用户名: 密码: 验证码:
CYP4F2、CYP4A11及LTC4S基因多态与缺血性脑卒中相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CYP4F2、CYP4A11及LTC4S基因多态与缺血性脑卒中相关性研究
     目的
     脑卒中是严重危害人类健康的常见病、多发病,是人类三大死亡原因之一研究已经证实,高血压、糖尿病、血脂异常、吸烟、饮酒、肥胖等一些传统危险因素与脑卒中的发生有关。此外,遗传学研究表明脑卒中的发生有其遗传易感性。脑卒中是遗传和环境因素共同作用的结果,遗传因素在脑卒中的发病中起着重要作用,因此,寻找脑卒中的易感基因,从分子水平认识其发病机制,从而提高对该病的预防,诊断及治疗。
     花生四烯酸(arachidonic acid, AA)是人体内最为丰富的物质之一,是人体内多种重要心血管活性物质的前体。CYF4F2 (cytochrome P450, family 4, subfamilyF,polypeptide 2)以及CYP4A11(cytochrome P450,family 4,subfamily A,polypeptide 11)是细胞色素P450家族成员之一,它们的主要功能是催化花生四烯酸生成20-羟二十烷四烯酸(20-hydroxyeicosatetraenoic acid,20-HETE), 20-HETE在调节肾、脑、骨骼肌和肠系膜动脉血管平滑肌肌源性收缩中发挥重要作用,此外20-HETE还具有调节血压的作用。近来研究报道,20-HETE能引起出血性脑卒中后血管痉挛,参与缺血性脑卒中的发生发展过程。CYP4F2和CYP4A11是催化花生四烯酸生成20-HETE的主要合成酶。近来证实,CYP4F2基因的一个单核苷酸多态性(single nucleotide polymorphism, SNP) rs2108622会导致花生四烯酸生成20-HETE减少。本研究的目的之一是应用病例对照的方法研究CYP4F2和CYP4A11基因多态与缺血性脑卒中(Ischemic stroke, IS)的关系。
     白三烯C4合成酶(leukotriene C4 synthase, LTC4S)是半胱酰白三烯合成通路中一个重要的酶,半胱酰白三烯是很强的炎症介质,广泛参与多种炎症病理过程,半胱氨酰白三烯能通过激活其受体半胱酰白三烯受体1(cysteinyl leukotrienereceptor 1, CysTL1)和半胱酰白三烯受体2 (cysteinyl leukotriene receptor 2, CySTL2),改变内皮细胞通透性以及血管内皮细胞的迁移,介导平滑肌痉挛、微血管渗漏等。近年研究表明白三烯(leukotriene, LTs)与动脉粥样硬化及增加心血管疾病患病率有关。本研究的另一目的就是应用病例对照的方法研究LTC4S基因多态与缺血性脑卒中的关系。
     方法
     采用病例-对照研究方法,缺血性脑卒中(Ischemic stroke, IS)组选取中国北方IS患者302例,男性193例、女性109例,年龄在40-80岁间,均为汉族,无亲缘关系;选取性别、年龄与IS组相匹配的健康个体350例作为对照组,男性212例、女138例;在此基础上将IS组按病因不同分为大血管组(血栓性脑梗死组)和小血管组(腔隙性脑梗死组)。应用聚合酶链式反应-限制性片段长度多态性(PCR-RFLP)的方法检测CYF4F2基因rs2108622、rs3093100、rs3093105、rs3093135位点,CYP4A11基因rs9333025位点和LTC4S基因rs730012位点的多态性,应用基质辅助激光解吸附电离飞行时间质谱法(MALDI-TOF)检测rs3776924、rs1558139位点多态性;基因分型结果经双脱氧末端终止测序法进一步确认。用拟合优度χ2检验验证每个位点SNP基因型在抽样群体中的分布是否符合Hardy-Weinberg平衡。对于单位点的SNP数据,采用SPSS13.0统计软件χ2 Fisher's精确概率法检验其基因型、等位基因型在对照组与IS组及各亚组中的频率分布差异、风险度分析,最后结合临床资料,对相关数据进行条件Logistic回归方法排除传统混杂因素的干扰,以P<0.05为检验水准。用Shesis在线软件计算CYF4F2基因单倍型的频率。用UNPHASED软件分析CYF4F2基因、CYP4A11基因对IS的联合作用。
     结果
     1、所有研究对象的每个SNP位点的基因型在抽样群体中的分布均符合Hardy-Weinberg平衡(P>0.05),表示所选取的样本具有人群代表性适合做遗传学分析。
     2、CYF4F2基因rs2108622位点多态性在IS组与对照组的频率分布:rs2108622位点G/G基因型频率在男性IS组明显高于男性对照组(OR=2.53;95%CI:1.15-5.56;P=0.018),应用Logistic回归分析校正后仍有统计学差异(OR=1.788;95%CI:1.120~2.854; P=0.015 (G/G vs A/A+G/A)), (OR=3.14; 95%CI 1.283~7.71; P=0.012 (GG+GA vs AA)).G等位基因的频率男性IS组明显高于男性对照组(OR=1.48;95%CI:1.09-2.02;P=0.013)。而该位点在病例组与对照组之间以及女性病例组与对照组之间的差异无统计学意义(P>0.05)。
     3、CYF4F2基因rs3093100、rs3093105、rs3093135以及rs1558139位点多态性在IS组与对照组的频率分布:rs3093100位点C/C基因型的频率IS组与对照组比较、男性IS组与男性对照组比较以及女性IS组与女性对照组比较均无统计学意义(P>0.05);C等位基因的频率各组之间比较也无统计学意义。rs3093105位点T/T基因型的频率IS组与对照组比较、男性IS组与男性对照组比较以及女性IS组与女性对照组比较均无统计学意义(P>0.05);T等位基因的频率各组之间比较也无统计学意义。rs3093135位点T/T基因型的频率IS组与对照组比较、男性IS组与男性对照组比较以及女性IS组与女性对照组比较均无统计学意义(P>0.05);T等位基因的频率各组之间比较也无统计学意义。rs1558139位点G/G基因型的频率IS组与对照组比较、男性IS组与男性对照组比较以及女性IS组与女性对照组比较均无统计学意义(P>0.05);G等位基因的频率各组之间比较也无统计学意义。
     4、CYF4F2基因单倍型在对照组与IS组及IS亚组中频率分布:由rs2108622、rs3093100、rs3093105和rs3093135组建单倍型,在IS组与对照组构建5个单倍型,GGGT单倍型在IS组中的分布频率明显高于对照组,携带GGGT单倍型的个体,患缺血性卒中的风险率增加至1.339倍(OR=1.339;95%CI:1.051-1.706;P=0.017)。在男性IS组与男性对照组构建6个单倍体型,GGGT单倍型在IS组中的分布频率明显高于对照组,携带GGGT单倍型的个体,患缺血性卒中的风险率增加至1.545倍(OR=1.545;95%CI:1.144-2.087;P=0.004)。在女性IS组与女性对照组构建8个单倍型,两组间比较无统计学差异。
     5、CYP4A11基因rs9333025位点的多态性在IS组与对照组的频率分布:rs9333025位点IS组与对照组比较,G/G基因型的频率高于对照组,而G/A+A/A的频率低于对照组,基因型频率比较χ2=9.311,P=0.02,OR=1.698,95%CI1.207-2.389。应用logistic回归分析校正传统危险因素(高血压、糖尿病、高脂血症、吸烟等)后GG基因型频病例组和对照组比较差异仍然有统计学意义,χ2=6.715,P=0.01,OR=1.721,95%CI:1.141-2.594。
     6、LTC4S基因rs730012位点多态性在对照组与IS组中频率分布:IS组与对照组比较C/C基因型的频率明显高于对照组,A/C,A/A基因型的频率均低于对照组,基因频率比较χ2=3.41,P=0.011,OR=3.41,95%CI:1.257-9.245;A与C等位基因频率比较χ2=11.057,df=1,OR=1.680,95%CI=1.235~2.286,P=0.001。应用Logistic回归分析校正后仍有统计学意义(OR=0.881;95%CI:0.786-0.989;P=0.031)。将IS组按不同病因分为大血管组(血栓性脑梗死组)和小血管组(腔隙性脑梗死组)后,大血管组与对照组比较C/C基因型的频率明显低于对照组。
     7、LTC4S基因rs331446827位点多态性在对照组与IS组中频率分布:rs331446827位点C/C基因型的频率IS组与对照组比较无统计学意义(P>0.05)。
     结论
     1、CYP4F2基因rs2108622位点GG基因型可能是中国北方汉族人群男性缺血性卒中的独立的危险因素,G等位基因可以增加男性患缺血性脑卒中的遗传易感性。
     2、CYP4F2基因rs3093100、rs3093105、rs3093135以及rs1558139位点的基因多态性与缺血性脑卒中无关。
     3、CYP4F2基因的GGGT单倍型可能是IS的风险单倍型。
     4、CYP4A11基因rs9333025位点GG基因型与IS具有相关性,G等位基因增加缺血性脑卒中的遗传易感性
     5、LTC4S基因rs730012位点C/C基因型可能具有保护作用的基因。
     6、LTC4S基因rs3776924位点的多态性与IS无关。
Effect of Polymorphisms of CYP4F2、CYP4A11 and LTC4S Gene on Ischemic Stroke
     Objective
     Cerebrovascular disease(CVD) is one of the three major causes of death, and is harmful to human health. Ischemic stroke(IS) of incidence of cerebrovascular disease accounted for 80%.IS is a heterogeneous multifactorial disorder. In addition to conventional risk factors such as hypertension, diabetes mellitus, and smoking, evidence from animals and clinical and epidemiological studies have repeatedly supported the likelihood of a genetic contribution to CI susceptibility. Epidemiological data provide substantial evidence for a genetic component to the disorder. Identifying accurately its genetic determinants is a key issue in order to improve diagnosis and treatment strategies and to reduce stroke's huge public health burden.
     Arachidonic acid (AA) is the most abundant substances in the human body which is one of the important precursors of cardiovascular active substances. It has been reported that 20-hydroxyeicosatetraenoic acid (HETE) plays an important role in the pathogenesis of ischemic stroke.20-HETE is a metabolite of arachidonic acid (AA) generated by the CYP4F2 and CYP4A11 subfamily of cytochrome P450 (CYP450) and plays a significant role in the regulation of vascular tone in renal, cerebral, coronary, and skeletal muscle arterioles, and in the pulmonary circulation. CYP450 enzymes form the 3rd pathway of arachidonic acid (AA) metabolize AA. CYP450-derived arachidonic acid metabolites play a role in the modulation of cerebrovascular pathology and physiology. CYP4F2 and CYP4A11 are members of the family of CYP450 enzymes, and mainly act as enzymes that is involved not only in the metabolism of leukotriene B4 (LTB4), but also 20-HETE. It has been reported that cerebral infarction is associated with the polymorphism of rs2108622.However the association results of these candidate genes in different regions and for different ethnic population have not been effectively reapeated and confirmed. In view of northern Chinese population with higher incidence of IS, it is necessary to carry out an association study of candidated susceptible genes aimed at northern China region Han population IS.
     Atherosclerosis is an important pathophysiological basis of IS, and inflammatory reaction process is of great significance in atherosclerosis formation, Leukotriene signaling has been implicated in early lipid retention and foam cell accumulation, as well as in the development of intimal hyperplasia and advanced atherosclerotic lesions. Furthermore, the association of leukotrienes with degradation of extracellular matrix has suggested a role in atherosclerotic plaque rupture. Studies in animals and in vitro suggest that both LTB4 and cysteinyl leukotrienes participate in the development of atherosclerotic lesions. LTC4 synthase lead LTA4 to LTC4, D4 and E4 (collectively referred to as the cysteinyl-LTs). so our study selected inflammation-related LTC4 synthase gene. By introducing candidate genes case-control association analysis, we mesured LTC4 synthase gene allele frequencies between IS group. So we can provide IS molecular epidemiology data for comprehensively understanding IS potential genetic mechanisms and more early IS molecular biology diagnosis indicators.
     Materials and methods
     A case-control design was introduced. The subjects of IS group were consecutively recruited from northern China region patients with a total of 302 cases male 193,female 109, aged 40-80 years old, Han nationality, no consanguinity with each other. The controls matched by age, sex, and ethnic orign were recruited from the same patients geographic region, with a total of 350 cases, male 212, female 138. Accordting to the different causes the patients were divided into two subgroups:the large vessels group (thrombotic cerebral infarction group) and the small vessels group(lacunar infarction group). CYP4F2 gene rs2108622, rs3093100, rs3093105, rs3093135; CYP4A11 gene rs9333025 and LTC4S gene rs73002 SNPs were genotyped by polymerase chain reaction and restriction fragment length polymorphism(PCR-RFLP) analysis.CYP4F2 gene rs1558139 and LTC4S gene rs331446829 SNPs were genotyped by means of Matrix-assisted laser desorption ionization time-of-flight mass spectrometry(MALDI-TOF) primer extension reaction. Genotyping results were confirmed by squencing method. SPSS 13.0 statistical software was used for data processing. Continuous variables were expressed as mean±SE and were assessed by One-Way ANOVA. Genotype and allele frequencies were calculated for control group and each of the patient groups. Univariate comparisons of allele and genotype distributions were done usingχ2 test. Theχ2 goodness of fit test was used to test for deviation of genotype distribution from Hardy-Weinberg equilibrium. Conditional Logistic Regression adjusted for IS traditional risk factors including age, blood pressure, blood sugar, blood lipids and smoking. The influence of CYP4F2、CYP4A11 and LTC4S gene polymorphisms on IS was indicated by odds ratio(OR) and 95% confidenc(CI) with P<0.05 as significant criteria. Haplotype-based analysis was infered by using Shesis online-software. The synergistic action of CYP4F2 gene、CYP4Allgene and LTC4S gene for IS was analysed by UNPHASED 3.0.7 version software.
     Results
     1. The genotype frequencies of all SNPs conformed to the expectations of Hardy-Weinberg equilibrium(P>0.05). It was suggested that the selected samples could represent the population and were suitable for genetic analysis.
     2. CYP4F2 gene rs2108622 SNP frequencies distributions among the patients and the controls:rs2108622 G/G genotyp frequencies of the male IS group were higher than the male control group (OR=2.53; 95%CI:1.15-5.56; P=0.018), and after logistic regression the differece was still significant OR=1.78; 95%CI:1.120~2.854; P=0.015 (GG vs AA+GA)), (OR=3.14; 95%CI 1.283-7.71; P=0.012(GG+GA vs AA)). G allele frequencies of the male IS group were higher than the male control group (OR=1.48; 95%CI:1.09-2.02; P=0.013).There were no significant differences with regard to G/G genotyp frequencies between the IS patients and the control and female.
     3. CYP4F2 gene rs3093100、rs3093105、rs3093135 and rs1558139 SNPs frequencies distributions among the patients and the controls:There were no significant differences with regard to rs3093100 C/C genotyp frequencies between the IS patients and the control,males and females (P>0.05). There were no significant differences with regard to rs3093105 T/T genotyp frequencies between the IS patients and the control,males and females (P>0.05). There were no significant differences with regard to rs3093135 T/T genotyp frequencies between the IS patients and the control,males and females (P>0.05). There were no significant differences with regard to rs1558139 G/G genotyp frequencies between the IS patients and the control,males and females (P>0.05).
     4. CYP4F2 gene haplotype frequencies among the patients and the controls:5 haplotypes were identified among the patients and the controls, GGGT haplotype frequencies of the IS group were higher than the control group (OR= 1.339; 95%CI: 1.051-1.706; P=0.017);6 haplotypes were identified among the male patients and the male controls, the GGGT haplotype frequencies of the male cases were higher than the male control group (OR= 1.545; 95%CI:1.144-2.087; P=0.004); 8 haplotypes were identified among the female patients and the female, significant differences of all the haplotypes were not observed in the female IS group and the female control group (P<0.05).
     5. CYP4A11 gene rs9333025 SNP frequencies distributions among the patients and the controls:rs9333025G/G genotyp frequencies of IS group were higher than the control group(P=0.02, OR=1.698,95%CI:1.207-2.389), and after logistic regression the differece was still significant(P=0.01,OR=1.721,95%CI:1.141-2.594)rs9333025 G allele frequencies of the IS group were higher than the control group (OR=1.661; 95%CI:1.22-2.24; P=0.001)
     6. LTC4S gene rs730012 SNP frequencies distributions among the patients and the controls:rs730012 C/C genotyp frequencies of the control group were lower than the IS group (OR=3.41; 95%CI:1.257-9.245;P=0.011), and after logistic regression the differece was still significant (OR=0.892; 95%CI:0.797-0.998; P=0.047)
     7. LTC4S gene rs331446827 SNP frequencies distributions among the patients and the controls:There were no significant differences with regard to rs331446827 A/A genotyp frequencies between the IS patients and the control. Conclusions
     1、CYP4F2 gene rs2108622 G/G genotype might be the independent risk factors of northern China region han population ischemic strke, and its risk mainly came from G allele.
     2、There were no association between the polymorphisms of rs3093100、 rs3093105、rs3093135 and rsl558139 and northern China region han population ischemic strke.
     3、CYP4F2 gene GCGA haplotype might be at-risk haplotype of IS
     4、CYP4A11 gene rs9333025 G/G genotype might be associated with IS.G allele might be risk allele
     5、LTC4S gene rs730012 C/C genotype might be protective.
     6、There was no association between the SNP of rs331446827 and IS.
引文
1 王维治.神经病学,人民卫生出版社.2006.第一版;714-723.
    2 Goldstein LB, Adams R, Alberts MJ, et al. Primary prevention of ischemic stroke:a guideline from the American Heart Association/American Stroke Association Stroke Council. Stroke. 2006;37:1583-633.
    3 Hassan A, Markus HS. Genetics and ischaemic stroke. Brain.2000; 123:1784-1812.
    4 Hademenos GJ, AlbertsMJ, Awad I, et al. Advances in the genetics of cerebrovascular disease and stroke. Neurology.2001; 56:997-1008.
    5 Domingues-Montanari S, Mendioroz M, del Rio-Espinola A, et al. Genetics of stroke:a review of recent advances. Expert Rev Mol Diagn.2008; 8(4):495-513.
    6 Ingrid Fleming. Cytochrome P450 and vascular homeostasis. Circ Res.2001,89:753-62
    7 Elbekai RH, El-Kadi AO. Cytochrome P450 enzymes:central players in cardiovascular health and disease. Pharmacol Ther.2006; 112:564-568.
    8 Bylund J, Bylund M, Oliw EH. cDNA cloning and expression of CYP4F12, a novel human cytochrome P450. Biochem Biophys Res Commun.2001; 280:892-991.
    9 Lasker JM, Chen WB, Wolf I, et al. Formation of 20-hydroxyeicosatetraenoic acid, a vasoactive and natriuretic eicosanoid, in human kidney. Role of CYP4F2 and CYP4A11. J Biol Chem.2000; 275:4118-4126.
    10 Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev.2002; 82:131-85.
    11 Miyata N, Roman RJ. Role of 20-hydroxyeicosatetraenoic acid (20-HETE) in vascular system. J Smooth Muscle Res.2005; 41:175-193.
    12 Yousif MH, Benter IF, Dunn KM, et al. Role of 20-hydroxyeicosatetraenoic acid in altering vascular reactivity in diabetes. Auton Autacoid Pharmacol.2009; 29:1-12.
    13 Tanaka Y, Omura T, Fukasawa M, et al. Continuous inhibition of 20-HETE synthesis by TS-011 improves neurological and functional outcomes after transient focal cerebral ischemia in rats. Neurosci Res.2007; 59:475-480.
    14 Renic M, Klaus JA, Omura T, et al. Effect of 20-HETE inhibition on infarct volume and cerebral blood flow after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab. 2009; 29:629-639.
    15 Stec DE, Roman RJ, Flasch A, et al. Functional polymorphism in human CYP4F2 decreases 20-HETE production. Physiol Genomics.2007; 30:74-81.
    16 Dichgans M. Genetics of ischaemic stroke. Lancet Neurol.2007; 6:149-161.
    17 Bitstein D, Risch N. Discovering genotypes underlying human phenotypes:past successes for mendelian disease, future approaches for complex disease. Nat Genet.2003,33:228-237.
    18金丽江.2005年卒中和脑血管疾病的遗传学研究进展.中国卒中杂志.2006,1:78-79
    19冷欣夫,邱星辉.细胞色素P450酶系的结构、功能与应用前景.北京.科学出版社,2001.5
    20 Nebert DW, Adesnik M, Coon MJ, et al. The P450 gene superfamily :recommended nomenclature. DNA.1987; 6:1-11.
    21 Dvaid Nelson,homepage for cytochrome P450 nomenclature. http://drnelosn. utmne. edu/cytochromeP450.html.
    22 Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Laneet.2002; 360: 1155-1162.
    23 Lasker JM, Chen WB, Wolf I, et al. Formation of 20-hydroxeicosatetraen acid,a vasoactive and natriuretic eicosanoid, in human kidney. Role of CYP4F2 and CYP4A11. J Biol Chem.2000, 275:4118-4126.
    24 Powell PK, Wolf I, Jin R, et al. Metabolism of arachidonic acid to 20-hydroxy-5,8,11,14-eicosatetraenoic acid by P450 enzymes in human liver:involvement of CYP4F2 and CYP4A11. J Pharmacol Exp Ther.1998,285:1327-1336.
    25 Gainer JV, Bellamine A, Dawson EP, et al. Functional variant of CYP4A11 20-hydroxyeicosatetraenoic acid synthase is associated with essential hypertension. Circulation. 2005,111:63-69.
    26 Fleming I. Cytochrome P-450 under pressure:more evidence for a link between 20-hydroxyeicosatetraenoic acid and hypertension. Circulation.2005,111:5-7.
    27 Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev.2002; 82:131-185.
    28 Miyata N, Roman RJ. Role of 20-hydroxyeicosatetraenoic acid (20-HETE) in vascular system. J Smooth Muscle Res.2005;41:175-193.
    29 Yousif MH, Benter IF, Dunn KM, et al. Role of 20-hydroxyeicosatetraenoic acid in altering vascular reactivity in diabetes. Auton Autacoid Pharmacol.2009; 29:1-12.
    30 Harder DR, Gebremedhin D, Narayanan J, et al.Formation and action of a P-450 4A metabolite of arachidonic acid in cat cerebral microvessels. Am J Physiol.1994;266:2098-2107.
    31 Yu M, Cambj-Sapunar L, Kehl F, et al. Effects of a 20-HETE antagonist and agonists on cerebral vascular tone. Eur J Pharmacol.2004;486:297-306.
    32 Miyata N, Seki T, Tanaka Y, et al. Beneficial effects of a new 20-hydroxyeicosatetraenoic acid synthesis inhibitor, TS-011 [N-(3-chloro-4-morpholin-4-yl)phenyl-N'-hydroxyimido formamide],on hemorrhagic and ischemic stroke. J Pharmacol Exp Ther.2005;314:77-85.
    33 Takeuchi K, Miyata N, Renic M, et al. Hemoglobin, NO, and 20-HETE interactions in mediating cerebral vasoconstriction following SAH. Am J Physiol Regul Integr Comp Physiol. 2006; 290:84-89.
    34 Samuel M Poloyac, Yuqing Zhang, Robert R Bies, et al. Protective effect of the 20-HETE inhibitor HET0016 on brain damage after temporary focal ischemia. Journal of Cerebral Blood Flow & Metabolism.2006; 26:1551-1561.
    35 Tanaka Y, Omura T, Fukasawa M, et al. Continuous inhibition of 20-HETE synthesis by TS-011 improves neurological and functional outcomes after transient focal cerebral ischemia in rats. Neurosci Res.2007; 59:475-480.
    36 Renic M, Klaus JA, Omura T, et al. Effect of 20-HETE inhibition on infarct volume and cerebral blood flow after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab. 2009; 29:629-639.
    37 Omura T, Tanaka Y, Miyata N, et al. Effect of a new inhibitor of the synthesis of 20-HETE on cerebral ischemia reperfusion injury. Stroke.2006; 37:1307-1313.
    38 Dunn KM, Renic M, Flasch AK, et al. Elevated production of 20-HETE in the cerebral vasculature contributes to severity of ischemic stroke and oxidative stress in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol.2008; 295:H2455-2465.
    39 Kawashima H, Naganuma T, Kusunose E, et al. Human fatty acid omega-hydroxylase, CYP4A11:determination of complete genomic sequence and characterization of purified recombinant protein. Arch Biochem Biophys.2000; 378:333-339.
    40 Crespi CL, Chang TK, Waxman DJ. determination of CYP4A11-catalyzed lauric acid 12-hydroxylation by high-performance liquid chromatography with radiometric detection. Methods Mol Biol.1998; 107:163-167.
    41 Lasker JM, Chen WB, Wolf I, et al. Formation of 20-hydroxyeicosatetraenoic acid, a vasoactive and natriuretic eicosanoid, in human kidney, Role of Cyp4F2 and Cyp4A11. J Biol Chem.2000; 275:4118-4122
    42 Stec DE, Roman RJ, Flasch A, et al. Functional polymorphism in human CYP4F2 decreases 20-HETE production. Physiol Genomics.2007,30:74-81.
    43 Fava Cristiano, Montagnana Martina, Almgren Peter,et al. The V433M variant of the CYP4F2 is associated with ischemic stroke in male Swedes beyond its effect on blood pressure. Hypertension,2008,52:373-380.
    44 Ward NC, Tsai IJ, Barden A, et al. A single nucleotide polymorphism in the CYP4F2 but not CYP4A11 gene is associated with increased 20-HETE excretion and blood pressure. Hypertension.2008; 51:1393-1398.
    45 Holla VR, Adas F, Imig JD, et al. Alterations in the regulation of androgen-sensitive CYP 4A monooxygenases cause hypertension. Proc Natl Acad Sci USA.2001; 98:5211-5216.
    46 Nakagawa K, Marji JS, Schwartzman ML, et al. Androgen-mediated induction of the kidney arachidonate hydroxylases is associated with the development of hypertension. Am J Physiol Regul Integr Comp Physiol.2003; 284:R1055-1062.
    47 Singh H, Cheng J, Deng H, et al. Vascular cytochrome P450 4A expression and 20-hydroxyeicosatetraenoic acid synthesis contribute to endothelial dysfunction in androgen-induced hypertension. Hypertension.2007; 50:123-129.
    48 Singh H, Schwartzman ML. Renal vascular cytochrome P450-derived eicosanoids in androgen-induced hypertension. Pharmacol Rep.2008; 60:29-37.
    49 Morris RW, Kaplan NL. On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles. Genet Epidemiol.2002; 23:221-233.
    50 Domingues-Montanari S, Mendioroz M, del Rio-Espinola A, et al.Genetics of stroke:a review of recent advances. Expert Rev Mol Diagn.2008; 8(4):495-513.
    51 Xiaowei Xu, Jiejie Li, Wenli Sheng, Lin Liu. Meta-Analysis of Genetic Studies from Journals Published in China of Ischemic Stroke in the Han Chinese Population. Cerebrovasc Dis.2008; 26:48-62.
    52 Cheryl L. Laffer, James V. Gainer, Michael R. Waterman, et al. The T8590C Polymorphism of CYP4A11 and 20-Hydroxyeicosatetraenoic Acid in Essential Hypertension. Hypertension.2008; 51:767-772.
    53 Hermanna M, Hellermanna J.P, Quitzaua K, et al. CYP4A11 polymorphism correlates with coronary endothelial dysfunction in patients with coronary artery disease-The ENCORE Trials. Atherosclerosis.2009; 207:476-479.
    54 Harder, D.R., Gebremedhin, D., Narayanan, J., et al. Formation and action of a P-450 4A metabolite of arachidonic acid in cat cerebral microvessels. Am J Physiol.1994; 266: H2098-H2107.
    55 Gebremedhin, D., Lange, A.R., Narayanan, J., et al. Cat cerebral arterial smooth muscle cells express cytochrome P450 4A2 enzyme and produce the vasoconstrictor 20-HETE which enhances L-type Ca2+ current. J Physiol.1998; 507:771-781.
    56 Gebremedhin, D., Lange, A.R., Lowry, T.F.,et al. Production of 20-HETE and its role in autoregulation of cerebral blood flow. Circ Res.2000; 87:60-65.
    57 Randriamboavonjy V, Busse R, Fleming I.20-HETE induced contraction of small coronary arteries depends on the activation of Rho kinase. Hypertension.2003; 40; 801-806.
    58 Gainer JV, Bellamine A, Dawson EP, et al. Functional variant of CYP4A11 20-hydroxyeicosatetraenoic acid synthase is associated with essential hypertension. Circulation. 2005; 111:63-69.
    59 Mayer B, Lieb W, Go(?)tz A, Ko(?)nig IR, et al. Association of the T8590C polymorphism of CYP4A11 with hypertension in the MONICA Augsburg echocardiographic substudy. Hypertension.2005; 46:766-771.
    60 Cheryl L. Laffer, James V. Gainer, Michael R. Waterman, et al. The T8590C Polymorphism of CYP4A11 and 20-Hydroxyeicosatetraenoic Acid in Essential Hypertension. Hypertension.2008; 51; 767-772.
    61 Fu Z, Nakayama T, Sato N, et al. A haplotype of the CYP4A11 gene associated with essential hypertension in Japanese men. J Hypertens.2008; Mar; 26(3):453-461.
    62 Sugimoto K, Akasaka H, Katsuya T, et al. A polymorphism regulates CYP4A11 transcriptional activity and is associated with hypertension in a Japanese population. Hypertension.2008; 52(6):1142-1148.
    63 Fu Z, Nakayama T, Sato N, et al. Haplotype-based case study of human CYP4A11 gene and cerebral infarction in Japanese subject. Endocrine.2008;33(2):215-222.
    64 Gregoire JM, Romeo PH. T-cell expression of the human GATA-3 gene is regulated by a non-lineage-specific silencer. J Biol Chem.1999; 274:6567-6578.
    65 Brunner M, Zhang M, Genin A, et al. A T-cell-specific CD154 transcriptional enhancer located just upstream of the promoter. Genes Immun.2008; 9(7):640-912.
    66 ohtsuki T, Matsumoto M, Hayashi Y, et al. RePeurfsion induces 5-lipoxygenase translocation and leukotriene C4 Production in ischemic brain. AmJPhysiol.1995; 268:1249-1257.
    67 Cieeri P, Rabuefftti M, MonoPoli A, et al. Porduction of leukotrienes in a model of focal cerebral ischemia in the rat. B J Phamracol.2001; 133:1323-1329.
    68 Back M, Hansson GK. Leukotriene receptors in atherosclerosis. Ann Med.2006; 38:493-502.
    69 Sanak M, Simon HU, Szczeklik A. Leukotriene C4 synthase promoter polymorphism and risk of aspirin-induced asthma. Lancet.1997;350:1599-1600.
    70 Iovannisci DM, Lammer EJ, Steiner L, et al. Association between a leukotriene C4 synthase gene promoter polymorphism and coronary artery calcium in young women:the Muscatine Study. Arterioscler Thromb Vasc Biol.2007,27:394-399.
    71 Freiberg JJ, Tybjaerg-Hansen A, Sillesen H, et al. Promotor polymorphisms in leukotriene C4 synthase and risk of ischemic cerebrovascular disease. Arterioscler Thromb Vasc Biol.2008; 28(5):990-996.
    72 Nathan C, Shiloh MU. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Nat Acad Sci.2000; 97(16):8841-8848.
    73 Rost NS, Wolf PA, Kase CS, et al. Plasma concentration of C-reactive protein and risk of ischemic stroke and transient ischemic attack:the Framingham study. Stroke.2001; 32: 2575-2579.
    74 Peters-Golden M, Henderson WR Jr. Leukotrienes. N Engl J Med.2007;357:1841-1854
    75 Back M. Leukotriene receptors:crucial components in vascular inflammation. Scientific World Journal.2007;7:1422-1439.
    76 Back Magnus. Leukotriene Signaling in Atherosclerosisand Ischemia. Cardiovasc Drugs Ther. 2009; 23:41-48.
    77 Spanbroek R, Grabner R, Lotzer K, et al. Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis. Proc Natl Acad Sci. USA.2003; 100: 1238-1243.
    78 Qiu H, Gabrielsen A, Agardh HE, et al. Expression of 5-lipoxygenase and leukotriene A4 hydrolase in human atherosclerotic lesions correlates with symptoms of plaque instability. Proc Natl Acad Sci USA.2006; 103:8161-8166.
    79 Aiello RJ, Bourassa PA, Lindsey S, et al. Leukotriene B4 receptor antagonism reduces monocytic foam cells in mice. Arterioscler Thromb Vasc Biol.2002; 22:443-449.
    80 Back M, Bu DX, Branstrom R, et al. Leukotriene B4 signaling through NF-kappaB-dependent BLT1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia. Proc Natl Acad Sci USA.2005; 102:17501-17506.
    81 Zhao L, Moos MP, Grabner R, et al. The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. Nat Med.2004; 10:966-973.
    82 Uzonyi B, Lotzer K, Jahn S, et al. Cysteinyl leukotriene 2 receptor and protease-activated receptor 1 activate strongly correlated early genes in human endothelial cells. Proc Natl Acad Sci USA.2006; 103:6326-6331.
    83 Lee CC, Appleyard RF, Byrne JG, et al. Leukotrienes D4 and E4 produced in myocardium impair coronary flow and ventricular function after two hours of global ischaemia in rat heart. Cardiovasc Res.1993; 27:770-773.
    84 Shekher A, Singh M. Role of eicosanoid inhibition of ischemia reperfusion injury:intact and isolated rat heart studies. Methods Find Exp Clin Pharmacol.1997; 19:223-229.
    85 Back M. Leukotriene signaling in atherosclerosis and ischemia. Cardiovasc Drugs Ther. 2009; 23:41-48.
    86 Rossoni G, Sala A, Berti F, Testa T, et al. Myocardial protection by the leukotriene synthesis inhibitor BAY X1005:importance of transcellular biosynthesis of cysteinyl-leukotrienes. J Pharmacol Exp Ther.1996; 276:335-341.
    87 Hock CE, Beck LD, Papa LA. Peptide leukotriene receptor antagonism in myocardial ischaemia and reperfusion. Cardiovasc Res.1992; 26:1206-1211.
    88 Moskowitz MA, Kiwak KJ, Hekimian K, Levine L. Synthesis of compounds with properties of leukotrienes C4 and D4 in gerbil brains after ischemia and reperfusion. Science.1984; 224: 886-889.
    89 Helgadottir A, Manolescu A, Thorleifsson G, et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet.2004;36:233-239.
    90 Helgadottir A, Manolescu A, Helgason A, et al. A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction. Nat Genet.2006;38:68-74.
    91 Kajimoto K, Shioji K, Ishida C, et al. Validation of the association between the gene encoding 5-lipoxygenase-activating protein and myocardial infarction in a Japanese population. Circ J. 2005;69:1029-1034.
    92 Kaushal R, Pal P, Alwell K, et al. Association of ALOX5AP with ischemic stroke:a population-based case-control study. Hum Genet.2007; 121:601-607.
    93 Sampson AP, Siddiqui S, Buchanan D, et al. Variant LTC4 synthase a11ele modifies cysteinyl leukotriene synthesis in eosinophils and predicts clinical response to zafirlukast. Tholax.2000; 55:S28-S31.
    94 Magnus Ba(?)ck. Cysteinyl-Leukotrienes in Cerebrovascular Disease Angels and Demons? Arterioscler Thromb Vasc Biol.2008; 28:805-806.
    1 Peters-Golden M, Henderson WR Jr.Leukotrienes. N Engl J Med.2007; 357(18):1841-1854.
    2 Ohtsuki T, Matsumoto M, Hayashi Y, et al. Reperfusion induces 5-lipoxygenase translocation and leukotriene C4 Production in ischemic brain. Am J Physiol.1995; 268:1249-1257.
    3 Datta K, Biswal SS, Xu J, et al. A relationship between 5-lipoxygenase-activating protein and bcl-xL expression in murine pro-B lymphocytic FL5.12 cells. J Biol Chem.1998; 273: 28163-28169.
    4 Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation.1995; 92:657-671.
    5 Mehrabian, M., Allayee, H., Wong, J.,et al.Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice. Circulation Research.2002; 91:120-126.
    6 In KH, Asano K, Beier D, et al. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription. J Clin Invest.1997; 99:1130-1137.
    7 Silverman E, In KH, Yandava C, et al. Pharmacogenetics of the 5-lipoxygenase pathway in asthma. Clin Exp Allergy.1998; 28 Suppl 5:164-170.
    8 Dwyer, J. H., Allayee, H., Dwyer, K. M., et al. Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. New England Journal of Medicine.2004; 350: 29-37.
    9 Allayee H, Baylin A, Hartiala J, et al. Nutrigenetic association of the 5-lipoxygenase gene with myocardial infarction.Am J Clin Nutr.2008; 88(4):934-40.
    10 Wung SF, Aouizerat BE.Candidate Genes of the 5-Lipoxygenase Pathway in Acute Coronary Syndrome:A Pilot Study Biol Res Nurs.2008; 9(4):280-92.
    11 Assimes TL, Knowles JW, Priest JR.Common polymorphisms of ALOX5 and ALOX5AP and risk of coronary artery disease. Hum Genet.2008; 123(4):399-408.
    12 Maznyczka A, Braund P, Mangino M, Samani NJ.Arachidonate 5-lipoxygenase (5-LO) promoter genotype and risk of myocardial infarction:a case-control study.Atherosclerosis. 2008; 199(2):328-32
    13 Alvarez V, Gonzalez P, Corao AI,The Spl/Egrl-tandem repeat polymorphism in the 5-lipoxygenase gene promoter is not associated with late onset Alzheimer disease. Alzheimer Dis Assoc Disord.2008; 22(2):177-80.
    14 Helgadottir A, Manolescu A, Thorleifsson G,The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet.2004; 36(3):233-9.
    15 Helgadottir A, Gretarsdottir S, St Clair D.Association between the gene encoding 5-lipoxygenase-activating protein and stroke replicated in a Scottish population. Am J Hum Genet.2005; 76(3):505-509.
    16 Bevan S, Dichgans M, Wiechmann HE,et al.Genetic variation in members of the leukotriene biosynthesis pathway confer an increased risk of ischemic stroke:a replication study in two independent populations. Stroke.2008; 39(4):1109-1114.
    17 Lohmussaar E, Gschwendtner A, Mueller JCALOX5AP gene and the PDE4D gene in a central European population of stroke patients.Stroke.2005; 36(4):731-736.
    18 Linsel-Nitschke P, Gotz A, Medack A, Genetic variation in the arachidonate 5-lipoxygenase-activating protein (ALOX5AP) is associated with myocardial infarction in the German population.Clin Sci (Lond).2008; 115(10):309-315.
    19 Zhang WL, Yang XM, Shi J, et al. Polymorphism of SG13S114T/A in the ALOX5AP gene and the risk for stroke in a large Chinese cohort. Yi Chuan Xue Bao.2006; 33(8):678-84.
    20 Shen CD, Zhang WL, Sun K, et al. Interaction of genetic risk factors confers higher risk for thrombotic stroke in male Chinese:a multicenter case-control study. Ann Hum Genet.2007; 71(Pt 5):620-9.
    21 RobertYLZ,SuzanneC,HillaryBSetal,et al.Genetic variants of Aiachidonate 5-LIPoxygenase-Activating Protein, and Risk of Incident Myocardial Infaretion and Ischemic Stroke.Stroke. 2006; 37:31-36.
    22 Kostulas K, Gretarsdottir S, Kostulas V,et al.PDE4D and ALOX5AP genetic variants and risk for Ischemic Cerebrovascular Disease in Sweden..J Neurol Sci.2007; 263(1-2):113-7.
    23 Sanak M, Simon HU, Szczeklik A. Leukotriene C4 synthase promoter polymorphism and risk of aspirin2induced asthma. Lancet.1997; 350:1599-1600.
    24 Iovannisci DM, Lammer EJ, Steiner L, et al.Association between a leukotriene C4 synthase gene promoter polymorphism and coronary artery calcium in young women:the Muscatine Study. Arterioscler Thromb Vasc Biol.2007;27:394-399.
    25 Freiberg JJ, Tybjaerg-Hansen A, Sillesen H, et al. Promotor polymorphisms in leukotriene C4 synthase and risk of ischemic cerebrovascular disease. Arterioscler Thromb Vasc Biol.2008; 28(5):990-996.
    26 Cipollone F, Prontera C, Pini B, et al. Overexpression of functionally coupled cyclooxygenase-2 and prostaglandin E synthase in symptomatic atherosclerotic plaque as a basis of prostaglandin E2-dependent plaque instability. Circulation.2001; 104:921-927
    27 Nogawa S, Zhang F, Ross ME, etal.Cyclooxygenase-2 gene expression in neurons contributes to ischemic brain damage. J Neuros ci.1997; 17:2746-2755.
    28 Iadecola C, Niwa K, Nogawa S, et al. Reduced susceptibility to ischemic brain injury and N-metheyl-D-aspartate-mediated neurotoxicity in cyclooxygenase-2 deficient mice. Proc Natl Acad Sci USA.2001; 98(3):1294-1299.
    29 Colaizzo D, Fofi L, Tiscia G, et al. The COX-2 G/C-765 polymorphism may modulate the occurrence of cerebrovascular ischemia. Blood Coagul Fibrinolysis.2006.17(2):93-96.
    30 shun Kohsaka, Kelly A, Volcik, et al. Increased risk of incident stroke associated with the cyclooxygenase 2(COX-2) G-765C polymorphism in African-Americans:The Atherosclerosis Risk in Communities Study. Atherisclerosis.2008; 196(2):926-930.
    31 Lee CR, North KE, Bray MS, et al. Cyclooxygenase Polymorphisms and Risk of Cardiovascular Events:The Atherosclerosis Risk in Communities (ARIC) Study. Clin Pharmacol Ther.2008; 83(1):52-60.
    32 Furukado S, Sakaguchi M, Yamagami H. Cyclo-oxygenase-2-765G>C promoter variants are associated with lower carotid plaque echogenicity in Japanese.Cerebrovasc Dis.2009; 27(1): 91-98.
    33 Harder DR, Gebremedhin D, Narayanan J, et al. Formation and action of a P-450 4A metabolite of arachidonic acid in cat cerebral microvessels. Am J Physiol.1994; 266:H2098-2107.
    34 Yu M, Cambj-Sapunar L, Kehl F, et al. Effects of a 20-HETE antagonist and agonists on cerebral vascular tone. Eur J Pharmacol.2004; 486:297-306.
    35 Miyata N, Seki T, Tanaka Y, et al. Beneficial effects of a new 20-hydroxyeicosatetraenoic acid synthesis inhibitor, TS-011[N-(3-chloro-4-morpholin-4-yl)phenyl-N'-hydroxyimido formamide], on hemorrhagic and ischemic stroke. J Pharmacol Exp Ther.2005; 314:77-85.
    36 Takeuchi K, Miyata N, Renic M, et al. Hemoglobin, NO, and 20-HETE interactions in mediating cerebral vasoconstriction following SAH. Am J Physiol Regul Integr Comp Physiol. 2006; 290:R84-89.
    37 Samuel M Poloyac, Yuqing Zhang, Robert R Bies, et al. Protective effect of the 20-HETE inhibitor HET0016 on brain damage after temporary focal ischemia. Journal of Cerebral Blood Flow & Metabolism.2006;26:1551-1561.
    38 Chen P, Guo M, Wygle D, et al. Inhibitors of cytochrome P450 4A suppress angiogenic responses. Am J Pathol.2005; 166:615-624.
    39 Lasker JM, Chen WB, Wolf I, Bloswick BP, Wilson PD, Powell PK. Formation of 20-hydroxyeicosatetraenoic acid, a vasoactive and natriuretic eicosanoid, in human kidney Role of Cyp4F2 and Cyp4A11. J Biol Chem.2000; 275:4118-4126.
    40 Stec DE, Roman RJ, Flasch A, Rieder MJ. Functional polymorphism in human CYP4F2 decreases 20-HETE production. Physiol Genomics.2007; 30:74-81.
    41 Liu H, Zhao YY, Gong W, et al. Correlation analysis and identification of G421C in regulatory region of CYP4F2 gene with essential hypertension. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2006; 28(2):143-147.
    42 Fu Z, Nakayama T, Sato N, et al. Haplotype-based case-control study of the human CYP4F2 gene and essential hypertension in Japanese subjects. Hypertens Res.2008; 31(9):1719-1726.
    43 Fu Z, Nakayama T, Sato N, et al. A haplotype of the CYP4F2 gene associated with myocardial infarction in Japanese men. Mol Genet Metab.2009; 96(3):145-147.
    44 Zhenyan Fu, Tomohiro Nakayama, Naoyuki Sato,et al. A Haplotype of the CYP4F2 Gene is Associated With Cerebral Infarction in Japanese Men. American Journal of Hypertension.2008; 21:1216-1223.
    45 Cristiano Fava, Martina Montagnana, Peter Almgren, et al. The V433M variant of the CYP4F2 is associated with ischemic stroke in male Swedes beyond its effect on blood pressure. Hypertension.2008; 52:373-380.
    46 Laffer CL, Gainer JV, Waterman M, et al. The T8590C polymorphism of CYP4A11 and 20-hydroxyeicosatetraenoic acid in essential hypertension.Hypertension,2008; 51(3):767-772.
    47 Sugimoto K, Akasaka H, Katsuya T, et al. A polymorphism regulates CYP4A11 transcriptional activity and is associated with hypertension in a Japanese population.Hypertension.2008; 52(6): 1142-1148.
    48 Fu Z, Nakayama T, Sato N, A haplotype of the CYP4A11 gene associated with essential hypertension in Japanese men. J Hypertens.2008; 26(3):453-461.
    49 Fu Z, Nakayama T, Sato N, et al. Haplotype-based case study of human CYP4A11 gene and cerebral infarction in Japanese subject. Endocrine.2008; 33(2):215-222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700