用户名: 密码: 验证码:
Ⅰ、CD133在人结肠癌细胞分化中的作用研究 Ⅱ、荧光标记肿瘤转移体内模型的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分为两个部分:
     第一部分:CD133在人结肠癌细胞分化中的作用
     在本研究中,首先我们用Western blotting检测了44种人肿瘤细胞系中CD133的表达,其中8种细胞呈CD133阳性表达,5个来源于结肠癌。接着我们分选了结肠癌细胞系HCT116中CD133high/+和CD133的亚群,发现CD133high/+的HCT116细胞在体外生长快于CD133的HCT116细胞,并有更高的克隆形成率。CD133high/+亚群和CD133-的HCT1 16亚群细胞相比,S期和G2/M期细胞比例更高。但是在BALB/c-nu/nu鼠成瘤实验中,CD133high/+和CD133-的HCT1 16细胞并没有明显的区别。将分选后的CD133high/+和CD133-的HCT1 16细胞体外培养,CD133的分布趋向于和未分选前的HCT1 16细胞相同。我们的研究结果提示不能单用CD133一个分子标记来富集结肠癌细胞系中的肿瘤干细胞。
     我们进一步研究了CD133的表达和结肠癌分化的关系。我们按照CD133的表达量,将结肠癌细胞HT29分为了四个亚群,以ALP活性作为分化程度的指标进行了检测,结果显示不同亚群的分化状态和CD133的表达呈负相关。我们还发现用丁酸钠诱导HT29和HCT1 16分化后,流式检测这两种细胞表面的CD133/1和CD133/2的免疫活性都呈现时间和剂量依赖的下降。但是Western Blotting却未检测到细胞中CD133总蛋白水平的改变。我们还设计了三对针对人CD133分子的siRNA,其中两对可以在体外有效干扰CD133表达。但是干扰CD133的表达对HT29和HCT116细胞的增殖、克隆形成、周期分布和分化状态都没有明显的影响。CD133可能不是细胞生长和分化的调控基因。
     总的来说,CD133不是结肠癌细胞系HCT1 16特异的肿瘤干细胞的标记,而只是结肠癌分化相关的一个指标。
     第二部分:荧光标记肿瘤转移体内模型的建立
     本研究通过转染pEGFP-Nl质粒,药物筛选后无限稀释得到了四株强表达绿色荧光蛋白的单克隆细胞株-人宫颈癌细胞HeLa-GFP、人结肠癌细胞HCT116-GFP、人乳腺癌细胞MDA-MB-231-GFP和小鼠宫颈癌细胞U14-GFP。
     我们把HeLa-GFP以8×106个/只的剂量皮下接种于BALB/c-nu/nu裸鼠,成瘤潜伏期是3-5天,成瘤率为100%。利用Photometrics活体荧光成像系统连续观察,可以清楚直观的观察表达GFP的HeLa-GFP移植瘤在体内的生长。接种后第60天处死全部荷瘤鼠,解剖后大体成像仅有一只可见同侧腋窝下淋巴结的转移。取U14-GFP以8×106个/只接种C57BL/6J小鼠,移植成瘤的潜伏期是2-4天,成瘤率1 00%。利用Photometrics活体荧光成像系统连续观察,可分别在第22天、28天、37天和52天观察荷瘤小鼠肿瘤转移的发展过程。在U 14-GFP原发瘤体积≥5 cm3时,肺部和淋巴结转移率分别为67%和1 00%。我们还将HCT116-GFP进行了皮下移植和尾静脉注射,用Berthold活体成像仪观察了肿瘤的生长和转移。利用Berthold活体成像系统可见HCT116-GFP移植瘤在体内仍可强表达GFP。HCT116-GFP尾静脉注射后第43天,可用Berthold活体成像系统检测到GFP阳性的皮下转移肿瘤。
     最后,我们还检测了两种常见的转移相关分子CD44和E-cadherin在HeLa-GFP和U14-GFP细胞移植瘤中的表达。免疫组化检测显示在两种移植瘤中都有CD44的表达,而无E-cadherin的表达。
     总之,我们成功建立了四株表达绿色荧光蛋白的单克隆细胞株,体内移植建立了荧光标记的肿瘤转移模型。该模型可用于可视化肿瘤体内的研究。
The thesis includes two parts:
     Part 1. Expression of CD133 correlates with differentiation of human colon cancer cells
     In this study, we tested the CD 133 expression in 44 widely used human cancer cell lines. Interestingly, five of 8 CD133 positive cell lines were colon cancer cells. We sorted the CD133high/+ and CD133- subpopulation of HCT116 cells and found that the CD133high/+ HCT116 cells grew quicker (in vivo) and generated more colonies after 14 days incubation. CD133high/+ HCT116 cells had higher percentages of cells in S and G2/M phases than their CD133- counterparts. In ongoing xenograft tumor formation experiments in BALB/c-nu/nu mice, we did not find a difference in tumorigenic potential of CD133high/+ versus CD133-subpopulations. Cultivation of both CD133high/+ and CD133-HCT116 cells resulted in a redistribution of antigen expression to its original proportion. Our results suggest other markers rather than CD 133 alone should be used to enrich for colon CSCs, especially in cultured colon cancer cell lines.
     Next we explored the relationship between CD133 expression and differentiation. HT29 cells were sorted 4 scales according to CD133 staining, our results suggested that differentiation status (ALP activity) was inversely correlated with CD 133/2 expression in HT29 cells. Then, we found that HT29 and HCT116 lose their CD133/1 and CD133/2 reactivity (flow cytometry) in a time-and dose-dependent manner after differentiation induced by SB, but the total protein level (Western Blotting) in the cell did not change. We also synthesized three pairs of siRNAs, two of which could efficiently reduce CD133 expression in vitro. There was no appreciable effect on the proliferation, cell cycle distribution, colony formation and differentiation of HCT116 and HT-29 cells by knocking down the expression of CD133. CD133 seems not to be a prerequisite gene for cell growth and differentiation.
     In all, CD 133 may be more a differentiation indicator rather than a specific stem cell lineage marker in colon cancer cell lines.
     Part 2. Establishment of tumor metastasis models expressing green-fluorescent protein
     Four cell lines were transfected with the plasmid pEGFP-N1, and limited dilution was employed to screen four monoclonal cell strains expressing GFP:human cervical adenocarcinoma cell HeLa-GFP, human colon carcinoma cell HCT116-GFP, human mammary adenocarcinoma cell MDA-MB-231-GFP and murine cervical carcinoma cell U14-GFP.
     8×106 HeLa-GFP cells were transplanted into BALB/c-nu/nu mice. The latent period of tumor mass formation was 3-5 days and its tumorigenicity is 100%. The tumor growth of HeLa-GFP was well defined by the Photometries. Only one mouse was shown to harbor lymphatic metastasis by Photometrics 60 days after transplantation.8×106 U14-GFP cells were transplanted into C57BL/6J mice, the latent period of tumor formation was 2-4 days and its tumorigenicity is also 100%. The metastasis process of U14-GFP was depicted through the observation by Photometrics on 22,27,37 and 52 days post-transplantation. The incidence of pulmonary metastasis and lymphatic metastasis of U14-GFP was 67% and 100% respectively when the tumor volume was> 5 cm3. We also transplanted HCT116-GFP subcutaneously and injected them into tail vein of BALB/c-nu/nu mice. The HCT116-GFP tumor stably expressed green flourcence in vivo by Berthold Viviperception Fluorescence Imagining System. Fourty three days after HCT116-GFP tail vein injection, GFP positive metastasis tumors were detected by Berthold.
     The expression of CD44 and E-cadherin were checked in HeLa-GFP and U14-GFP tumor tissues, CD44 was positive and E-cadherin was negative in both tumors by immunohistochemistry.
     In conclusion, we successfully established four monoclonal tumor cell strains stably expressing GFP. Transplantation of these cells into mice can establish tumor metastasis models which could be used for future visualized tumor research in vivo.
引文
1. Yin AH, Miraglia S, Zanjani ED, meida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW:AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997, 90(12):5002-5012.
    2. de Wynter EA, Buck D, Hart C, Heywood R, Coutinho LH, Clayton A, Rafferty JA, Burt D, Guenechea G, Bueren JA et al: CD34+AC133+cells isolated from cord blood are highly enriched in long-term culture-initiating cells, NOD/SCID-repopulating cells and dendritic cell progenitors. Stem Cells 1998, 16(6):387-396.
    3. Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, Bray RA, Waller EK, Buck DW:A novel five-transmembrane hematopoietic stem cell antigen:isolation, characterization, and molecular cloning. Blooa 1997, 90(12):5013-5021.
    4. Weigmann A, Corbeil D, Hellwig A, Huttner WB:Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci U S A 1997,94(23):12425-12430.
    5. Corbeil D, Roper K, Weigmann A, Huttner WB:AC133 hematopoietic stem cell antigen:human homologue of mouse kidney prominin or distinct member of a novel protein family?Blood 1998, 91(7):2625-2626.
    6. Miraglia S, Godfrey W, Buck D:A response to AC133 hematopoietic stem cell antigen:human homologue of mouse kidney prominin or distinct member of a novel protein family? Blood 1998,91(11):4390-4391.
    7. Bidlingmaier S, Zhu X, Liu B:The utility and limitations of glycosylated human CD 133 epitopes in defining cancer stem cells. JMolMed 2008, 86(9):1025-1032.
    8. Corbeil D, Roper K, Hellwig A, Tavian M, Miraglia S, Watt SM, Simmons PJ, Peault B, Buck DW, Huttner WB:The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. JBiolChem 2000,275(8):5512-5520.
    9. Florek M, Haase M, Marzesco AM, Freund D, Ehninger G, Huttner WB, Corbeil D:Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res 2005,319(1):15-26.
    10. Corbeil D, Roper K, Fargeas CA, Joester A, Huttner WB:Prominin:a story of cholesterol, plasma membrane protrusions and human pathology. Traffic 2001,2(2):82-91.
    11. Roper K, Corbeil D, Huttner WB:Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. NatCell Biol 2000,2(9):582-592.
    12. Marzesco AM, Janich P, Wilsch-Brauninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner WB:Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 2005,118(Pt 13):2849-2858.
    13. Mizrak D, Brittan M, Alison MR:CD133:molecule of the moment. JPathol 2008,214(1):3-9.
    14. Gallacher L, Murdoch B, Wu DM, Karanu FN, Keeney M, Bhatia M:Isolation and characterization of human CD34(-)Lin(-) and CD34(+)Lin(-) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood 2000,95(9):2813-2820.
    15. Ribatti D:The involvement of endothelial progenitor cells in tumor angiogenesis. J Cell Mol Med 2004,8(3):294-300.
    16. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL:Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 2000,97(26):14720-14725.
    17. Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, Johnson JE, Wechsler-Reya RJ:Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci 2005,8(6):723-729.
    18. Corti S, Nizzardo M, Nardini M, Donadoni C, Locatelli F, Papadimitriou D, Salani S, Del Bo R, Ghezzi S, Strazzer S et al: Isolation and characterization of murine neural stem/progenitor cells based on Prominin-1 expression. Exp Neurol 2007,205(2):547-562.
    19. Barraud P, Stott S, Mollgard K, Parmar M, Bjorklund A:In vitro characterization of a human neural progenitor cell coexpressing SSEA4 and CD133. J Neurosci Res 2007,85(2):250-259.
    20. Oshima Y, Suzuki A, Kawashimo K, Ishikawa M, Ohkohchi N, Taniguchi H: Isolation of mouse pancreatic ductal progenitor cells expressing CD133 and c-Met by flow cytometric cell sorting. Gastroenterology 2007,132(2):720-732.
    21. Koblas T, Zacharovova K, Berkova Z, Mindlova M, Girman P, Dovolilova E, Karasova L, Saudek F:Isolation and characterization of human CXCR4-positive pancreatic cells. Folia Biol (Praha) 2007,53(1):13-22.
    22. Kania G, Corbeil D, Fuchs J, Tarasov KV, Blyszczuk P, Huttner WB, Boheler KR, Wobus AM:Somatic stem cell marker prominin-1/CD133 is expressed in embryonic stem cell-derived progenitors. Stem Cells 2005,23(6):791-804.
    23. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ:Prospective identification of tumorigenic prostate cancer stem cells. Cancer Resarch 2005, 65(23):10946-10951.
    24. Olempska M, Eisenach PA, Ammerpohl O, Ungefroren H, Fandrich F, Kalthoff H: Detection of tumor stem cell markers in pancreatic carcinoma cell lines. HepatobiliaryPancreatDisInt 2007,6(1):92-97.
    25. O'Brien CA, Pollett A, Gallinger S, Dick JE:A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007, 445(7123):106-110.
    26. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De MR:Identification and expansion of human colon-cancer-initiating cells. Nature 2007,445(7123):111-115.
    27. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB: Identification of a cancer stem cell in human brain tumors. Cancer Res 2003, 63(18):5821-5828.
    28. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB:Identification of human brain tumour initiating cells. Nature 2004,432(7015):396-401.
    29. Yi L, Zhou ZH, Ping YF, Chen JH, Yao XH, Feng H, Lu JY, Wang JM, Bian XW: Isolation and characterization of stem cell-like precursor cells from primary human anaplastic oligoastrocytoma. Mod Pathol 2007,20(10):1061-1068.
    30. Bruno S, Bussolati B, Grange C, Collino F, Graziano ME, Ferrando U, Camussi G:CD133+renal progenitor cells contribute to tumor angiogenesis. Am J Pathol 2006,169(6):2223-2235.
    31. Mehra N, Penning M, Maas J, Beerepoot LV, van Daal N, van Gils CH, Giles RH, Voest EE:Progenitor marker CD133 mRNA is elevated in peripheral blood of cancer patients with bone metastases. Clin Cancer Res 2006, 12(16):4859-4866.
    32. Nikolova T, Wu M, Brumbarov K, Alt R, Opitz H, Boheler KR, Cross M, Wobus AM:WNT-conditioned media differentially affect the proliferation and differentiation of cord blood-derived CD 133+ cells in vitro. Differentiation 2007,75(2):100-111.
    33. Yin S, Li J, Hu C, Chen X, Yao M, Yan M, Jiang G, Ge C, Xie H, Wan D et al: CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity.IntJCancer 2007,120(7):1444-1450.
    34. Baba T, Convery PA, Matsumura N, Whitaker RS, Kondoh E, Perry T, Huang Z,
    Bentley RC, Mori S, Fujii S et al: Epigenetic regulation of CD 133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene 2009, 28(2):209-218.
    35. Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L, Pratesi G, Fabbri A, Andriani F, Tinelli S et al: Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci USA 2009,106(38):16281-16286.
    36. Fodde R, Brabletz T:Wnt/beta-catenin signaling in cancer sternness and malignant behavior. Curr Opin Cell Biol 2007,19(2):150-158.
    37. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS:Analysis of gene expression and chemoresistance of CD 133+ cancer stem cells in glioblastoma. Mol Cancer 2006,5:67.
    38. Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY:CD133+HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 2008,27(12):1749-1758.
    39. Fan X,Matsui W, Khaki L, Stearns D, Chun J, Li YM, Eberhart CG:Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 2006,66(15):7445-7452.
    40. Clement V, Sanchez P, de TN, Radovanovic I, Altaba A:HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. CurrBiol 2007,17(2):165-172.
    41. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F, Vescovi AL:Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 2006, 444(7120):761-765.
    42. Virchow R:Celluar-pathologie. Arch Pathol Anat Physio Klin Med 1855, 8(3):3-39.
    43. Kopper L, Hajdu M:Tumor stem cells. Pathol Oncol Res 2004,10(2):69-73.
    44. Bonnet D, Dick JE:Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. NatMed 1997, 3(7):730-737.
    45. Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ:Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 1997,89(9):3104-3112.
    46. Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL, Meyerrose T, Rossi R, Grimes B, Rizzieri DA et al: The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 2000, 14(10):1777-1784.
    47. Guzman ML, Jordan CT:Considerations for targeting malignant stem cells in leukemia. Cancer Control 2004,11(2):97-104.
    48. Hauswirth AW, Florian S, Printz D, Sotlar K, Krauth MT, Fritsch G, Schernthaner GH, Wacheck V, Selzer E, Sperr WR et al: Expression of the target receptor CD33 in CD34+/CD38-/CD123+ AML stem cells. Eur J Clin Invest 2007, 37(1):73-82.
    49. Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H: Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 2005, 11(3):1154-1159.
    50. Al-Hajj M, Wicha MS, ito-Hernandez A, Morrison SJ, Clarke MF:Prospective identification of tumorigenic breast cancer cells. ProcNatlAcadSciUSA 2003, 100(7):3983-3988.
    51. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG:Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 2005, 65(13):5506-5511.
    52. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN:Glioma stem cells promote radioresistance by
    preferential activation of the DNA damage response. Nature 2006, 444(7120):756-760.
    53. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH. Bronner-Fraser M, Kornblum HI:Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 2003.100(25):15178-15183.
    54. Kim CF, Jackson EL. Woolfenden AE. Lawrence S. Babar I. Vogel S. Crowlev D. Bronson RT, Jacks T:Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005,121(6):823-835. 55. Fang D, Nguyen TK, Leishear K. Finko R. Kulp AN. Hotz S. Van Belle PA. Xu X. Elder DE. Herlvn M:A tumorigenic suhnnnulatinn with stem cell nrnnerties in melanomas. Cancer Res 2005,65(20):9328-9337.
    56. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R, Dombkowski D, Preffer F, Maclaughlin DT, Donahoe PK:Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci U S A 2006. 103(30):11154-11159.
    57. 任乐荣,刘玉琴:血液系统肿瘤细胞系中CD34+干细胞特性研究.解剖学报2005,36(4):367-371.
    58. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE:Targeting of CD44 eradicates human acute mveloid leukemic stem cells. NatMed 2006.12(10):1167-1174.
    59. Sell S:Cancer stem cells and differentiation theraD(?). Tumour Biol 2006. 27(2):59-70.
    60. Blagosklonny MV:Target for cancer therapy:proliferating cells or stem cells. Leukemia 2006,20(3):385-391.
    61. Abbott A:Cancer:the root of the nrnhlem. Nature 2006.442(7104):747-743
    62. Blair A, Hogge DE, Sutherland HJ:Most acute mveloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(-)/HLA-DR. Blood 1998,92(11):4325-4335.
    63. Hanahan D, Weinberg RA:The hallmarks of cancer. Cell 2000,100(1):57-70.
    64. Clarke MF, Dick JE,Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM:Cancer stem cells-perspectives on current status and future directions:AACR Workshop on cancer stem cells. Cancer Res 2006,66(19):9339-9344.
    65. Joo KM, Nam DH:Prospective identification of cancer stem cells with the surface antigen CD133. Methods Mol Biol 2009,568:57-71.
    66. Goodell MA,Brose K, Paradis G, Conner AS, Mulligan RC:Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996,183(4):1797-1806.
    67. Setoguchi T, Taga T, Kondo T:Cancer stem cells persist in many cancer cell lines. Cell Cycle 2004,3(4):414-415.
    68. Dittfeld C, Dietrich A, Peickert S, Hering S, Baumann M, Grade M, Ried T, Kunz-Schughart LA:CD133 expression is not selective for tumor-initiating or radioresistant cell populations in the CRC cell lines HCT-116. Radiother Oncol 2009,92(3):353-361.
    69. Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, Hoek M, Zeilstra J, Pals ST, Mehmet H, Stassi G et al: The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res 2010, 70(2):719-729.
    70. 卞晓翠,刘玉琴:基因功能的抑制.中华病理学杂志2006,35(5):298-301.
    71. Horst D, Scheel SK, Liebmann S, Neumann J, Maatz S, Kirchner T, Jung A:The cancer stem cell marker CD133 has high prognostic impact but unknown functional relevance for the metastasis of human colon cancer. JPathol 2009.
    72. Rappa G, Fodstad O, Lorico A:The stem cell-associated antigen CD133 (Prominin-1) is a molecular therapeutic target for metastatic melanoma. Stem Cells 2008,26(12):3008-3017.
    73. Shmelkov SV, Jun L, St Clair R, McGarrigle D, Derderian CA, Usenko JK, Costa C, Zhang F, Guo X, Rafii S:Alternative promoters regulate transcription of
    the gene that encodes stem cell surface protein AC133. Blood 2004, 103(6):2055-2061.
    74. 高进(ed.):癌的侵袭与转移基础与临床.北京:科学出版社;2003.
    75. Ito S, Nakanishi H, Ikehara Y, Kato T, Kasai Y, Ito K, Akiyama S, Nakao A, Tatematsu M:Real-time observation of micrometastasis formation in the living mouse liver using a green fluorescent protein gene-tagged rat tongue carcinoma cell line. Int J Cancer 2001,93(2):212-217.
    76. Chishima T, Miyagi Y, Wang X, Yamaoka H, Shimada H, Moossa AR, Hoffman RM:Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Cancer Res 1997,57(10):2042-2047.
    77. 顾蓓,冯海凉,刘玉琴:小鼠子宫颈癌U14细胞系的建立及生物学特性研究.中国肿瘤临床2008,35(7):391-394.
    78. Gao X, Cui Y, Levenson RM, Chung LW, Nie S:In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004, 22(8):969-976.
    79. Troy T, Jekic-McMullen D, Sambucetti L, Rice B:Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging 2004,3(1):9-23.
    80. Rice BW, Cable MD, Nelson MB:In vivo imaging of light-emitting probes. J Biomed Opt 2001,6(4):432-440.
    81. 薛克勋,高岩,高进:小鼠宫颈癌U14移植到近交系小鼠后生长特性和转移规律的研究.中华病理学杂志 1987,16(2):140-142.
    82. Weber GF, Bronson RT, Ilagan J, Cantor H, Schmits R, Mak TW:Absence of the CD44 gene prevents sarcoma metastasis. Cancer Res 2002,62(8):2281-2286.
    83. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE:Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 2007,104(3):973-978.
    84. Dalerba P, Dylla SJ, Park IK, Liu R,-Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM et al: Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 2007,104(24):10158-10163.
    85. De Wever O, Derycke L, Hendrix A, De Meerleer G, Godeau F, Depypere H, Bracke M:Soluble cadherins as cancer biomarkers. Clin Exp Metastasis 2007, 24(8):685-697.
    86. Qiang L, Yang Y, Ma YJ, Chen FH, Zhang LB, Liu W, Qi Q, Lu N, Tao L, Wang XT et al: Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer Lett 2009,279(1):13-21.
    87. Wu A, Oh S, Wiesner SM, Ericson K, Chen L, Hall WA, Champoux PE, Low WC, Ohlfest JR:Persistence of CD133+cells in human and mouse glioma cell lines: detailed characterization of GL261 glioma cells with cancer stem cell-like properties. Stem Cells Dev 2008,17(1):173-184.
    88. Marzi I, D'Amico M, Biagiotti T, Giunti S, Carbone MV, Fredducci D, Wanke E, Olivotto M:Purging of the neuroblastoma stem cell compartment and tumor regression on exposure to hypoxia or cytotoxic treatment. Cancer Res 2007, 67(6):2402-2407.
    89. Ieta K, Tanaka F, Haraguchi N, Kita Y, Sakashita H, Mimori K, Matsumoto T, Inoue H, Kuwano H, Mori M:Biological and genetic characteristics of tumor-initiating cells in colon cancer. AnnSurgOncol 2008,15(2):638-648.
    90. Kai K, Nagano O, Sugihara E, Arima Y, Sampetrean O, Ishimoto T, Nakanishi M, Ueno NT, Iwase H, Saya H:Maintenance of HCT116 colon cancer cell line conforms to a stochastic model but not a cancer stem cell model. Cancer Sci 2009.
    91. Burkert J, Otto WR, Wright NA:Side populations of gastrointestinal cancers are not enriched in stem cells. JPathol 2008,214(5):564-573.
    92. Zhang Q, Shi S, Yen Y, Brown J, Ta JQ, Le AD:A subpopulation of CD133(+) cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Lett 2009.
    93. Meng X, Li M, Wang X, Wang Y, Ma D:Both CD133+and CD133-subpopulations of A549 and H446 cells contain cancer-initiating cells. Cancer Sci 2009,100(6):1040-1046.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700