-527
    5. 张浩,金大地,景宗森,王汉清 (2002) 进行性骨化性肌炎51例 中国文献报道的综合分析 中国临床康复22:3384-3385
    6. Cohen RB, Hahn GV, Tabas J, Peeper J, Levitz CL, Sando A, Sando N, Zasloff M, Kaplan FS (1993) The natural history of heterotopic ossification in patients who have fi brodysplasia ossifi cans progressiva. J Bone Joint Surg Am 75:215-219
    7. Rocke DM, Zasloff M, Peeper J, Cohen RB, Kaplan FS (1994) Age and joint-specific risk of initial heterotopic ossification in patients who have fibrodysplasia ossificans progressiva. Clin Orthop Relat Res 301:243-248
    8. Kaplan FS, Tabas J, Gannon FH, Finkel G, Hahn GV, Zasloff MA (1993) The histopathology of fibrodysplasia ossificans progressiva:an endochondral process. J Bone Joint Surg Am 75:220-230
    9. Gannon FH, Valentine BA, Shore EM, Zasloff MA, Kaplan FS (1998) Acute lymphocytic infiltration in an extremely early lesion of fibrodysplasia ossificans progressiva. Clin Orthop Relat Res 346:19-25
    10. Glaser DL, Economides AN, Wang L, Liu X, Kimble RD, Fandl JP, Wilson JM, Stahl N, Kaplan FS, Shore EM (2003) In vivo somatic cell gene transfer of an engineered noggin mutein prevents BMP4-induced heterotopic ossification. J Bone Joint Surg Am 85:2332-2342
    11. Pignolo RJ, Suda RK, Kaplan FS (2005) The fibrodysplasia ossificans progressiva lesion. Clin Rev Bone Miner Metab 3:195-200
    12. Lanchoney TF, Cohen RB, Rocke DM, Zasloff MA, Kaplan FS (1995) Permanent heterotopic ossification at the injection site after diphtheria-tetanus-pertussis immunizations in children who have fibrodysplasia ossificans progressiva. J Pediatr 126:762-764
    13. Janoff HB, Zasloff MA, Kaplan FS (1996) Submandibular swelling in patients with fibrodysplasia ossificans progressiva. Otolaryngol Head Neck Surg 114:599-604
    14. Luchetti W, Cohen RB, Hahn GV, Rocke DM, Helpin M, Zasloff M, Kaplan FS (1996) Severe restriction in jaw movement after routine injection of local anesthetic in patients who have fibrodysplasia ossificans progressiva. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 81:21-25
    15. Glaser DL, Rocke DM, Kaplan FS (1998) Catastrophic falls in patients who have fibrodysplasia ossificans progressiva. Clin Orthop Relat Res 346:110-116
    16. Scarlett RF, Rocke DM, Kantanie S, Patel JB, Shore EM, Kaplan FS (2004) Infl uenza-like viral illnesses and fl are-ups of fibrodysplasia ossificans progressiva. Clin Orthop Relat Res 423:275-279
    17. Kaplan FS, Glaser DL, Shore EM, Deirmengian GK, Gupta R, Delai P, Morhart R, Smith R, Le Merrer M, Rogers JG, Connor JM, Kitterman JA (2005) The phenotype of fibrodysplasia ossificans progressiva. Clin Rev Bone Miner Metab 3:183-188
    18. Connor JM, Evans DA (1982) Fibrodysplasia ossificans progressiva. The clinical features and natural history of 34 patients. J Bone Joint Surg Br 64:76-83
    19. Smith R (1988) Fibrodysplasia (myositis) ossificans progressiva:clinical lessons from a rare disease. Clin Orthop Relat Res 346:7-14
    20. Kaplan FS, Glaser DL, Hebela N, Shore EM (2004) Heterotopic ossification. J Am Acad Orthop Surg 12:116-125
    21. Kitterman JA, Kantanie S, Rocke DM, Kaplan FS (2005) latrogenic harm caused by diagnostic errors in fibrodysplasia ossificans progressiva. Pediatrics 116:654-661
    22. Kaplan FS, Groppe J, Pignolo RJ, Shore EM (2007) Morphogen receptor genes and metamorphogenes:skeleton keys to the metamorphosis. Ann N Y Acad Sci 1116:113-133
    23. Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127:1755-1766
    24. Akiyama S, Katagiri T, Namiki M, Yamaji N, Yamamoto N, Miyama K, Shibuya H, Ueno N, Wozney JM, Suda T (1997) Constitutively active BMP type Ⅰ receptors transduce BMP2 signals without the ligand in C2C12 myoblasts. Exp Cell Res 235:362-369
    25.楚福明,胡一梅,陈日高,邓友章(2006)进行性骨化性肌炎研究现状中国中医骨伤科杂志14:71-73
    26. Lucotte, G.; Semonin,O.; Lutz, P. (1999) A de novo heterozygous deletion of 42 base-pairs in the noggin gene of a fibrodysplasia ossificans progressiva patient. (Letter) Clin. Genet.56:469-470
    27. Xu, M.-Q.; Feldman, G.; Le Merrer, M.; Shugart, Y. Y.; Glaser, D. L.; Urtizberea, J. A.; Fardeau, M.; Connor, J. M.; Triffitt, J.; Smith, R.; Shore, E. M.; Kaplan, F. S. (2000) Linkage exclusion and mutational analysis of the noggin gene in patients with fibrodysplasia ossificans progressiva (FOP). Clin. Genet.58: 291-298
    28. Xu, M.; Shore, E. M.; Kaplan, F. S. (2002) Reported noggin mutations are PCR errors. (Letter) Am. J. Med. Genet.109:161 only
    29. Harradine KA, Akhurst RJ (2006) Mutations of TGF-β signaling molecules in human disease. Ann Med 38:403-414
    30. Wang T, Li B-Y, Danielson PD, Shah PC, Rockwell S, Lechleider RJ, Martin J, Manganaro T, Donahoe PK (1996) The immunophilin FKBP12 functions as a common inhibitor of the TGF-(3 family type Ⅰ receptors. Cell 86:435-444
    31. Huse M, Muir TW, Xu L, Chen YG, Kuriyan J, Massague J (2001) The TGF-β receptor activation process:an inhibitor-to-substrate binding switch. Mol Cell 8:671-682
    32. Groppe JC, Shore EM, Kaplan FS (2007) Functional modeling of the ACVR1 (R206H) mutation in FOP. Clin Orthop Relat Res 462:87-92
    33. Billings PC, Fiori JL, Bentwood JL, O'Connell MP, Jiao X, Nussbaum B, Caron RJ, Shore EM, Kaplan FS (2008) Dysregulated BMP4 signaling and enhanced osteogenic differentiation of connective tissue progenitor cells from patients with fibrodysplasia ossificans progressiva. J Bone Miner Res 23:305-313
    34. Zhang D, Schwarz EM, Rosier RN, Zuscik MJ, Puzas JE, O'Keefe RJ (2003) Alk2 functions as a BMP type I receptor and induces Indian hedgehog in chondrocytes during skeletal development. J Bone Miner Res 18:1593-1604
    35. Kaplan FS, Shen Q, Lounev V, Seemann P, Groppe J, Katagiri T, Pignolo RJ, Shore EM. (2008) Skeletal metamorphosis in fibrodysplasia ossificans progressiva (FOP). J Bone Miner Metab 26:521-530
    36. Hoffmann A, Gross G (2001) BMP signaling pathways in cartilage and bone formation. Crit Rev Eukaryot Gene Expr 11:23-45
    37. Massague J, Blain SW, Lo RS (2000) TGF-beta signaling in growth control, cancer, and heritable disorders. Cell 103:295-309
    38. Canalis E, Economides AN, Gazzerro E (2003) Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 24:218-235
    39. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685-700
    40. Fiori JL, Billings PC, de la Pena LS, Kaplan FS, Shore EM.(2006) Dysregulation of the BMP-p38 MAPK signaling pathway in cells from patients with fibrodysplasia ossificans progressiva (FOP). J Bone Miner Res 21:902-909
    41. Kaplan FS, Shore EM, Gupta R, Billings PC, Glaser DL, Pignolo RJ, Graf D, Kamoun M (2005) Immunological features of fibrodysplasia ossificans progressiva and the dysregulated BMP4 pathway. Clin Rev Bone Miner Metab 3:189-193
    42. Olmsted-Davis E, Gannon FH, Ozen M, Ittmann MM, Gugala Z, Hipp JA, Moran KM, Fouletier-Dilling CM, Schumara-Martin S, Lindsey RW, Heggeness MH, Brenner MK, Davis AR (2007) Hypoxic adipocytes pattern early heterotopic bone formation. Am J Pathol 170:620-632
    43. Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 117:524-529
    44. Vanden Bossche LC, Van Maele G, Wojtowicz I, De Cock K, Vertriest S, De Muynck M, Rimbaut S, Vanderstraeten GG (2007) Free radical scavengers are more effective than indomethacin in the prevention of experimentally induced heterotopic ossification. J Orthop Res 25:267-272
    45. Schipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, Johnson RS (2001) Hypoxia in cartilage:HIF-1 alpha is essential for chondrocyte growth arrest and survival. Genes Dev 15:2865-2876
    46. Gannon FH, Kaplan FS, Olmsted E, Finkel G, Zasloff MA, Shore EM (1997) Bone morphogenetic protein 2/4 in early fibromatous lesions of fibrodysplasia ossificans progressiva. Hum Pathol 28:339-343
    47. Kaplan FS, Glaser DL, Shore EM, Pignolo RJ, Xu M, Zhang Y, Senitzer D, Forman SJ, Emerson SG (2007) Hematopoietic stem cell contribution to ectopic skeletogenesis. J Bone Joint Surg Am 89:347-357
    48. Stoick-Cooper CL (2007) Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev 21:1292-1315
    49. Glaser DL, Kaplan FS (2005) Treatment considerations for the management of fibrodysplasia ossificans progressiva. Clin Rev Bone Miner Metab 3:243-250
    50. Gau-Tyan Lin, Hsueh-Wei Chang, Chih-Shan Liu, Peng-Ju Huang, Hsien-Chung Wang, Yuh-Min Cheng (2006) De novo 617G>A nucleotide mutation in the ACVR1 gene in a Taiwanese patient with fibrodysplasia ossificans progressiva. J Hum Genet 51:1083-1086
    51. Masahiro Nakajima, Nobuhiko Haga, Kazuharu Takikawa, Noriyo Manabe,Gen Nishimura, Shiro Ikegawa (2007) The ACVR1 617G>A mutation is also recurrent in three Japanese patients with fibrodysplasia ossificans progressiva. J Hum Genet 52:473-475

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700