用户名: 密码: 验证码:
水溶性量子点及量子点/二氧化硅纳米粒子的合成及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从20世纪80年代开始研究的纳米技术在90年代获得了突破性进展,它对生物医学工程领域的渗透与影响是显而易见的,纳米生物技术是目前国际生物技术领域的热点研究课题,美国、日本、德国和我国均已将纳米生物技术列入国家重点发展领域。目前,纳米生物技术的应用涵盖从疾病诊断到靶向药物治疗和基因修复的诸多方面,其中,最受关注的是将半导体量子点用作生物标记、生物传感器和影像对比剂等。本论文以水相合成法制备了三种纳米粒子,并将所合成的三种纳米粒子应用于化学检测、生物医学检测及成像中。主要内容包括:
     论文第一章主要介绍了量子点的合成、生物医学应用以及应用中所遇到的问题和解决方法,阐明了本论文的研究意义及主要内容。
     论文第二章主要介绍了以巯基丁二酸(MSA)为稳定剂,通过回流和水热方法制备高质量的CdTe量子点。并利用所合成的CdTe量子点通过层层自组装的方法,制备成CdTe/PDDA量子点多层膜,并通过多层膜的荧光猝灭来检测水溶液中汞离子(Hg~(2+))的浓度。
     论文第三章主要介绍了通过反相微乳法合成CdTe量子点/二氧化硅(CdTe/SiO_2)复合纳米粒子,以及将其作为荧光探针用于生物检测和细胞标记。
     论文第四章主要介绍了以巯基丙酸为稳定剂,利用成核掺杂的方法,在水溶液中合成Mn~(2+)掺杂的ZnSe量子点(Mn:ZnSe d-dots)。由于这种掺杂型的量子点不含重金属元素Cd,从而减少了量子点的生物毒性。此外,我们还考察了所合成的Mn:ZnSe d-dots的光稳定性,与CdTe量子点相比,Mn:ZnSe d-dots具有更好的光稳定性
     论文第五章,利用溴化乙啶(EB)作为探针,详细研究了前面几章中所合成的三种纳米粒子(CdTe QDs,CdTe/SiO_2和Mn:ZnSe d-dots)与DNA分子之间的相互作用。研究结果表明,无论是在暗处还是在紫外光照射下,CdTe QDs都是最容易造成DNA损伤的纳米粒子;与CdTe QDs相比,CdTe/SiO_2 NPs引起的DNA损伤大大减小,而Mn:ZnSe d-dots作为一种新型的掺杂型量子点几乎不引起DNA分子的损伤,这使其作为荧光标记物在生物医学研究领域具有巨大的应用潜力。
Quantum dots (QDs), also named semiconductor nanocrystals or semiconductor nanoparticles, are a kind of spherical or quasi-spherical nanoparticle, which are usually composed of atoms from groups II–VI, III–V, or IV–VI of the periodic table. QDs are nanocrystals with the diameter within 10 nm, composed of nanometer-sized crystalline clusters of a few hundred to a few thousand atoms, which have different properties compared with the bulk crystals. As a result of their small size, QDs possess high surface-to-volume ratios, such that many of their chemical and physical properties are dominated by their surface, not by their bulk volume. One extraordinary property of QDs is that the particle size determines many of the QDs’properties, most importantly the wavelength of fluorescence emission. Typical QDs have been exploited in inorganic ion sensors, organic small molecule sensors, biological macromolecule sensors, biological labeling, cell labeling, cellular effector and reporters, animal imaging and therapy. Thus far, one of the fastest developing and most exciting interfaces of nanotechnology is the use of quantum dots (QDs) in biology.
     In chapter 1, we described the extraordinary optical properties of QDs and developments in methods for their synthesis. Then we focused on the biomedical application, and the toxicity of QDs and potential barriers to their use in practical biomedical applications. Finally, we provided insights into improvements aimed at decreasing the toxicity of QDs, and the significance and contents of this dissertation.
     In chapter 2, we studied the synthesis and application of aqueous CdTe QDs. We choose a new ligand mercaptosuccinic acid (MSA) as stabilizer for CdTe QDs synthesis in both refluxing and hydrothermal routes. The stabilizer MSA composed of both thioglycolic acid (TGA)-like and 3-mercaptopropionic acid (MPA)-like moieties, which can accelerate the growth of CdTe QDs in the whole synthesis process. We optimized the condition of two routes by varying the ratio of precursors and reaction temperature. Ultimately, the CdTe QDs obtained by two routes all have high PL QY and narrowing size distribution. These MSA modified CdTe QDs have carboxyl groups on their surface and can be easily combined with antibodies or antigens for biomedical applications. Then using the synthesized CdTe QDs, we fabricated multilayer CdTe QDs films on quartz slides by LbL assembling of poly(dimethyldiallyl ammonium chloride) (PDDA) and CdTe QDs capped with mercaptosuccinic acid (MSA). Through the electrostatic interactions, PDDA and CdTe QDs were alternately deposited on the quartz slides, thus photostable QDs multilayer films were obtained. The fluorescence of PDDA/QDs multilayer films was sensitive to the existence of Hg (II) ions. The fluorescence of multilayer films was quenched effectively by Hg (II) ions. The concentration of Hg(II) in aqueous solution can be determined through the fluorescence quenching of multilayer films.
     In chapter 3, we embedded aqueous CdTe QDs in silica spheres by reverse microemulsion method and functionalized the silica spheres as photostable fluorescent probes were applied to biological labels. As the intermediate silica species can carry negative charges at pH 11, the same pH as CdTe QDs stabilized by MSA, only one QD can be coated by silica sphere, which may weaken the fluorescence intensity of CdTe@SiO_2 core-shell nanoparticles and limit their applications. With the aim of embedding more CdTe QDs in silica spheres, we used poly(dimethyldiallyl ammonium chloride) (PDDA) to balance the electrostatic repulsion between CdTe QDs and silica intermediates, which enhanced the fluorescence intensity of CdTe/SiO_2 composite nanoparticles effectively. The modified surface of silica nanoparticles has amino groups as functional groups which combine with biomolecules and methylphosphonate groups as stabilizing groups which reduce aggregation of silica nanoparticles. The CdTe/SiO_2 composite nanoparticles were linked with biotin-labeled mouse IgG via covalent binding. Furthermore, they can recognize FITC-labeled avidin and avidin on the surface of polystyrene microspheres successfully through the high affinity between avidin and biotin. Finally, the CdTe/SiO_2 composite nanoparticles were used to label the MG63 osteosarcoma cell, which demonstrates the application of CdTe/SiO_2 composite nanoparticles as fluorescent probes in bioassay and fluorescence imaging is feasible.
     In chapter 4, we attempted to prepare Mn:ZnSe d-dots by a nucleation–doping strategy with mercaptopropionic acid as the capping reagent in aqueous solution. Mn:ZnSe d-dots are new generation fluorescence emitter, which have great application potentials in biomedical fields for no heavy metal element addition during the synthesis process. Compared with organometallic synthesis, aqueous synthesis is cheaper, simpler, less toxic and Mn:ZnSe d-dots synthesized in aqueous solution are biologically compatible, making them much more suitable for biomedical applications. The optimal precursor ratio and the kind of stabilizer for obtaining Mn:ZnSe d-dots with good PL emission properties were studied in detail. As compared with CdTe QDs synthesized in aqueous solution, Mn:ZnSe d-dots have much better photostability, indicating that they can be applied as outstanding fluorescent labels for biological assays, imaging of cells and tissues, and even in vivo investigations.
     In chapter 5, we explored another fluorescent method for systematically investigated the DNA damage induced by a series of previously synthesized water-soluble nanoparticles, including CdTe QDs, CdTe/SiO_2 composite nanoparticles (CdTe/SiO_2 NPs), and Mn-doped ZnSe QDs (Mn:ZnSe d-dots). Ethidium bromide (EB) is a fluorescent compound, which is normally used to probe DNA structure in drug-DNA and protein-DNA interactions by its intercalating in the DNA double helix to enhance its fluorescence. Once the double helix structure of DNA molecules is destroyed, the fluorescence of EB will be quenched. It was found that ionic strength, pH value and UV irradiation influenced the PL emission properties of CdTe QDs, CdTe/SiO_2 NPs and Mn:ZnSe d-dots, and also influenced the interaction of DNA molecules with them. Among the three kinds of nanoparticles, DNA molecules were most easily damaged by CdTe QDs whether in the dark or under UV irradiation. The CdTe/SiO_2 NPs led to much less DNA damage when compared with CdTe QDs, as a silica overcoating layer could isolate the QDs from the external environment. Mn:ZnSe d-dots as a new class of non-cadmium doped QDs demonstrated almost no damage for DNA molecules, which have great potentials as fluorescent labels in the applications of biomedical assays, imaging of cells and tissues, even in vivo investigations.
引文
[1] H. Weller, Colloidal Semiconductor Q-Particles: Chemistry in the Transition Region Between Solid State and Molecules. Angew. Chem. Int. Ed. 1993, 32, 41.
    [2] A. Eychmüller, Structure and photophysics of semiconductor nanocrystals. J. Phys. Chem. B 2000, 104, 6514.
    [3] D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, H. Weller, Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine– Trioctylphosphine Oxide– Trioctylphospine Mixture. Nano Lett. 2001, 1, 207.
    [4] Ball, P, Garwin, L, Science at the atomic scale. Nature 1992, 355, 761.
    [5]苏品书.超微粒子材料技术.复旦出版社,1989.
    [6] L. Spanhel, H. Weller, A. Fojtik, A. Henglein, Ber. Bunsenges. Phys. Chem. 1987, 91, 88.
    [7] H. Weller, U. Koch, M. Gutierrez, A. Henglein, Photochemistry of colloidal metal sulfides 7. Absorption and fluorescence of extremely small ZnS particles (the world of the neglected dimensions). Ber. Bunsenges. Phys.Chem. 1984, 88, 649.
    [8] L. Spanhel, M. Haase, H. Weller, A. Henglein, Photochemistry of Colloidal Semiconductors. 20. Surface Modification and Stability of Strong Luminescing CdS-Particles J. Am. Chem. Soc. 1987, 109, 5649.
    [9] Henglein A.; Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 1989, 89, 1861.
    [10] Alivisatos A. P.; Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933.
    [11] Nirmal M.; Brus L.; Luminescence Photophysics in Semiconductor Nanocrystals Acc. Chem. Res. 1999, 32, 407.
    [12] Smith A. M.; Gao X.; Nie S.; Quantum dot nanocrystals for in vivo molecular and cellular imaging Photochem. Photobiol. 2004, 80, 377.
    [13] Jaiwal, J. K.; Simon, S. M.; Potentials and pitfalls of fluorescent quantum dots for biological imaging Trends Cell Biol. 2004, 14, 498.
    [14]宋国利,杨幼桐,孙凯霞,量子点的电子结构及量子效应黑龙江大学自然科学学报2002, 19, 80.
    [15] Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovie, I. G.; Diesner, K.; Chemseddine, A.; Eychmüller, A.; Weller, H. CdS Nanoclusters: Synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift J. Phys. Chem. 1994, 98, 7665.
    [16] Brus, L. E. Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state J. Chem. Phys. 1984, 80, 4403.
    [17] Kayanuma, Y.; Quantum size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape Phys. Rev. B, 1988, 38, 9797.
    [18] Chan, W. C. W.; Maxwell, D. J.; Gao, X. H.; Bailey, R. E.; Han, M. Y.; Nie, S. M. Luminescent QDs for multiplexed biological detection and imaging Curr. Opin. Biotechnol. 2002, 13: 40.
    [19] Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels Science 1998, 281, 2013.
    [20] Chan, W. C.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection Science 1998, 281, 2016.
    [21]林章碧,苏星光,张家骅,金钦汉.纳米粒子在生物分析中的应用分析化学2002, 30: 237.
    [22] Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Long-term multiple color imaging of live cells using quantum dot bioconjugates Nature Biotechnology 2003, 21, 47.
    [23] Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M. Self-assembled nanoscale biosensors based on quantum dot FRET donors Nat. Mater. 2003, 2, 630-638.
    [24] Peng, X. An essay on synthetic chemistry of colloidal nanocrystals Nano. Res. 2009, 2, 425.
    [25] Efros, A. L. Interband absorption of light in a semiconductor sphere Sov. Phys. Semicond. 1982, 16, 772.
    [26] Ekimov, A. I.; Onushchenk, A. A. Quantum size effect in the optical-spectra of semiconductor micro-crystals Sov. Phys. Semicond. 1982, 16, 775.
    [27] Guo, J.; Yang, W.; Wang, C. Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions J. Phys. Chem. B 2005, 109, 17467.
    [28] Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites J. Am. Chem. Soc. 1993, 115, 8706.
    [29] Hines, M. A.; Guyot-Sionnest, P. Synthesis and character- ization of strongly luminescing ZnS-capped CdSe nanocrystals J. Phys. Chem. 1996, 100, 468.
    [30] Murray, X. G.; Norris, D. J.; Bawendi, M. G. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility J. Am. Chem. Soc. 1997, 119, 7019.
    [31] Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe) ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites J. Phys. Chem. B 1997, 101, 9463.
    [32] Tian, Y. C.; Newton, T.; Kotov, N. A.; Guldi, D. M.; Fendler, J. H. Coupled Composite CdS-CdSe and Core-Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles J. Phys. Chem. 1996, 100, 8927. 43
    [33] Peng, Z. A.; Peng, X. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor J. Am. Chem. Soc. 2001, 123, 183.
    [34] Yu, W. W.; Peng, X. Formation of High Quality CdS and Other II-VI Semiconductor Nanocrystals in Non-Coordinating Solvent, Tunable Reactivity of Monomers Angew. Chem. Int. Ed. 2002, 41, 2368.
    [35] Battaglia, D.; Peng, X. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2002, 2, 1027.
    [36] Zhong, X.; Feng, Y.; Knoll, W.; Han, M. Alloyed ZnxCd1-xS Nanocrystals with Highly Narrow Luminescence Spectral Width J. Am. Chem. Soc. 2003, 125, 13559.
    [37] Bailey, R. E.; Nie, S. What controls the melting properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 2003, 125, 7100.
    [38] Hines, M. A.; Guyot-Sionnest, P. Bright UV-blue luminescent colloidal ZnSe nanocrystals J. Phys. Chem. B 1998, 102, 3655.
    [39] Peng, X.; Mann, L.; Wickham, J.; Kadvanish, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals: from dots to rods and back Nature 2000, 404, 59.
    [40] Nann, T.; Riegler, Monodisperse CdSe Nanorods at Low Temperatures J. Chem. Eur. 2002, 8, 4791.
    [41] Talapin, D. V.; Haubold, S.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. A novel organometallic synthesis of highly luminescent CdTe nanocrystals J. Phys. Chem. B 2001, 105, 2260.
    [42] Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphosphine Mixture Nano. Lett. 2001, 1, 207.
    [43] Qu, L.; Peng, Z. A.; Peng, X. G. Fabrication and Properties of Organic Light-Emitting“Nanodiode”Arrays Nano. Lett. 2002, 1, 333.
    [44] Talapin, D. V.; Rogach, A. L.; Shevchenko, W. V.; Kornowski, A.; Haase, M.;Weller, H. Dynamic distribution of growth rates within the ensembles of colloidal II-VI and III-V semiconductor nanocrystals as a factor governing their photoluminescence efficiency J. Am. Chem. Soc. 2002, 124, 5782.
    [45] Reiss, P.; Bleuse, J.; Pron, A. Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion Nano Lett. 2002, 2, 781.
    [46] A. Hoshino, K. Hanaki, K. Suzuki and K. Yamamoto, Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body, Biochem. Biophys. Res. Commun. 2004, 314, 46.
    [47] Rogach, A. L.; Katsikas, L.; Kornowski, A.; Su, D.; Eychmüller, A.; Weller, H. Synthesis of water-soluble CdTe nanocrystals Ber. Bunsenges. Phys. Chem. 1996, 100, 1772.
    [48] Zhang, H.; Cui, Z.; Wang, Y.; Zhang, K.; Ji, X.; Lü, C.; Yang, B.; Gao, M. Y. Mechanisms for the Shape-Control and Shape-Evolution of Colloidal Semiconductor Nanocrystals Adv. Mater. 2003, 15, 777.
    [49] Zhang, H.; Zhou, Z.; Yang, B. The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles J. Phys. Chem. B 2003, 107, 8.
    [50] Weng, J. F.; Song, X. T.; Li, L.; Qian, H. F.; Chen, K. Y.; Xu, X. M.; Cao, C. X.; Ren, J. C. Highly luminescent CdTe quantum dots prepared in aqueous phase as an alternative fluorescent probe for cell imaging Talanta 2006, 70, 397.
    [51] Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychmüller, A.; Weller, H. Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes J. Phys. Chem. B 2002, 106, 7177.
    [52] Zhang, H.; Wang, L.; Xiong, H.; Hu, L.; Yang, B.; Li, W. Hydrothermal synthesis to high quality CdTe nanocrystals Adv. Mater. 2003, 15, 1712.
    [53] Wang, C.; Ma, Q.; Su, X. Synthesis of CdTe Nanocrystals with Mercaptosuccinic Acid as Stabilizer J. Nanosci. Nanotech. 2008, 8, 4408.
    [54] Guo, J.; Yang, W.; Wang, C. Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions J. Phys. Chem. B 2005, 109, 17467.
    [55] Bao, H.; Gong, Y.; Li, Z.; Gao, M. Enhancement Effect of Illumination on the Photoluminescence of Water-Soluble CdTe Nanocrystals: Toward Highly Fluorescent CdTe/CdS Core-Shell Structure Chem. Mater. 2004, 16, 3853.
    [56] Wang, C.; Zhang, H.; Zhang, J.; Li, M.; Sun, H.; Yang, B. Application of ultrasonic irradiation in aqueous synthesis of highly fluorescent CdTe/CdS core-shell nanocrystals J. Phys. Chem. C 2007, 111, 2465.
    [57] Li, L.; Qian, H.; Ren, J. Rapid Synthesis of Highly Luminescent CdTe Nanocrystals in the Aqueous Phase by Microwave Irradiation with Controllable Temperature Chem. Commun. 2005, 528.
    [58] He, Y.; Sai, L. M.; Lu, H. T.; Hu, M.; Lai, W. Y.; Fan, Q. L.; Wang, L. H.; Huang, W. Microwave-Assisted Synthesis of Water-Dispersed Cdte Nanocrystals with High Luminescent Efficiency and Narrow Size Distribution Chem. Mater. 2007, 19, 359.
    [59] Goldman, E. R.; Balighian, E. D.; Mattoussi, H.; Kuno, M. K.; Mauro, J. M.; Tran, P. T.; Anderson, G. P. Avidin: A natural bridge for quantum dot antibody conjugates J. Am. Chem. Soc. 2002, 124, 6378.
    [60] Pathak, S.; Choi, S.-K.; Arnheim, N.; Thompson, M. E. Hydroxylated quantum dots as luminescent probes for in situ hybridization J. Am. Chem. Soc. 2001, 123, 4103.
    [61] Goldman, E. R.; Clapp, A. R.; Anderson, G. P.; Uyeda, H. T.; Mauro, J. M.; Medintz, I. L.; Mattoussi, H. Multiplexed toxin analysis using four colors of quantum dot fluororeagents Anal. Chem. 2004, 76, 684.
    [62] ?kerman, M. E.; Chan, W. C. W.; Laakkonen, P.; Bhatia, S. N.; Ruoslahti, E. Nanocrystal targeting in vivo Proc. Natl. Acad. Sci. USA 2002, 99, 12617.
    [63] Wu, X.; Liu, H.; Liu, J.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N.; Peale,F.; Bruchez, P. Molecular profiling of single cells and tissue specimens with quantum dots Nature Biotechnol. 2003, 21, 41.
    [64] Sukhanova, A.; Devy, J.; Venteo, L.; Kaplan, H.; Artemyev, M.; Oleinikov, V.; Klinov, D.; Pluot, M.; Cohen, J. H. M.; Nabiev, I. Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells Anal. Biochem. 2004, 324, 60.
    [65] Rosenthal, S. J.; Tomlinson, I.; Adkins, E. M.; Schroeter, S.; Adams, S.; Swafford, L.; McBride, J.; Wang, Y.; DeFelice, L. J.; Blakely, R. D. Targeting cell surface receptors with ligand-conjugated nanocrystals J. Am. Chem. Soc. 2002, 124, 4586.
    [66] Kim, S.; Lim, Y. T.; Soltesz, E. G.; Grand, De A. M.; Lee, J.; Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M.; Cohn, L. H.; Bawendi, M. G. Frangioni, J. V. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping Nature Biotechnol. 2004, 22, 93.
    [67] Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol Nat. Biotechnol. 2004, 22, 969.
    [68] Willard, D. M.; Orden, A. V. Quantum dots: resonant energy-transfer sensor Nat. Mater. 2003, 2, 575.
    [69] Willard, D. M.; Carillo, L. L.; Jung, J.; Orden, A. Van. CdSe-ZnS Quantum Dots as Resonance Energy Transfer Donors in a Model Protein-Protein Binding Assay Nano. Lett. 2001, 1, 469.
    [70] Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M. Self-assembled nanoscale biosensors based on quantum dot FRET donors Nat. Mater. 2003, 2, 630.
    [71] Gerion, D.; Parak, W. J.; Williams, S. C.; Zanchet, D.; Micheel, C. M.; Alivisatos, A. P. Sorting fluorescent nanocrystals with DNA J. Am. Chem. Soc. 2002, 124, 7070.
    [72] Ho, Y.-P.; Kung, M. C.; Yang, S.; Wang, T.-H. Multiplexed hybridization detectionwith multicolor colocalization of quantum dot nanoprobes. Nano. Lett. 2005, 5, 1693.
    [73] Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing Nat. Mater. 2005, 4, 435.
    [74] Duan, H.; Nie, S. Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings J. Am. Chem. Soc. 2007, 129, 3333.
    [75] Zheng, Y.; Gao, S.; Ying, J. Y. Synthesis and Cell-Imaging Applications of Glutathione-Capped CdTe Quantum Dots Adv. Mater. 2007, 19, 376.
    [76] Yezhelyev, M. V.; Al-Hajj, A.; Morris, C.; Marcus, A. I.; Liu, T.; Lewis, M.; Cohen, C.; Zrazhevskiy, P.; Simons, J. W.; Rogatko, A.; Nie, S.; Gao, X.; O’Regan, R. M. In Situ Molecular Profiling of Breast Cancer Biomarkers with Multicolor Quantum Dots Communication Adv. Mater. 2007, 19, 3146.
    [77] Clapp, A. R.; Medintz, I. L.; Mauro, J. M.; Fisher, B. R.; Bawendi, M. G.; Mattoussi, H. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors J. Am. Chem. Soc. 2004, 126, 301.
    [78] Gill, R.; Willner, I.; Shweky, I.; Banin, U. Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: Probing hybridization and DNA cleavage J. Phys. Chem. B 2005, 109, 23715.
    [79] Hardman, R. Environ. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors Environ Health Perspect Health Persp. 2006, 14, 165.
    [80] Lovric, J.; Bazzi, H. S.; Cuie, Y.; Fortin, G. R. A.; Winnik, F. W.; Maysinger, D. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots J. Mol. Med. 2005, 83, 377.
    [81] Ballou, B.; Lagerholm, B. C.; Ernst, L. A.; Bruchez, M. P.; Waggoner, A. S. Noninvasive imaging of quantum dots in mice Bioconjugate Chem. 2004, 15, 79.
    [82] Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Intracellular delivery of quantum dots for live cell labeling of organelle tracking Nano Lett. 2004, 4, 11.
    [83] Kloepfer, J. A.; Mielke, R. E.; Wong, M. S.; Nealson, K. H.; Stucky, G.; Nadeau, J. L. Quantum dots as strain- and metabolismspecific microbiological labels Appl. Envion. Microbiol. 2003, 69, 4205.
    [84] Chen, F. Q.; Gerion, D. Fluorescent CdSe/ZnS nanocrystal peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells Nano Lett. 2004, 4, 1827.
    [85] Hoshino, A.; Fujioka, K.; Oku, T.; Suga, M.; Sasaki, Y.; Ohta, T. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification Nano Lett. 2004, 4, 2163.
    [86] Ruan, G.; Agrawal, A.; Marcus, A. I.; Nie, S. Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding J Am Chem Soc 2007 129, 14759.
    [87] Barua, S.; Rege, K. Cancer Cell Phenotype Dependent Differential Intracellular Trafficking of Unconjugated Quantum Dots Small 2009, 5, 370.
    [88] Orndorff, R L.; Rosenthal, S J. Neurotoxin quantum dot conjugates detect endogenous targets expressed in live cancer cells Nano Lett 2009, 9, 2589.
    [89] Ko M H.; Kim S.; Kang W J.; Lee J H.; Kang H.; Moon S H.; Hwang D W.; Ko H Y.; Lee D S. In vitro derby imaging of cancer biomarkers using quantum dots Small 2009, 5, 1207.
    [90] Li F, Zhang Z, Peng J, Cui Z, Pang D, Li K, Wei H, Zhou Y, Wen J, Zhang X. Carrier Transport Mechanisms of Bistable Memory Devices Fabricated Utilizing Core/Shell CdSe/ZnSe Quantum-Dot/Multi-Walled Carbon Nanotube Hybrid Nanocomposites Small 2009, 5, 718.
    [91] Orndorff R L, Warnement M R, Mason J N, Blakely R D, Rosenthal S J. Quantum dot ex vivo labeling of neuromuscular synapses Nano Lett 2008, 8, 780.
    [92] Chen C, Peng J, Xia H, Yang G, Wu Q, Chen L, Zeng L, Zhang Z, Pang D, Li Y, Quantum dots-based immunofluorescence technology for the quantitativedetermination of HER2 expression in breast cancer Biomaterials 2009, 30, 2912.
    [93] Sandros M G, Behrendt M, Maysinger D, Tabrizian M, InGaP@ZnS-enriched chitosan nanoparticles: A new versatile fluorescent probe for deep tissue imaging Adv Funct Mater 2007 17, 3724.
    [94] Fischer H C, Liu L C, Pang K S, Chan W C W, Pharmacokinetics of nanoscale quantum dots: in vivo distribution, sequestration, and clearance in the rat Adv Funct Mater 2006 16, 1299.
    [95] Liu W, Choi H S, Zimmer J P, Tanaka E, Frangioni J V, Bawendi M, Compact cysteine-coated cdsezncds quantum dots for in vivo applications J Am Chem Soc 2007, 129, 14530-14531.
    [96] DucongéF, Pons T, Pestourie C, Hérin L, ThézéB, Gombert K, Mahler B, Hinnen F, Kühnast B, DolléF, Dubertret B, Tavitian B, Fluorine-18-labeled phospholipid quantum dot micelles for in vivo multimodal imaging from whole body to cellular scales Bioconjugate Chem 2008, 19, 1921.
    [97] Yong K T, Roy I, Ding H, Bergey E J, Prasad P N, Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications Small 2009, doi: 10.1002/smll.200900547.
    [98] Larson D R, Zipfel W R, Williams R M, Clark S W, Bruchez M P, Wise F W, Webb W W, Water-soluble quantum dots for multiphoton fluorescence imaging in vivo Science 2003 300, 1434.
    [99] Smith J D, Fisher G W, Waggoner A S, Campbell P G, The use of quantum dots for analysis of chick CAM vasculature Microvasc. Res. 2007, 73, 75.
    [100] Bhang S H, Won N, Lee T-J, Jin H, Nam J, Park J, Chung H, Park H, Sung Y-E, Hahn S K, Kim B-S, Kim S, Hyaluronic Acid-Quantum Dot Conjugates for In Vivo Lymphatic Vessel Imaging ACS Nano 2009, doi: 10.1021/nn900138d.
    [101] Dubertret B, Skourides P, Norris D J, Noireaux V, Brivanlou A H, Libchaber A, In vivo imaging of quantum dots encapsulated in phospholipid micelles Science 2002,298, 1759.
    [102] Voura E B, Haiswal J K, Mattoussi H, Simon S M, Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 2004, 10, 993.
    [103] Yang L, Mao H, Wang Y A, Cao Z, Peng X, Wang X, Duan H, Ni C, Yuan Q, Adams G, Smith M Q, Wood W C, Gao X, Nie S, Single Chain Epidermal Growth Factor Receptor Antibody Conjugated Nanoparticles for in vivo Tumor Targeting and Imaging Small 2009 5, 235.
    [104] Cai W B, Shin D W, Chen K, Gheysens O, Cao Q Z, Wang S X, Gambhir S S, Chen X Y, Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects Nano Lett 2006, 6, 669.
    [105] Papagiannaros A, Levchenko T, Hartner W, Mongayt D, Torchilin V, Quantum dots encapsulated in phospholipids micelles for imaging and quantification of tumors in the near-infrared region Nanomed Nanotechnol Biol Med 2009, 5, 216.
    [106] Pradhan, N.; Goorskey, D.; Thessing, J.; Peng, X. An Alternative of CdSe Nanocrystal Emitters: Pure and Tunable Impurity Emissions in ZnSe Nanocrystals J. Am. Chem. Soc. 2005, 127, 17586.
    [107] Pradhan, N.; Peng, X. Efficient and color-tunable Mndoped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry J. Am. Chem. Soc. 2007, 129, 3339.
    [108] Pradhan, N.; Battaglia, D. M.; Liu, Y.; Peng, X. Efficient,stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels Nano Lett. 2007, 7, 312.
    [1] Liu, Y. H.; Tania, Q. Vu. Identification of Quantum Dot Bioconjugates and Cellular Protein Co-localization by Hybrid Gel Blotting. Nano. Lett. 2007, 7, 1044.
    [2] Wuister S. F.; Swart, I.; Driel, F.; Hickey, S. G.; Donega, C. M. Highly Luminescent Water-Soluble CdTe Quantum Dots. Nano. Lett. 2003, 3, 503.
    [3] (a) Duan, H.; Nie, S. Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J. Am. Chem. Soc. 2007, 129, 3333. (b) Smith, A. M.; Duan, H.; Rhyner, M. N.; Ruan G.; Nie, S. A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Phys. Chem. Chem. Phys. 2006, 8, 3895.
    [4] Yang, R.; Yan, Y.; Mu, Y.; Ji, W.; Li, X.; Zou, M.Q.; Fei, Q.; Jin, Q. A rapid and facile method for hydrothermal synthesis of CdTe nanocrystals under mild conditions. J. Nanosci. & Nanotechnol. 2006, 6, 215.
    [5] Liu, Y.; Chen, W.; Joly, A. G.; Wang, Y.; Pope, C.; Zhang, Y.; Bovin, J.; Sherwood, P. Comparison of water-soluble CdTe nanoparticles synthesized in air and in nitrogen. J. Phys. Chem. B 2006, 110, 16992.
    [6] Zhang, H.; Wang, L.; Xiong, H.; Hu, L.; Yang, B.; Li, W. Hydrothermal synthesis to high quality CdTe nanocrystals. Adv. Mater. 2003, 15, 1712.
    [7] Guo, J.; Yang, W.; Wang, C. J. Phys. Chem. B Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions. 2005, 109, 17467.
    [8] Zhang, H.; Wang, D.; Yang, B.; Mohwald, H. Manipulation of aqueous growth of 82CdTe nanocrystals to fabricate colloidally stable one-dimensional nanostructures. J. Am. Chem. Soc. 2006, 128, 10171.
    [9] Talapin, D. V.; Rogach, A. L.; Shevchenko, E. V.; Kornowski, A.; Haase, M.; Weller, H. Dynamic Distribution of Growth Rates within the Ensembles of Colloidal II-VI and III-V Semiconductor Nanocrystals as a Factor Governing their Photoluminescence Efficiency. J. Am. Chem. Soc. 2002, 124, 5782.
    [10] Zhang, H.; Zhou, Z.; Yang, B. The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles. J. Phys. Chem. B 2003, 107, 8.
    [11] Wang, X.; Ma, Q.; Li, B., Lin, Y.; Su, X. The preparation of CdTe Nanoparticles and CdTe nanoparticle-labelled microspheres for biological applications. Luminescence 2007, 22, 1.
    [12] Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854.
    [13] Borchert, H.; Talapin, D. V.; Gaponik, N.; McGinley, C.; Adam, S.; Lobo, A.; M?ller, T.; Weller, H. Relations between the photoluminescence efficiency of CdTe nanocrystals and their surface properties revealed by synchrotron XPS. J. Phys. Chem. B 2003, 107, 9662.
    [14] Shavel, A.; Gaponik, N.; Eychmüller, A. Factors Governing the Quality of Aqueous CdTe Nanocrystals: Calculations and Experiment J. Phys. Chem. B 2006, 110, 19280.
    [15] Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025.
    [16] Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychmüller, A.; Weller, H. Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes.J. Phys. Chem. B 2002, 106, 7177.
    [17] Ali, E. M.; Zheng, Y.; Yu, H.; Ying, J. Y. Ultrasensitive Pb2+ detection byglutathione-capped quantum dots. Anal. Chem. 2007, 79, 9452.
    [18] Chen, Y.; Rosenzweig, Z.; Luminescent CdS quantum dots as selective ion probes. Anal. Chem. 2002, 74, 5132.
    [19] Hennrich, G.; Sonnenschein, H.; Resch-Genger, U. Redox switchable fluorescent probe selective for either Hg(II) or Cd(II) and Zn(II). J. Am. Chem. Soc. 1999, 121, 5073.
    [20] Nolan, E. M.; Lippard, S. J. A“turn-on”fluorescent sensor for the selective detection of mercuric ion in aqueous media. J. Am. Chem. Soc. 2003, 125, 14270.
    [21] Lista, A. G.; Palomeque, M. E.; Fernàndez Band, B. S. Flow-injection fluorimetric determination of mercury(II) with calcein. Talanta 1999, 50, 881.
    [22] Rurack, K.; Resch-Genger, U.; Bricks, J. L.; Spiele, M. Cation-triggered‘switching on’of the red/near infra-red (NIR) fluorescence of rigid fluorophore–spacer–receptor ionophores. Chem. Commun. 2000, 2103.
    [23] McClure, D. S. Spin-orbit interaction in aromatic molecules. J. Chem. Phys. 1952, 20, 682.
    [24] Xia, Y. S.; Zhu, C. Q. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II). Talanta 2008, 75, 215.
    [25] BruchezJr, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013.
    [26] Chen, W. C. W.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016.
    [27] Liu, Y. H.; Tania, Q. Vu. Identification of quantum dot bioconjugates and cellular protein co-localization by hybrid gel blotting. Nano. Lett. 2007, 7, 1044.
    [28] Liang, J. G.; Ai, X. P.; He, Z. K.; Pang, D. W. Functionalized CdSe quantum dots as selective silver ion chemodosimeter. Analyst 2004, 129, 619.
    [29] Xia, Y. S.; Cao, C.; Zhu, C. Q. Two distinct photoluminescence responses of CdTe quantum dots to Ag (I). J. Lumin. 2008, 128, 166.
    [30] Gattás-Asfura, K. M.; Leblanc, R. M.; Peptide-coated CdS quantum dots for the optical detection of copper(II) and silver(I). Chem. Commun. 2003, 2684.
    [31] Xia, Y.; Zhu, C.; Aqueous synthesis of type-II core/shell CdTe/CdSe quantum dots for near-infrared fluorescent sensing of copper(II). Analyst 2008, 133, 928.
    [32] Chen, B.; Zhong, P. A new determining method of copper(II) ions at ng ml-1 levels based on quenching of the water-soluble nanocrystals fluorescence. Anal. Bioanal. Chem. 2005, 381, 986.
    [33] Chen, J.; Gao, Y.; Xu, Z.; Wu, G.; Chen, Y.; Zhu, C. A novel fluorescent array for mercury(II) ion in aqueous solution with functionalized cadmium selenide nanoclusters. Anal. Chim. Acta 2006, 577, 77.
    [34] Cai, Z.; Yang, H.; Zhang, Y.; Yan, X. Preparation, characterization and evaluation of water-soluble L-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg(II) in aqueous solution. Anal. Chim. Acta 2006, 559, 234.
    [35] Chen, B.; Yu, Y.; Zhou, Z.; Zhong, P. Synthesis of Novel Nanocrystals as Fluorescent Sensors for Hg2+ Ions. Chem. Lett. 2004, 33, 1608.
    [36] Li, J.; Mei, F.; Li, W.; He, X.; Zhang, Y. Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine B in the presence of CTMAB and its application on the detection of Hg(II). Spectrochim. Acta Part A 2008, 70, 811.
    [37] Deng, Z.; Zhang, Y.; Yue, J.; Fang, F.; Wei, Q. Green and orange CdTe quantum dots as effective pH-sensitive fluorescent probes for dual simultaneous and independent detection of viruses. J. Phys. Chem. B 2007, 111, 12024.
    [38] Wang, Y.; Ye, C.; Zhu, Z.; Hu. Y. Cadmium telluride quantum dots as pH-sensitive probes for tiopronin determination. Anal. Chim. Acta 2008, 610, 50.
    [39] Huang, C.; Liu, S.; Chen, T.; Li, Y. A new approach for quantitative determination of glucose by using CdSe/ZnS quantum dots. Sens. Actuators B Chem. 2008, 130, 338.
    [40] Giu, R.; Bahshi, L.; Freeman, R.; Willner, I. Optical detection of glucose and acetylcholine esterase inhibitors by H2O2-sensitive CdSe/ZnS quantum dots. Angew.Chem. Int. Ed. 2008, 47, 1.
    [41] Duong, H. D.; Rhee, J. Use of CdSe/ZnS core-shell quantum dots as energy transfer donors in sensing glucose. Talanta 2007, 73, 899.
    [42] Wang, J.; Wang, H.; Li, Y.; Zhang, H.; Li, X.; Hua, X.; Cao, Y.; Huang, Z.; Zhao, Y. Modification of CdTe quantum dots as temperature-insensitive bioprobes. Talanta 2008, 74, 724.
    [43] Dong, C.; Qian, H.; Fang, N.; Ren, J. Study of fluorescence quenching and dialysis process of CdTe quantum dots, using ensemble techniques and fluorescence correlation spectroscopy. J. Phys. Chem. B 2006, 110, 11069.
    [44] Isarov, A. V.; Chrysochoos, J. Optical and photochemical properties of nonstoichiometric cadmium sulfide nanoparticles: surface modification with copper(II) ions. Langmuir 1997, 13, 3142.
    [45] Niemeyer, C. M. Nanoparticles, proteins and nucleic acids biotechnology meets materials science. Angew. Chem. Int. Ed. 2001, 40, 4128.
    [46] Liu, Y.; Wang, C.; Hsiung, K. Comparison of different protein immobilization methods on quartz crystal microbalance surface in flow injection immunoassay. Anal. Biochem. 2001, 299, 130.
    [47] Constantine, C. A.; Gattás-Asfura, K. M.; Mello, S. V.; Crespo, G.; Rastogi, V.; Cheng, T. C.; DeFrank, J. J.; Leblanc, R. M. Layer-by-Layer biosensor assembly incorporating functionalized quantum dots. Langmuir 2003, 19, 9863.
    [48] Yang, P.; Li, C. L.; Murase, N. Highly photoluminescent multilayer QD-glass films prepared by LbL self-assembly. Langmuir 2005, 21, 8913.
    [49] Kim, D. W.; Blumstein, A.; Kumar, J.; Samuelson, L. A.; Kang, B.; Sung, C. Ordered multilayer nanocomposites prepared by electrostatic layer-by-layer assembly between aluminosilicate nanoplatelets and substituted ionic polyacetylenes. Chem. Mater. 2002, 14, 3925.
    [50] Keller, S.; Kim, H.; Mallouk, T. Layer-by-layer assembly of intercalationcompounds and heterostructures on surfaces: toward molecular "beaker" epitaxy. J. Am. Chem. Soc. 1994, 116, 8817.
    [51] Wang, C.; Ma, Q.; Su, X. Synthesis of CdTe nanocrystals with mercaptosuccinic acid as stabilizer. J. Nanosci. & Nanotechnol. 2008, 8, 4408.
    [52] Wang, C.; Ma, Q.; Dou, W.; Kanwal, S.; Wang, G.; Yuan, P.; Su, X. Synthesis of aqueous CdTe quantum dots embedded silica nanoparticles and their applications as fluorescence probes. Talanta 2009, 77, 1358.
    [53] Koneswaran, M.; Narayanaswamy, R. Mercaptoacetic acid capped CdS quantum dots as fluorescence single shot probe for mercury(II). Sens. Actuators B Chem. 2009, 139, 91.
    [1] Yang, Y.; Gao, M. Preparation of Fluorescent SiO2 Particles with Single CdTe Nanocrystal Cores by the Reverse Microemulsion Method. Adv. Mater. 2005, 17, 2354.
    [2] Yang, Y.; Jing, L.; Yu, X.; Yan, D.; Gao, M. Coating Aqueous Quantum Dots with Silica via Reverse Microemulsion Method: Towards Size-controllable and Robust Fluorescent Nanoarticles. Chem. Mater. 2007, 19, 4123.
    [3] Jana, N. R.; Earhart, C.; Ying, J. Y. Synthesis of Water-Soluble and Functionalized Nanoparticles by Silica Coating. Chem. Mater. 2007, 19, 5074.
    [4] Santra, S.; Zhang, P.; Wang, K.; Tapec, R.; Tan, W. Conjugation of Biomolecules with Luminophore-Doped Silica Nanoparticles for Photostable Biomarkers. Anal. Chem. 2001, 73, 4988.
    [5] Wang, L.; Tan, W. Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett. 2006, 6, 84.
    [6] Wolcott, A.; Gerion, D.; Visconte, M.; Sun, J.; Schwartaberg, A.; Chen, S.; Zhang, J. Z. Silica-Coated CdTe Quantum Dots Functionalized with Thiols for Bioconjugation to IgG Proteins. J. Phys. Chem. B 2006, 110, 5779.
    [7] Jr, M. B.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013.
    [8] Nann, T.; Mulvaney, P. Single Quantum Dots in Spherical Silica Particles. Angew. Chem. Int. Ed. 2004, 43, 5393.
    [9] Chan, Y.; Zimmer, J. P.; Stroh, M.; Stechel, J. S.; Jain, R. K.; Bawendi, M. G. Incorporation of Luminescent Nanocrystals into Monodisperse Core-Shell Silica Microspheres. Adv. Mater. 2004, 16, 23.
    [10] Correa-Duarte, M. A.; Giersig, M.; Lia-Marzán, L. M. Chem. Phys. Lett. 1998, 286, 497.
    [11] Rogach, A. L., Nagesha, D.; Ostrander, J. W.; Giersig, M.; Kotov, N. A. Synthesis of“Raisin-Bun”-Type Composite Nanoparticle Spheres. Chem. Mater. 2000, 12, 2676.
    [12] Song-yuan, Liu, L.; Asher, S. A. Preparation and Properties of Tailored Morphology, Monodisperse Colloidal Silica-Cadmium Sulfide Nanocomposites J. Am. Chem. Soc. 1994, 116, 6739.
    [13] Ye, Z.; Tan, M.; Wang, G.; Yuan, J. Preparation, Characterization, and Time-Resolved Fluorometric Application of Silica-Coated Terbium(III) Fluorescent Nanoparticles Anal. Chem. 2004, 76, 513.
    [14] Zhao, X.; Bagwe, R. P.; Tan, W. Development of organic-dye-doped silica nanoparticles in a reverse microemulsion. Adv. Mater. 2004, 16, 173.
    [15] Selvan, T.; Tan, T. T.; Ying, J. Y. Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv. Mater. 2005, 17, 1620.
    [16] Darbandi, M.; Thomann, R.; Nann, T. Single Quantum Dots in Silica Spheres by Microemulsion Synthesis. Chem. Mater. 2005, 17, 5720.
    [17] Bagwe, R. P.; Hilliard, L. R.; Tan, W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 2006, 22, 4357.
    [18] Sathe, T. R.; Agrawal, A.; Nie, S. Mesoporous Silica Beads Embedded with Semiconductor Quantum Dots and Iron Oxide Nanocrystals: Dual-Function Microcarriers for Optical Encoding and Magnetic Separation. Anal. Chem. 2006, 78, 5627.
    [19] Selvan, S. T.; Patra, P. K.; Ang, C. Y.; Ying, J. Y. Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew. Chem. Int. Ed. 2007, 46, 2448.
    [20] Jin, L.; Yu, D.; Liu, Y.; Zhao, X.; Zhou, J. Talanta 2008, 76, 1053-1057.
    [21] Wang, C.; Ma, Q.; Su, X. Synthesis of CdTe Nanocrystals with Mercaptosuccinic Acid as Stabilizer. J. Nanosci. & Nanotechnol. 2008, 8, 4408–4414.
    [22] Yang, H.; Qu, H.; Lin, P.; Li, S.; Ding, M.; Xu, J. Analyst 2003, 128, 462.
    [23] Anzai, J.; Hoshi, T.; Nakamura, N. Construction of multilayer thin films containing avidin by a layer-by-layer deposition of avidin and poly(anion)s. Langmuir 2000, 16, 6306.
    [24] Liu, S.; Zhang, H.; Liu, T.; Liu, B.; Cao, Y.; Huang, Z.; Zhao, Y. J. Biomedical Materials Research Part A 80A 2006, 752.
    [1] Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013.
    [2] Chan, W. C. W.; Nie, S. Quantum dots bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016.
    [3] Han, M.; Gao, X.; Su, J. Z.; Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 2001, 19, 631.
    [4] Zheng, Y.; Gao, S.; Ying, J. Y. Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots. Adv. Mater. 2007, 19, 376.
    [5] Pradhan, N.; Goorskey, D.; Thessing, J.; Peng, X. An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals J. Am. Chem. Soc. 2005, 127, 17586.
    [6] Peng, X.; Nano Res. 2009, 2, 425.
    [7] Pradhan, N.; Peng, X. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: Control of optical performance via greener synthetic chemistry. J. Am. Chem. Soc. 2007, 129, 3339.
    [8] Pradhan, N.; Battaglia, D. M.; Liu, Y.; Peng, X. Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Lett. 2007, 7, 312.
    [9] Bhargava, R. N.; Gallagher, D.; Hong, X.; Hurmikko, A. Phy. Rev. Lett. 1994, 72, 416.
    [10] Yi, G.; Sun, B.; Yang, F.; Chen, D. J. Mater. Chem. 2001, 11, 2928.
    [11] Zhuang, J.; Zhang, X.; Wang, G.; Li, D.; Yang, W.; Li, T. Synthesis of water-soluble ZnS:Mn2+ nanocrystals by using mercaptopropionic acid as a stabilizer. J. Mater. Chem. 2003, 13, 1853.
    [12] Suyver, J. F.; Wuister, S. F.; Kelly, J. J.; Meijerink, A. Phys. Chem. Chem. Phys. 2000, 2, 5445.
    [13] Norris, D. J.; Yao, N.; Charnock, F. T.; A.Kennedy, T. High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 2001, 1, 3.
    [14] Kang, B.; Chang, S.; Sun, H.; Dai, Y.; Chen, D. J. Nanosci. & Nanotechnol. 2008, 8,3864.
    [15] Zhang, H.; Wang, L.; Xiong, H.; Hu, L.; Yang, B.; Li, W. Hydrothermal synthesis to high quality CdTe nanocrystals. Adv. Mater. 2003, 15, 1712.
    [16] Lan, G.; Lin, Y.; Huang, Y.; Chang, H. Photo-assisted synthesis of highlyfluorescent ZnSe(S) quantum dots in aqueous solution. J. Mater. Chem. 2007, 17, 2661.
    [17] Norman, T. J.; Magana, Jr. D.; Wilson, T.; Burns, C.; Zhang, J. Z. J. Phys. Chem. B 2003, 107, 6309.
    [18] Mahamuni, S.; Lad, A. D.; Patole, S.Electron energy structure and photoluminescence of manganese-doped zinc selecide quantum dots. J. Phys. Chem. C 2008, 112, 2271.
    [19] Beermann, P A. G.; McGarvey, B. R.; Muralidharan, S.; Sung, R. C. W. EPR spectra of Mn2+-doped ZnS quantum dots. Chem. Mater. 2004, 16, 915.
    [20] Mandale, A. B.; Badrinarayanan, S.; Date, S. K.; Sinha, A. P. B. J. Electron. Spectrosc. Relat. Phenom. 1984, 33, 61.
    [21] Carver, J. C.; Schweitzer, G. K.; Carlson, T. A. J. Chem. Phys. 1972, 57, 973.
    [22] Peng, X.; Wickham, J.; Alivisatos, A. P. J. Am. Chem. Soc. 1998, 120, 5343.
    [23] Zu, L.; Norris, D. J.; Kennedy, T. A.; Erwin, S. C.; Efros, A. L. The Impact of Ripening on Manganese-Doped ZnSe Nanocrystals. Nano Lett. 2006, 6, 334.
    [24] Wang, C.; Ma, Q.; Su, X. Synthesis of CdTe Nanocrystals with Mercaptosuccinic Acid as Stabilizer. J. Nanosci. & Nanotechnol. 2008, 8, 4408.
    [1] Bruchez, Jr. M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013.
    [2] Chan, W. C.; Nie, S. Quantum dots bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016.
    [3] Yang, Y.; Jing, L.; Yu, X.; Yan, D.; Gao, M. Coating Aqueous Quantum Dots with Silica via Reverse Microemulsion Method: Toward Size-Controllable and Robust Fluorescent Nanoparticles Chem. Mater. 2007, 19, 4123.
    [4] Hardman, R. Environ. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Health Perspect. 2006, 114, 165.
    [5] Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano. Lett. 2004, 4, 11.
    [6] Hoshino, A.; Fujioka, K.; Oku, T.; Suga, M.; Sasaki, Y. F.; Ohta, T.; Yasuhara, M.; Suzuki, K.; Yamamoto, K. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano. Lett. 2004, 4, 2163.
    [7] Kirchner, C.; Liedl, T.; Kudera, S.; Pellegrino, T.; Munoz, J. A., Gaub, H. E. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano. Lett. 2005, 5, 331.
    [8] Lovric, J.; Bazzi, H. S.; Cuie, Y.; Fortin, G. R. A.; Winnik, F. M.; Maysinger, D. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med. 2005, 83, 377.
    [9] Kirchner, C.; Javier, A. M.; Susha, A. S.; Rogach, A. L.; Kreft, O.; Sukhorukov, G. B. Tanlata 2005, 67, 486.
    [10] Male, K. B.; Lachance, B.; Hrapovic, S.; Sunahara, G.; Luong, J. H. T. Assessment of cytotoxicity of quantum dots and gold nanoparticles using cell-based impedance spectroscopy. Anal. Chem. 2008, 80, 5487.
    [11] Su, Y.; He, Y.; Lu, H.; Sai, L.; Li, Q.; Li, W.; Wang, L.; Shen, P.; Huang, Q.; Fan, C. Biomaterials 2009, 30, 19.
    [12] Chang, E.; Thekkek, N.; Yu, W. W.; Colvin, V. L.; Drezek, R. Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2006, 2, 1412.
    [13] Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of Nanoparticles." Small 2008, 4, 26.
    [14] Green, M.; Howman, E. Semiconductor quantum dots and free radical induced DNA nicking Chem. Commun. 2005, 121.
    [15] Liang, J.; He, Z.; Zhang, S.; Huang, S.; Ai, X.; Yang, H.; Han, H. Talanta 2007, 71, 1675.
    [16] Anas, A.; Hidetaka, A.; Harashima, H.; Itoh, T.; Ishikawa, M.; Biju V. J. Phys. Chem. B 2008, 112, 10005.
    [17] Pradhan, N.; Peng, X. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: Control of optical performance via greener synthetic chemistry. J. Am. Chem. Soc. 2007, 129, 3339.
    [18] Pradhan, N.; Battaglia, D. M.; Liu, Y.; Peng, X. Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano. Lett. 2007, 7, 312.
    [19] Sun, Y.; Bi, S.; Song, D.; Qiao, C.; Mu, D.; Zhang, H. Sens. Actuators B Chem. 2008, 129, 799.
    [20] Wang, C.; Ma, Q.; Su, X. Synthesis of CdTe Nanocrystals with Mercaptosuccinic Acid as Stabilizer. J. Nanosci. & Nanotechnol. 2008, 8, 4408.
    [21] Wang, C.; Ma, Q.; Dou, W.; Kanwal, S.; Wang, G.; Yuan, P.; Su, X. Synthesis of aqueous CdTe quantum dots embedded silica nanoparticles and their applications as fluorescence probes. Talanta 2009, 77, 1358.
    [22] Wang, C.; Gao, X.; Ma, Q.; Su, X. Aqueous synthesis of mercaptopropionic acid capped Mn-doped ZnSe quantum dots. J. Mater. Chem. 2009, 19, 7016.
    [23] Bi, S.; Zhang, H.; Qiao, C.; Sun, Y.; Liu, C. Spectrochim. Acta Part A 2008, 69, 123.
    [24] Ma, J.; Chen, J. Y.; Zhang, Y.; Wang, P. N.; Guo, J.; Yang, W. L.; Wang, C. C. J. Phys. Chem. B 2007, 111, 12012.
    [25] Samia, A. C. S.; Chen, X. B.; Burda, C. Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc. 2003, 25, 15736.
    [26] Samia, A. C. S.; Dayal, S.; Burda, C. Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy. Photochem. Photobiol. 2006, 2, 617.
    [27] Mahamuni, S.; Lad, A. D.; Patole, S. J. Phys. Chem. C 2008, 112, 2271.
    [28] Li, D.; Li, G. P.; Guo, W. W.; Li, P. C.; Wang, E. K.; Wang, J. Biomaterials 2008, 29, 2776

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700