用户名: 密码: 验证码:
S100A4基因DNA甲基化在喉癌中的作用及调控机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     喉鳞状细胞癌(laryngeal squamous cell carcinoma, LSCC)是头颈部常见的恶性肿瘤之一。在我国,东北地区是喉癌的高发区。过去的10年中,我国喉癌的发病率呈现上升的趋势。喉癌对放疗及化疗均不敏感,手术是目前治疗的主要手段,但手术会给患者造成不同程度的损伤。此外,在诊断和治疗过程中普遍存在的一个问题是:除声门型喉癌外,其他类型喉癌的发病比较隐蔽,一旦确诊,患者往往多已进入中、晚期。因此对喉癌进行早期诊断,并在基因水平寻求新的治疗手段成为当前急需解决的问题。
     恶性肿瘤被认为是一种遗传和表观遗传性疾病。基因在疾病发生和发展的分子机制中扮演非常重要的作用,基因序列改变可以导致相应基因的表达异常进而导致表型的变化。不仅如此,基因的表达还受表观遗传的控制。近年来,表观遗传学研究已成为基因表达调控的研究热点之一。表观遗传调控机制包括DNA甲基化、组蛋白修饰和RNA干扰等,而DNA甲基化是表观遗传学研究最深入、最重要的一种机制,与许多疾病如肿瘤的发生和发展密切相关。由于DNA甲基化是一个可逆的修饰过程,DNA甲基转移酶抑制剂如氮杂脱氧胞苷(5-Aza-CdR)通过抑制DNA甲基化转移酶活性,改变肿瘤基因的甲基化状态,从而使基因的功能得到恢复或增强,进而达到肿瘤治疗的目的。前期我们应用二维电泳和质谱技术以及丰富的生物信息资源研究喉癌5-Aza-CdR相关的蛋白表达谱,对5-Aza-CdR相关的差异蛋白点进行质谱鉴定和分析,结果发现S100A4是差异表达显著的蛋白质之一,提示S100A4基因可能是喉癌发生过程中的一个重要基因。人类S100A4基因定位于1q21,编码由101个氨基酸组成的多肽,分子量约为11.7kDa。S100A4具有广泛的细胞内外功能,如影响细胞骨架形成、改变细胞形状、参与信号传导等。S100A4表达升高与食管癌、胃癌、结肠癌及黑色素瘤等的发生有关,但S100A4参与肿瘤发生的机制仍不十分清楚,迄今未见其与喉癌发生的相关研究报道。本研究旨在探讨S100A4基因在喉癌发生中的作用及可能的分子机制。
     材料与方法
     以临床喉癌标本和喉癌Hep2细胞系为实验材料,应用RT-PCR和Western Blot检测喉癌组织中S100A4基因的表达情况。应用MSP方法检测喉癌组织中S100A4基因DNA甲基化情况。针对S100A4基因设计siRNA,体外转录合成S100A4-siRNA,利用TransMessenger转染试剂将其转染喉癌细胞系Hep2,通过RT-PCR和Western Blot检测转染前后喉癌Hep2细胞中S100A4基因表达水平以评价转染效率;应用MTT、流式细胞术、Transwell和RT-PCR以及Western Blot分别检测干扰S100A4基因表达对Hep2细胞生物学特性的影响;针对启动子区甲基化位点,构建S100A4野生型及突变型荧光报告素酶表达载体,转染Hep2细胞,检测这些甲基化位点对S100A4基因转录调节的作用。利用生物信息学转录因子预测软件预测可能与S100A4基因上游启动子区特异序列结合的转录因子,并用EMSA、染色质免疫沉淀技术结合PCR技术对预测结果进行验证以评价S100A4启动子区特异甲基化序列与相关反式作用元件的结合能力。
     实验结果
     1.RT-PCR和Western blot结果显示,人喉癌组织以及转移淋巴结中S100A4mRNA和蛋白表达水平均高于癌旁对照组织;
     2. MSP结果表明,在人喉癌组织中S100A4基因启动子以及第一内含子存在低甲基化,且与S100A4基因表达上调相关;
     3. S100A4-siRNA对喉癌细胞中S100A4 mRNA和蛋白表达的影响:S100A4-siRNA转染Hep2细胞第5天,S100A4 mRNA表达水平在S100A4-siRNA组较对照组显著降低。S100A4-siRNA转染Hep2细胞第7天,S100A4蛋白表达水平在S100A4-siRNA组较对照组显著降低,表明S100A4表达受到抑制;
     4.S100A4-siRNA对人喉癌Hep2细胞生物学行为的影响:与对照组相比,在S100A4-siRNA组,喉癌Hep2细胞的增殖能力和侵袭力显著降低、凋亡率显著升高;
     5. S100A4调控区转录因子结合位点的预测结果:经P-MATCH软件预测发现在S100A4存在转录因子c-Myb、c/Fbp、AP2和MSX-1的结合位点;
     6.荧光素酶结果显示S100A4调控区甲基化变化对基因活性起调控作用;
     7. EMSA结果显示在体外c-Myb和c/Ebp可以S100A4特异性甲基化序列结合,而MSX-1和AP2不能与S100A4特异性结合;
     8.染色质免疫沉淀结合PCR技术检测结果证明在体内c-Myb和c/Ebp与S100A4调控区特异性结合。
     结论
     1.S100A4基因在喉癌组织和淋巴结转移组织中表达上调,其参与喉癌的发生和发展;
     2.喉鳞癌中S100A4表达上调原因之一为S100A4基因启动子和第一内含子区低甲基化;
     3.S100A4基因具有促进喉癌细胞的增殖和侵袭、抑制细胞凋亡的能力;
     4.c-Myb和c/Ebp可以与S100A4基因特异性结合,其中c-Myb结合位点的甲基化状态影响S100A4基因的表达。
Laryngeal squamous cell carcinoma (LSCC) is one of the most common head and neck cancers. In China, the northeast part is the high incidence region of laryngeal carcinoma. The incidence of LSCCs has been rising in China over past decades. Laryngeal cancer cells are not sensitive to radiotherapy and chemotherapy, so surgery is the primary method in treating LSCC patients. However, surgery could bring different degrees of damage to LSCC patients. At presence, a common question in the diagnosis and treatment process is the hidden incidence of laryngeal carcinoma, which means patients diagnosed are often found in the middle or late stage. Therefore, it is urgent requirement to find a new way to detect or diagnose LSCC in early stage.
     Malignant tumors are considered as genetic and epigenetic diseases. Genes play an important role in tumorignesis. The alteration of gene seqence could resullt in the abnormal expressions of the related gene usually leading to the abnormal phenotype. However, gene expression is also controlled by epigenetic events. In recent years, gene expressions regulated by epigenetic mechanisms have become a hotspot in studying human diseases. DNA methylation, histone modifications and RNA interference are involved in epigenetic processes, among which DNA methylation is highly concerned. Epigenetic mechanisms are closely related to the occurrence and development of many diseases including cancers. DNA methylation is a reversible process of modification. DNA methylation inhibitors, such as 5'-aza-deoxycytidine (5'-Aza-CdR) which can inhibit DNA methyltransferase activity and change the methylation status of tumor-related genes so that gene function is restored or enhanced, become prospective reagents in treating tumor cells. By using 2-DE (two dimensional gel electrophoresis) and mass spectrometry (MS) technologies combining bioinformatics resource, we previously obtained 5-AZA-CdR-associated protein profiles and some important genes such as S100A4 in laryngeal carcinoma. Human S100A4 gene, which is located on 1q21, codes a 11.7kDa peptide with.101 amino acids. S100A4 participates in biological processes such as cytoskeleton formation, cell shape and signal transduction. The abnormal expression levels of S100A4 were found in esophageal cancer, stomach cancer, colon cancer and melanoma, but the mechanism of S100A4 involved in tumorigenesis is still unclear, and the associated data of S100A4 with laryngeal cancer have not been reported. This study aims to discover the function as well as the possible mechanism of S100A4 gene in the genesis and development of LSCC.
     Materials and Methods
     Clinical laryngeal carcinoma specimens and laryngeal squamous cell line Hep2 were used in this study. S100A4 gene expression was detected by using RT-PCR and Western blot. The methylation status of S100A4 gene was detected by using mathylation-specific PCR (MSP). Specific siRNA for S100A4 gene (S100A4-siRNA) designed and synthesized in vitro was transfected into Hep2 cells by TransMessenger Transfection reagent. The inhibitory effect of S100A4-siRNA on S100A4 gene in Hep2 cell line was evaluated by RT-PCR and Western Blot. Biological changes of Hep2 cells tranfected by S100A4-siRNA were detected by MTT, flow cytometry, transwell, RT-PCR and Western Blot. The wild-type and mutant-type fluorescent report luciferase expression vectors including the specifically methylated sites of S100A4 promoter were constructed to detect and analyse the transcriptional regulation role of S100A4 gene. The bioinformatics prediction software was used to predict the transcription factors which may bind S100A4. The predicted transcription factors were tested by using EMSA and CHIP.
     1. RT-PCR and Western blot results showed that both S100A4 mRNA and protein levels were significantlly higher in human laryngeal carcinoma and metastatic lymph nodes than those in the adjacent control tissues.
     2. MSP results showed that hypomethylation within S100A4 promoter and first intron was found and related to the overexpression of S100A4 in human laryngeal carcinoma.
     3. Influence of S100A4-siRNA on the expression of S100A4 mRNA and protein:In day 5 of S100A4-siRNA transfection to Hep2 cells, S100A4 mRNA level was significantly lower than that in the control group and in day 7 of S100A4-siRNA transfection to Hep2 cells, S100A4 protein level was significantly lower than that in the control group, which indicated that S100A4 expression was inhibited by S100A4-siRNA.
     4. Influence of S100A4-siRNA on biological characteristics of laryngeal carcinoma cells Hep2:Compared to the control group, the abilities of proliferation and invasiveness were significantly lower, and apoptotic cells were significantly higher in Hep2 cells tranfected by S100A4-siRNA.
     5. Predictions of S100A4 regulatory site binding to transcription factors:The searching results from P-MATCH software displayed that transcription factor of c-Myb, c/Ebp, AP2, and MSX-1 might bind the corresponding sites of S100A4 regulatory region.
     6. Luciferase results showed that the methylation status of S100A4 regulatory region could change the promoter activities of S100A4.
     7. EMS A results showed that c-Myb and c/Ebp except AP2 and MSX-1 specifically bound S100A4 in vitro.
     8. ChIP results proved the specific binding of c-Myb and c/Ebp to S100A4 in vivo.
     Conclusion
     1. Overexpression of S100A4 in human laryngeal carcinoma and metastatic lymph nodes participates in the genesis and development of LSCC.
     2. The methylation status of S100A4 promoter and first intron contributes to the overexpression of S100A4 in LSCC.
     3. S100A4 can promote the growth and invasiveness and inhibit the apoptosis of laryngeal cancer cells, which indicates S100A4 is an important oncogene associated with LSCC.
     4. C-Myb and c/Ebp could bind S100A4 gene specifically, and the C-Myb methylation status in binding sites of S100A4 gene affects the expression of S100A4 gene
引文
1. Olszewska E, Borzym-Kluczyk M, Rzewnicki I, et al. Hexosaminidase as a new potential marker for larynx cancer. Clin Biochem.2009; 42(10-11):1187-9.
    2. Rafferty MA, Fenton JE, Jones AS. The history, etiology and epidemiology of laryngeal carcinoma. Clin Otolaryngol.2001; 26(6):442-446.
    3. Jemal A, Siegel R, Ward E, et al. Cancer statistics,2007. CA Cancer J Clin.2007; (57)1: 43-66.
    4. Marioni G, Marchese-Ragona R, Cartei G, et al. Current opinion in diagnosis and treatment of laryngeal carcinoma. Cancer Treat Rev.2006; 32:504-15.
    5. Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun.1965; 19(6):739-744.
    6. Grigorian M, Ambartsumian N, Lukanidin E. Metastasis-inducing S100A4 protein: implication in non-malignant human pathologies. Curr Mol Med.2008; 8(6):492-6.
    7. Sherbet GV, Lakshmi MS. S100A4 (MTS1) calcium binding protein in cancer growth, invasion and metastasis. Anticancer Res.1998; 18(4A):2415-2421.
    8. Schafer BW, Heizmann CW. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci.1996; 21(4):134-140.
    9. Taylor S, Herrington S, Prime W, et al. S100A4 (p9Ka) protein in colon carcinoma and liver metastases:association with carcinoma cells and T-lymphocytes. Br J Cancer,2002; 86(3): 409-416.
    10. S.Tarabykina, T.R.L.Griffiths, E.Tulchinsky, J.K, et al. Metastasis-Associated Protein S100A4:Spotlight on its Role in cell Migration. Currnet Cancer Drug Targets.2007; 7: 217-228.
    11. Tarabykina S, Scott DJ, Herzyk P, et al. The dimerization interface of the metastasis-associated protein S100A4 (Mtsl):in vivo and in vitro studies. J Biol Chem.2001; 276 (26):24212-24222.
    12. Yang Y, Zhao S, Fan Y, et al. Detection and identification of potential biomarkers of non-small cell lung cancer. Technol Cancer Res Treat.2009; 8(6):455-66.
    13. Gribenko AV, Hopper JE, Makhatadze GI. Molecular characterization and tissue distribution of a novel member of the S100 family of EF-hand proteins. Biochemistry.2001; 40(51): 15538-48.
    14. Radestock Y, Hoang-Vu C, Hombach-Klonisch S, et al. Relaxin reduces xenograft tumour growth of human MDA-MB-231 breast cancer cells. Breast Cancer Res.2008; 10(4):R71.
    15. Liu J, Li X, Dong GL, et al. In silico analysis and verification of S100 gene expression in gastric cancer. BMC Cancer.2008; 8:261.
    16. Maelandsmo GM, Fl(?)renes VA, Nguyen MT, et al. Different expression and clinical role of S100A4 in serous ovarian carcinoma at different anatomic sites. Tumour Biol.2009; 30(1): 15-25.
    17. Kim JH, Kim CN, Kim SY, et al. Enhanced S100A4 protein expression is clinicopathologically significant to metastatic potential and p53 dysfunction in colorectal cancer. Oncol Rep.2009; 22(1):41-7.
    18. Kim JH, Kim CN, Kim SY, et al. Enhanced S100A4 protein expression is clinicopathologically significant to metastatic potential and p53 dysfunction in colorectal cancer. Oncol Rep.2009; 22(1):41-7.
    19. Ismail NI, Kaur G, Hashim H, et al. S100A4 overexpression proves to be independent marker for breast cancer progression. Cancer Cell Int.2008; 8:12.
    20. Chen XL, Wang LC, Zhang WG, et al. Correlations of S100A4 and MMP9 expressions to infiltration, metastasis and prognosis of non-small cell lung cancer. Nan Fang Yi Ke Da Xue Xue Bao.2008; 28(7):1254-8.
    21. Mohammad S, Mee-Hyang K, Jeremy JJ, et al:S100A4 accelerates tumorigenesis and invasion of human prostate cancer through the transcriptional regulation of matrix metalloproteinase 9. PNAS.2006; 103:14825-14830.
    22. Zhou HK, Zhao YB, Zheng SB, et al. Association of S100A4 mRNA expression with differentiation and metastasis of renal cell carcinoma. Di Yi Jun Yi Da Xue Xue Bao.2005; 25(6):712-4,717.
    23. Lombet A, Planque N, Bleau AM, et al. CCN3 and calcium signaling. Cell Common Signal 2003; 1:1-10.
    24. Jang JY, Park YC, Song YS, et al. Increased K-ras mutation and expression of S100A4 and MUC2 protein in the malignant intraductal papillary mucinous tumor of the pancreas. J Hepatobiliary Pancreat Surg.2009; 16(5):668-74.
    25. Ikenaga N, Ohuchida K, Mizumoto K, et al. S100A4 mRNA is a diagnostic and prognostic marker in pancreatic carcinoma.J Gastrointest Surg.2009; 13(10):1852-8.
    26. Toyota M, Issa JP. Epigenetic changes in solid and hematopoietic tumors. Semin Oncol. 2005; 32(5):521-30.
    27. Malone CS, Miner MD, Doerr JR, et al. CmC(A/T)GG DNA methylation in mature B cell lymphoma gene silencing. Proc Natl Acad Sci U S A.2001; 98(18):10404-9.
    28. Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature.2002; 416(6880):552-63.
    29. Cohn MA, Hjelms(?) I, Wu LC, et al. Characterization of Sp1, AP-1, CBF and KRC binding sites and minisatellite DNAas functional elements of the metastasis-associated mtsl/S100A4 gene intronic enhancer. Nucleic Acids Res.2001; 29(16):3335-46.
    30. Xie R, Schlumbrecht MP, Shipley GL, et al. S100A4 mediates endometrial cancer invasion and is a target of TGF-beta1 signaling. Lab Invest.2009; 89(8):937-47.
    31. Rehman I, Goodarzi A, Cross SS, et al. DNA Methylation and Immunohistochemical Analysis of the S100A4 Calcium Binding Protein in Human Prostate Cancer. The Prostate. 2007; 67:341-347.
    32. Li Y, Zhang KL, Sun Y, et al:Frequent S100A4 Expression with Unique Splicing Pattern in Gastric Cancers:A Hypomethylation Event Paralleled with E-cadherin Reduction and Wnt Activation. Transl Oncol.2008; 1:165-76.
    33. Deng GR, Lu YY, Chen SM, et al:Activated c-Ha-ras oncogene with a guanine to thymine transversion at the twelfth codon in a human stomach cancer cell line. Cancer Res.1987; 47: 3195-3198.
    34. Li Y, Liu ZL, Zhang KL, et al. Methylation-associated silencing of S100A4 expression in human epidermal cancers. Exp Dermatol.2009; 18(10):842-8.
    35. Rosty C,Ueki T, Argani P, et al. Overexpression of S100A4 in pancreatic ductal adenocarcinomas is associated with poor differenti2ation and DNA hypomethylation. Am J Pathol,2002,160:45-50.
    36. Chen D, udland PS, Chen HL, et al. Differential reactivity of threat S100A4 (p9Ka) gene to sodium bisulfite is associated with differential levels of the S100A4 (p9Ka) mRNA in rat mammary epithelial cells. J Biol Chem.1999; 274:2483-2491.
    37. Mazzuccheli L. Protein S100A4:too long overlooked by pathologists? Am J Pathol.2002; 160:7-13.
    38. Hjelmsoe I, Allen CE, Cohn MA, et al. The kappaB and V (D) J recombination signal sequence binding protein KRC regulates transcription of the mouse metastasis associated gene S100A4/mts1. JBiol Chem.2000; 275 (2):913-920.
    39. Chambers AF, Groom AC, MacDonald IC et al. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer.2002; 2:563-572.
    40. Rudland PS, Platt-Higgins A, Renshaw C, et al. Prognostic significance of the metastasis-inducing protein S100A4 (p9Ka) in human breast cancer. Cancer Res.2000; 60(6): 1595-603.
    41. Andersen K, Nesland JM, Holm R, et al. Expression of S100A4 combined with reduced E-cadherin expression predicts patient outcome in malignant melanoma. Mod Pathol.2004; 17(8):990-997.
    42. Flatmark K, Pedersen KB, Nesland JM, et al. Nuclear localization of the metastasis-related protein S100A4 correlates with tumour stage in colorectal cancer. J Pathol.2003; 200(5): 589-95.
    43. Kriajevska M, Bronstein IB, Scott DJ, et al. Metastasis-associated protein Mtsl (S100A4) inhibits CK2-Mediated phosphorylation and self-assembly of the heavy chain of nonmuscle myosin. Biochim Biophys Acta.2000; 1498(2-3):252-263.
    44. Jenkinson SR, Barraclough R, West CR, et al. S100A4 regulates cell motility and invasion in an in vitro model for breast cancer metastasis. Br J Cancer.2004; 90(1):253-262.
    45. Li ZH, Spektor A, Varlamova O, et al. Mts1 regulates the assembly of nonmuscle mysin ⅡA. Biochemistry,2003; 42(48):14258-14266.
    46. Taylor S, Herrington S, Prime W, et al. S100A4 (p9Ka) protein in colon carcinoma and liver metastases:association with carcinoma cells and T-lymphocytes. Br J Cancer.2002; 86(3): 409-416.
    47. Yoon CS, Hyung WJ, Lee JH, et al. Expression of S100A4, E-cadherin, alpha-and beta-catenin in gastric adenocarcinoma. Hepatogastroenterology.2008; 55(86-87):1916-20.
    48. Li Y, Zhang KL, Sun Y, et al. Frequent S100A4 Expression with Unique Splicing Pattern in Gastric Cancers:A Hypomethylation Event Paralleled with E-cadherin Reduction and Wnt Activation. Transl Oncol.2008; 1(4):165-76.
    49. Dupont VN, Gentien D, Oberkampf M, et al. A gene expression signature associated with metastatic cells in effusions of breast carcinoma patients. Int J Cancer.2007; 121(5): 1036-46.
    50. Takenaga K, Nakamura Y, Sakiyama S, et al. Expression of antisense RNA to S100A4 gene encoding an S100-related calcium-binding protein suppresses metastatic potential of high-metastatic lewis lung carcinoma cells. Oncogene.1997; 14(3):331-337.
    51. Elenjord R, Ljones H, Sundkvist E, et al. Dysregulation of matrix metalloproteinases and their tissue inhibitors by S100A4. Connect Tissue Res.2008; 49(3):185-8.
    52. Ambarsumian N, Klingelhofer J, Grigorian M, et al. The metastasis-associated Mtsl (S100A4) protein could act as an angiogenic factor. Oncogene.2001; 20(34):4685-4695.
    53. Ambartsumian N, Grigorian M, Lukanidin E. Genetically modified mouse models to study the role of metastasis-promoting S100A4(mts1) protein in metastatic mammary cancer. J Dairy Res.2005; 72 Spec No:27-33.
    54. Endo H, Takenaga K, Kanno T, et al. Methionine aminopeptidase 2 is a new target for the metastasis-associated protein, S100A4. J Biol Chem.2002; 277(29):26396-402.
    55. Semov A, Moreno MJ, Onichtchenko A, et al. Metastasis-associated protein S100A4 induces angiogenesis through interaction with Annexin Ⅱ and accelerated plasmin formation. J Biol Chem.2005; 280(21):20833-41.
    56. Chen H, Fernig DG, Rudland PS, et al. Binding to intracellular targets of the metastasis-inducing protein, S100A4 (p9Ka). Biochem Biophys Res Commun.2001; 286(5): 1212-1217.
    57. van Dieck J, Fernandez-Fernandez MR, et al. Modulation of the oligomerization state of p53 by differential binding of proteins of the S100 family to p53 monomers and tetramers. J Biol Chem.2009; 284(20):13804-11.
    58. Fernandez-Fernandez MR, Veprintsev DB, Fersht AR. Proteins of the S100 family regulate the oligomerization of p53 tumor suppressor. Proc Natl Acad Sci U S A.2005; 102(13): 4735-40.
    59. Sapkota D, Bruland O, B(?)e OE, et al. Expression profile of S100 gene family members in oral squamous cell carcinomous. J Oral Pathol Med.2008; 37:607-615.
    60. Schulz WA, Hoffmann MJ. Epigenetic mechanisms in the biology of prostate cancer. Semin Cancer Biol.2009; 19(3):172-80.
    61. Pogribny IP, Beland FA. DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci.2009; 66(14):2249-61.
    62. Minard ME, Jain AK, Barton MC. Analysis of epigenetic alterations to chromatin during development. Genesis.2009; 47(8):559-72.
    63. Kondo Y. Epigenetic cross-talk between DNA methylation and histone modifications in human cancers. Yonsei Med J.2009; 50(4):455-63.
    64.郑志红,孙开来。DNA甲基化与基因表达调控。国外医学遗传学分册。2002,25(3)133-136。
    65. Paul A Wade. Switching off methylated DNA. Nat Genet.2005; 37(3):212-14.
    66. Harikrishnan KN, Chow MZ, Baker EK, et al. Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nzt Genet. 2005; 37(3):254-64.
    67. Ellis L, Atadja PW, Johnstone RW. Epigenetics in cancer:targeting chromatin modifications. Mol Cancer Ther.2009; 8(6):1409-20.
    68. Bogdanovi O, Veenstra GJ. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma.2009; 118(5):549-65.
    69. Robertson KD. DNA methylation, mathytransferases, and cancer. Oncogene.2001; 20: 3139-55.
    70. Kuzmin I, Geil L, Ge H, et al. Analysis of aberrant methylation of the VHL gene by transgenes, monochromosome transfer, and cell fusion. Oncogene.1999; 18(41):5672-5679.
    71. Nakayama.M, Gonzalgo. ML, Yegnasubramanian, S, et al. GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. Journal of Cellular Biochemistry.2004; 91(3):540-552.
    72. Kaspar P, Pajer P, Sedlak D, et al. c-Myb inhibits myogenic differentiation through repression of MyoD. Exp Cell Res.2005; 309:419-428.
    73. Tanikawa J, Nomura T, Macmillan EM, et al. p53 suppresses c-myb induced transactivation and transformation by recruiting the corepressor mSin3A. J Biol Chem.2004; 279: 55393-55400.
    74. Kumar A, Baker SJ, Lee CM, et al. Molecular mechanisms associated with the regulation of apoptosis by the two alternatively spliced products of c-Myb. Mol Cell Biol.2003; 23: 6631-6645.
    75. Ichimura T, Watanabe S, Sakamoto Y, et al. Transcriptional repression and heterochromatin formation by MBD and MCAF/AM family proteins. J Biol Chem.2005; 280 (14): 13928-13935.
    76. Magic Z, Supic G, Brankovic-Magic M. Towards targeted epigenetic therapy of cancer.J BUON.2009; 14 Suppl 1:S79-88.
    77. Duesberg P, Li R. Multistep carcinogenesis:a chain reaction of aneuploidizations. Cell Cycle. 2003; 2(3):202-10.
    78. Partha M, Das and Rakesh Singal. DNA Methylation and Cancer.Journal of Clinical Oncology.2004; 22(22):4632-4642.
    79. Zhang Y, Ng HH, Erdjument-Bromage H, et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev.1999; 13:1924-1935.
    80. Melanie Ehrlich. DNA methylation in cancer:too much, but also too little. Oncogene.2002; 21:5400-5413.
    81. Gibbs WW. Untangling the roots of cancer. Sci Am.2003; 289(1):56-65.
    82. Duesberg P, Li R. Multistep carcinogenesis:a chain reaction of aneuploidizations. Cell Cycle. 2003; 2(3):202-10.
    83. Fabarius A, Hehlmann R, Duesberg PH. Instability of chro9mosome structure in cancer cells increases exponentially with degrees of aneuploidy. Cancer Genet Cytogenet.2003; 143(1): 59-72.
    84. Gaudet F, Hodgson JG, Eden A, et al. Induction of tumors in mice by genomic hypomethylation. Science.2003; 300(5618):489-92.
    85. Maraschio P, Zuffardi O, Fior DT, et al. Immunodeficiency, centromeric heterochromatin instability of chromosomes 1,9,and16,and facial anomalies; the 1CF syndrome. J Med Genet. 1988; 25:173-180.
    86. Esteller M. Cancer epigenetics:DNA methylation and chromatin alterations in human cancer. Adv Exp Med Biol.2003; 532:39-49.
    87. Strathdee G, Brown R. Aberrant DNA methylation in cancer:potential clinical interventions. Expert Rev Mol Med.2002; 4(4):1-17.
    88. Melanie Ehrlich. DNA methylation in cancer:too much, but also too little. Oncogene.2002; 21:5400-5413.
    1. Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun.1965; 19(6):739-744.
    2. Cohn MA, Hjelmso I, Wu LC, et al. Characterization of Spl, AP-1, CBF and KRC binding sites and minisatellite DNA as functional elements of the metastasis-associated mts1/S100A4 gene intronic enhancer. Nucleic Acids Res.2001; 29(16):3335-46.
    3. Xie R, Schlumbrecht MP, Shipley GL, et al. S100A4 mediates endometrial cancer invasion and is a target of TGF-betal signaling. Lab Invest.2009; 89(8):937-47.
    4. Tarabykina S, Griffiths TR, Tulchinsky E, et al. Metastasis-Associated Protein S100A4: Spotlight on its Role in cell Migration. Curr Cancer Drug Targets.2007; 7(3):217-28.
    5. Mazzucchelli L. Protein S100A4:too long overlooked by pathologists? Am J Pathol.2002; 160(1):45-50.
    6. Taylor S, Herrington S, Prime W, et al. S100A4 (p9Ka) protein in colon carcinoma and liver metastases:association with carcinoma cells and T-lymphocytes. Br J Cancer.2002; 86(3): 409-16.
    7. Gribenko AV, Hopper JE, Makhatadze GI. Molecular characterization and tissue distribution of a novel member of the S100 family of EF-hand proteins. Biochemistry.2001; 40(51): 15538-48.
    8. Radestock Y, Hoang-Vu C, Hombach-Klonisch S, et al. Relaxin reduces xenograft tumour growth of human MDA-MB-231 breast cancer cells. Breast Cancer Res.2008; 10(4):R71.
    9. Liu J, Li X, Dong GL, et al. In silico analysis and verification of S100 gene expression in gastric cancer. BMC Cancer.2008; 8:261.
    10. Maelandsmo GM, Fl(?)renes VA, Nguyen MT, et al. Different expression and clinical role of S100A4 in serous ovarian carcinoma at different anatomic sites. Tumour Biol.2009; 30(1): 15-25.
    11. Kim JH, Kim CN, Kim SY, et al. Enhanced S100A4 protein expression is clinicopathologically significant to metastatic potential and p53 dysfunction in colorectal cancer. Oncol Rep.2009; 22(1):41-7.
    12. Ismail NI, Kaur G, Hashim H, et al. S100A4 overexpression proves to be independent marker for breast cancer progression. Cancer Cell Int.2008; 8:12.
    13. Chen XL, Wang LC, Zhang WG, et al. Correlations of S100A4 and MMP9 expressions to infiltration, metastasis and prognosis of non-small cell lung cancer. Nan Fang Yi Ke Da Xue Xue Bao.2008; 28(7):1254-8.
    14. Wang HY, Zhang JY, Cui JT, et al. Expression status of S100A14 and S100A4 correlates with metastatic potential and clinical outcome in colorectal cancer after surgery. Oncol Rep.2010; 23(1):45-52.
    15. Flatmark K, Pedersen KB, Nesland JM, et al. Nuclear localization of the metastasis-related protein S100A4 correlates with tumour stage in colorectal cancer. J Pathol.2003; 200(5): 589-95.
    16. Rudland PS, Platt-Higgins A, Renshaw C, et al. Prognostic significance of the metastasis-inducing protein S100A4 (p9Ka) in human breast cancer. Cancer Res.2000; 60(6): 1595-603.
    17. Zhou HK, Zhao YB, Zheng SB, et al. Association of S100A4 mRNA expression with differentiation and metastasis of renal cell carcinoma Di Yi Jun Yi Da Xue Xue Bao.2005; 25(6):712-4.
    18. Bandiera A, Melloni G, Greschi M, et al. Prognostic factors and analysis of s100a4 protein in resected pulmonary metastases from renal cell carcinoma. World J Surg.2009; 33(7): 1414-20.
    19. Wang YY, Ye ZY, Zhao ZS, et al. High-level expression of S100A4 correlates with lymph node metastasis and poor prognosis in patients with gastric cancer. Ann Surg Oncol.2010; 17(1):89-97.
    20. Zhang R, Fu H, Chen D, et al. Subcellular distribution of S100A4 and its transcriptional regulation underhypoxic conditions in gastric cancer cell line BGC823.Cancer Sci.2010 15.
    21. Hua J, Chen D, Fu H, et al. Short hairpin RNA-mediated inhibition of S100A4 promotes apoptosis and suppresses proliferation of BGC823 gastric cancer cells in vitro and in vivo. Cancer Lett.2010; 292(1):41-7.
    22. Radestock Y, Willing C, Kehlen A, et al. Relaxin enhances S100A4 and promotes growth of human thyroid carcinoma cell xenografts. Mol Cancer Res.2010; 8(4):494-506.
    23. Lorenz S, Eszlinger M, Paschke R, et al. Calcium signaling of thyrocytes is modulated by TSH through calcium binding protein expression. Biochim Biophys Acta.2010; 1803(3): 352-360.
    24. Baumhoer D, Riener MO, Zlobec I, et al. Expression of CD24, P-cadherin and S100A4 in tumors of the ampulla of Vater. Mod Pathol.2009; 22(2):306-13.
    25. Grum-Schwensen B, Klingelhofer J, Grigorian M, et al. Lung metastasis fails in MMTV-PyMT oncomice lacking S100A4 due to a T-cell deficiency in primary tumors. Cancer Res.2010; 70(3):936-47.
    26. Ismail TM, Zhang S, Fernig DG, et al. Self-association of calcium-binding protein S100A4 and metastasis. J Biol Chem.2010; 285(2):914-22.
    27. Taylor S, Herrington S, Prime W, et al. S100A4 (p9Ka) protein in colon carcinoma and liver metastases:association with carcinoma cells and T-lymphocytes. Br J Cancer.2002; 86(3): 409-16.
    28. Kim EJ, Helfman DM. Characterization of the metastasis-associated protein, S100A4. Roles of calcium binding and dimerization in cellular localization and interaction with myosin. J Biol Chem.2003; 278(32):30063-73.
    29. Donato R. S100:a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol.2001; 33(7):637-68.
    30. Yoon CS, Hyung WJ, Lee JH, et al. Expression of S100A4, E-cadherin, alpha-and beta-catenin in gastric adenocarcinoma. Hepatogastroenterology.2008; 55(86-87):1916-20.
    31. Li Y, Zhang KL, Sun Y, et al. Frequent S100A4 Expression with Unique Splicing Pattern in Gastric Cancers:A Hypomethylation Event Paralleled with E-cadherin Reduction and Wnt Activation. Transl Oncol.2008; 1(4):165-76.
    32. Kriajevska M, Bronstein IB, Scott DJ, et al. Metastasis-associated protein MTS1 (S100A4) inhibits CK2-mediated phosphorylation and self-assembly of the heavy chain of nonmuscle myosin. Biochim Biophys Acta.2000; 1498(2-3):252-263.
    33. Dupont VN, Gentien D, Oberkampf M, et al. A gene expression signature associated with metastatic cells in effusions of breast carcinoma patients. Int J Cancer.2007; 121(5):1036-46.
    34. Liang SH, Clarke MF. Regulation of p53 localization. Eur J Biochem,2001; 268(10): 2779-2783.
    35. van Dieck J, Fernandez-Fernandez MR, et al. Modulation of the oligomerization state of p53 by differential binding of proteins of the S100 family to p53 monomers and tetramers. J Biol Chem.2009; 284(20):13804-11.
    36. Fernandez-Fernandez MR, Veprintsev DB, Fersht AR. Proteins of the S100 family regulate the oligomerization of p53 tumor suppressor. Proc Natl Acad Sci U S A.2005; 102(13): 4735-40.
    37. Berge G, Costea DE, Berg M, et al. Coexpression and nuclear colocalization of metastasis-promoting protein S100A4 and p53 without mutual regulation in colorectal carcinoma. Amino Acids.2010 27.
    38. Klingelhofer J, M(?)ller HD, Sumer EU, et al. Epidermal growth factor receptor ligands as new extracellular targets for the metastasis-promoting S100A4 protein. FEBS J.2009; 276(20): 5936-48.
    39. Schmidt-Hansen B, Klingelhofer J, Grum-Schwensen B, et al. Functional significance of metastasis-inducing S100A4(Mtsl) in tumor-stroma interplay. J Biol Chem.2004; 279(23):24498-24504.
    40. Ambartsumian N, Grigorian M, Lukanidin E. Genetically modified mouse models to study the role of metastasis-promoting S100A4(mts 1) protein in metastatic mammary cancer. J Dairy Res.2005; 72 Spec No:27-33.
    41. Endo H, Takenaga K, Kanno T, et al. Methionine aminopeptidase 2 is a new target for the metastasis-associated protein, S100A4. J Biol Chem.2002; 277(29):26396-402.
    42. Semov A, Moreno MJ, Onichtchenko A, et al. Metastasis-associated protein S100A4 induces angiogenesis through interaction with Annexin Ⅱ and accelerated plasmin formation. J Biol Chem.2005; 280(21):20833-41.
    43. Elenjord R, Ljones H, Sundkvist E, et al. Dysregulation of matrix metalloproteinases and their tissue inhibitors by S100A4. Connect Tissue Res.2008; 49(3):185-8.
    44. Matsuura I, Lai CY, Chiang KN. Functional interaction between Smad3 and S100A4 (metastatin-1) for TGF-beta-mediated cancer cell invasiveness. Biochem J.2010; 426(3): 327-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700