用户名: 密码: 验证码:
逆境条件下胡杨CBL-CIPK信号途径转导的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙离子作为植物细胞中的第二信使在调节和响应外来非生物胁迫的信号转导中起着重要作用,钙信使产生后通过与钙离子结合蛋白相互作用,从而将信号继续向下游传递。在植物细胞中发现有钙调素、CDPK.CBL等多种钙离子结合蛋白。CBL蛋白作为近年来刚发现的一类钙结合蛋白,它可以通过与一类丝氨酸/苏氨酸蛋白激酶-CIPK相互作用而介导钙信号的转导。在拟南芥中对钙信号网络已经进行了深入研究,但是在其它植物特别是在林木植物研究上还未见报道。杨树基因组(毛果杨:Populus trichocarpa)测序的完成,为我们研究CBL-CIPK信号途径提供了良好平台(model).本研究利用毛果杨基因组数据库对胡杨(Populus euphratica)(一种沙漠建群树种)中的CBL-CIPK信号途径进行了系统研究。
     1.首先利用生物信息学手段,在毛果杨基因组中(毛果杨)鉴定和分离了10个编码CBL蛋白的基因、25个编码CIPK蛋白的基因。通过比较基因组学对毛果杨、拟南芥、水稻CBL和CIPK家族结构、结构域和进化关系做了分析,研究表明在进化过程中这两个家族在成员数量和家族结构上比较保守。但是与拟南芥相比,在毛果杨基因组中有更多的并系同源基因对(paralogous gene pairs),研究发现毛果杨多数同源基因对是通过染色体间的复制和交换产生的。毛果杨染色体间的复制和相互交换事件在该家族基因成员数量扩增过程中起了重要作用。为了进一步研究这两个家族在逆境条件下所起的作用,我们在胡杨中克隆出了10个CBL(PeCBL1-10)基因家族成员,14个CIPK(PeCIPK3α、5、6b、7、9α、11α、12b、14、1 5、16、23α.23b.24a、24b)基因家族成员,并在逆境条件下对10个PeCBL基因成员的表达作了分析。研究发现,PeCBLl,2,3,4,5,9和PeCBL10等7个成员在对外来逆境做出的调控反应中起着重要作用。研究10个CBL基因编码的氨基酸序列发现,它们除了在N端含有一段不太保守的序列之外,在C端都含有4个与钙离子结合的EF手型结构。而N端不保守的序列可能与该蛋白在细胞中的亚细胞定位有关。比较14个PeCIPK的氨基酸序列,发现除了PeCIPK24b,都含有一个典型的丝氨酸/苏氨酸激酶区域,一个与CBL结合的NAF结构域及一个可能与磷酸酶相互作用的PPI结构域。而PeCIPK24b,可能是胡杨长期在高盐胁迫条件下的生境压力造成了激酶区域中一个关键的位点,即结合ATP的赖氨酸位点发生了突变。该位点由赖氨酸突变成了天冬酰胺,其激酶属性完全丧失。
     2.将PeCBL和PeCIPK分别构建至酵母双杂交载体中(pGBKT7和pGADT7),进行酵母双杂交实验。结果显示,PeCBL 1与PeCIPK3a、5、6b、7、9a、12b、15、16、23a、24a之间有相互作用。PeCBL4与PeCIPK23a、PeCIPK24a之间有相互作用。进一步通过BiFC手段验证胡杨PeCIPK23a、23b、24a、24b与10个胡杨PeCBL之间的相互作用关系发现,PeCIPK23a、23b与所有10个PeCBL之间都有相互作用;PeCIPK24a与PeCBL1、2、3、4、6、7、10之间有相互作用。由于在拟南芥中已经阐明与胡杨PeCIPK23a、24a同源的AtCIPK23、24分别介导低钾和高盐信号转导;所以我们推断,胡杨PeCBL1、PeCBL4可以通过与PeCIPK23a、24a相互作用形成多种不同的组合(complex),各组合之间相互影响、相互关联,与低钾、盐胁迫信号转导密切相关。
     3.通过转基因手段验证胡杨PeCBL1、PeCBL4、PeCIPK23a、PeCIPK24a在调控低钾、高盐胁迫下的信号转导机制表明,胡杨PeCBL1、PeCIPK23a可以互补拟南芥突变体因AtCBL1、AtCIPK23缺失所造成的对低钾胁迫的敏感性;PeCBL4、PeCIPK24a可以互补拟南芥突变体因AtCBL4、AtCIPK24缺失所造成的对盐胁迫的敏感性。与拟南芥一样,在胡杨细胞中,PeCBL1-PeCIPK23介导低钾胁迫的信号转导;PeCBL4-PeCIPK24介导高盐胁迫的信号转导。另外,我们发现PeCBL1虽然与PeCIPK24a有相互作用但是它们并不直接介导盐胁迫信号转导;PeCBL4与PeCIPK23a有相互作用,但是并不直接介导低钾胁迫的信号转导。
     4.我们对PeCIPK可能调控的下游一类Shake-like型钾离子通道进行了研究。酵母杂交和BiFC结果表明该家族中与拟南芥AKT1同源的两个成员PeKC1、PeKC2与PeCIPK23a有相互作用。向拟南芥野生型植株和突变体aktl中超量表达PeKCl和PeKC2能大大提高转基因植物对低钾胁迫条件的抗性。以上结果表明胡杨PeCBL1-PeCIPK23是通过磷酸化调控下游一类Shaker-like型钾离子通道PeKC1、PeKC2来实现低钾胁迫信号转导的。
     5.在毛果杨基因组中鉴定出了13个与真核生物内含子剪切有关的ECT基因。其中6个成员在胡杨中得到了克隆并将其构建至了酵母双杂交载体。该基因家族在拟南芥中发现受CBL-CIPK信号途径的调控。本研究为下一步研究该家族的信号调节及其它具体功能奠定了基础。
     总之,本研究通过生物信息、酵母杂交、BiFC及转基因等手段在胡杨中鉴定出了调控低钾胁迫的PeCBL 1-PeCIPK23a/b-PeKC 1/2信号途径及PeCBL4-PeCIPK24a调控的盐胁迫信号途径;这两个途径相互影响,共同调节低钾、高盐等胁迫的信号转导。我们的工作为今后进行抗逆相关的分子植物育种提供了重要理论基础。
In plant, intracellular calcium ions as the second messenger play an important role in response to multiple environment stresses. The calcium binding proteins can sense the messenger and regulate the downstream responses. In plant, it has been identified many calcium binding proteins including CaM, CDPK and CBL. The CBL, as the plant calcium-binding proteins recently identified, are one group of small proteins. They must function by interacting with and regulating a group of serine-threonine protein kinases called CIPK and constitutes a complex of signal transduction pathways. In Arabidopsis, the CBL-CIPK pathway has been well studied. However, the molecular mechanism remains to be elucidated in woody plant. Due to its rapid growth, poplar becomes a model tree species with complete sequencing of the whole genome (Populus trichocarpa), which make it easy for identification the CBL-CIPK pathway in Populus. Here, we comprehensive functional characterized of the CBL-CIPK pathways in one stress-tolerant Populus species, Populus euphratica.
     1. We first identified 10 potential CBL and 25 CIPK genes in the Populus genome. Comparative genomics analyses in Populus and Arabidopsis showed that the two families appear to be much conserved in size and structure. However, compare with Arabidopsis, Populus have more paralogous gene pairs in genome. Therefore, we presumed these paralogous gene pairs might have shared a very recent duplication event in the poplar genome and the duplication events in Populus might have contributed to the expansion of the CBL family. To elucidate the functions of them, we cloned 10 CBLs and 14 CIPKs (PeCIPK3a,5,6b,7,9a, 11a,12b,14,15,16,23a,23b,24a,24b) from Populus euphratica. We investigated the expression patterns of CBLs in Populus euphratica under abiotic stress treatment. The results indicated that 7 PeCBL gene members (PeCBLl,2,3, 4,5,9, and 10) can be regulated in correspondence to specific external stress. By aligned with the amino acid sequences of each PeCBL, we found that the structure is rather conserved except in their N-termini regions, which may play an important functional role for protein sub-cellular location. For 14 PeCIPKs in Populus euphratica, except PeCIPK24b, we found that they all contain one kinase-domain, one NAF domain and one PPI domain. Because Populus euphratica has a long time to grow under high salt environment, we deduced the salt stress pressure maybe result in a key ATP-binding site in the kinase domain is mutated by the asparagines. That means the CIPK24b kinase completely lost its properties.
     2. We cloned the 10 PeCBLs into pGBKT7 vector and the 14 PeCIPKs into pGADT7, and then carried the yeast 2-hybrid experiment. The results showed that PeCBL1 can interact with PeCIPK3a,5,6b,7,9a,12,15,16,23a,24a; and PeCBL4 can interact with PeCIPK23a, PeCIPK24a. Also, we used the BiFC system to confirm the interaction between PeCIPK23a,23b,24a,24b and the 10 PeCBLs, and found that PeCIPK23a,23b can interact with all the 10 CBL; PeCIPK24a can interact with PeCBL1、2、3、4、6、7、10. Because in Arabidopsis, it has been demonstrated that AtCIPK23 and AtCIPK24 (homologous to PeCIPK23a/23b and PeCIPK24a/24b respectively) can interact with AKTl and SOS1 and regulate the low K+and salt stress pathway; we deduced that PeCBL1,4 can interact with PeCIPK23a/24a, forming different complex, and may play a crucial role in keeping the ion homeostasis in Populus euphratica.
     3. To further analyze the function of PeCBLl, PeCBL4, PeCIPK23a and PeCIPK24a in Populus euphratica to regulate low K+and salt stress, we over-expressed them in the mutant of Arabidopsis. It shows that PeCBL1、PeCIPK23a can complement the function of AtCBL1 and AtCIPK23 in cbll/9 and cipk23 mutant and they can recovery the mutant phonotype sensitive to low K+stress. PeCBL4、PeCIPK24a can complement the function of AtCBL4 and AtCIPK24 in cbl4 and cipk24 mutant and they also can recovery the mutant phonotype sensitive to salt stress. Otherwise, we find that PeCBL1-PeCIPK24a can't mediate salt stress signal transduction and PeCBL4-PeCIPK23a can't mediate low K+ stress signal transduction, though they can interact with each other.
     4. In addition, we investigated the candidate downstream genes of CBL-CIPK pathway, the shaker-like potassium channel family (KC). The results of yeast-2 hybrid and BiFC showed that PeKC1 and PeKC2, homologous with AKT1, can interact with PeCIPK23a. The transgenic plant of PeKCl or 2 can greatly improve the resistance to low K+stress. The result indicated that PeKC1 and PeKC2 are involved in the PeCBL1-PeCIPK23 signal transduction and play an important role under low K+stress.
     5. We also indentified 13 ECT containing a splicing factor (YTH) domain from Populus genome and six of them from Populus euphratica have been clone into yeast-2 hybrid vector. In Arabidopsis, it has been demonstrated the ECT proteins may play a critical role in relaying the CBL-CIPK signals, thereby regulating gene expression. The work will lay a foundation for further study on concrete function of the gene family.
     Taken together, the study has clearly identified two signal transduction pathways in Populus euphratica by biological information, yeast 2-hybrid, BiFC, transgenic method and so on. One is the PeCBL1-PeCIPK23a/23b-PeKC1/2 pathway, and the other is the PeCBL4-PeCIPK24a pathway. And also we found that the two pathways can rergulate each other and play an important role in corresponding to low K+and salt stress. Our results will provide an important foundation for further carrying molecular plant breeding to improve stress resistance in future.
引文
1 谷瑞升,蒋湘宁,郭仲琛(1999) 胡杨细胞和组织结构与其耐盐性关系的研究.植物学报.41(6):576-579
    2 刘宏涛,李冰,周人纲(2001) 钙-钙调素信号系统与环境刺激.植物学通报.18(5):554-559.
    3 刘曼,毛国红,孙大业(2005) 植物的钙调素亚型.植物生理学通讯.41(1):1-6.
    4 毛国红,宋林霞,孙大业(2004) 植物钙调素结合蛋白研究进展.植物生理与分子生物学报.30(5):481-488
    5 马焕成,王沙生(1998) 胡杨气体交换特性西南林学院学报3(3):24-32
    6 孙大业,马力耕(2001).细胞外钙调素——一种植物中的多肽信使?中国科学(C辑).31:289-297
    7 苏培玺,张立新,杜明武,毕玉蓉,赵爱芬,刘新民(2003)胡杨不同叶形光合特性、水分利用效率及其对加富CO2的响应.植物生态学报.27(1):34-40
    8 魏庆营, 胡杨[M]北京中国林业出版社1990
    9 王世绩,陈炳浩,李护群 胡杨林[M]北京中国环境出版社1995
    10 尹伟伦, 国际杨树研究新进展[M]哈尔滨东北林业大学出版社.2001
    11 杨洪强,梁小娥(2003) 高等植物中的CDPK及其生理生化功能.山东农业大学学报.34(2),284-288.
    12 杨树德,郑文菊,陈国仓,张承烈,陈珈,王学臣(2005) 胡杨披针形叶与宽卵形叶的超微结构与光合特性的差异.西北植物学报.25(1):14-21
    13 张成伟,(2009).玉米ZmCIPK31基因的克隆与功能分析中国农科院北京博士论文
    14 Albrecht V., Weinl S., Blazevic D., D'AngeloA C., Batistic O., Kolukisaoglu U., Bock R., Schulz B., Harter K., and Kudla J. (2003). The calcium sensor CBL1 integrates plant response to abiotic stresses. Plant J.36:457-470
    15 Albrecht V., Ritz O., Linder S., Harter K., and Kudla J. (2001). The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases, EMBO J.20:1051-1063
    16 Allen G. J., Chu S. P, Schumacher K., Shimazaki C. T., Vafeados D., Kemper A., Hawke S. D., Tallman G., Tsien R. Y., Harper J. F., Chory J., and Schroeder J. I. (2000). Alternation of stimulus-specific guard cell calciumoscillations and stomatal closing in Arabidopsis det3 mutant. Science.289:2338-2342
    17 Allen G. J., Kuchitsu K., Chu S. P., Murate Y, and Schroeder H. I. (1999). Arabidopsis abil-1 and abi2-1 mutations impair abscisic acid induced cytosolic calcium rises in guard cells. The Plant Cell. 11:1785-1798
    18 Batistic O., and Kudla. J. (2004). Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta.216(6):915-924
    19 Batistic O, Sorek N., Schultke S., Yalovsky S., and Kudla J.(2008). Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+Signaling complexes in Arabidopsis.20:1346-1362
    20 Batistic O., Waadt R., Steinhorst L., Held K. and Kudla J. (2010). CBL-mediated targeting of CIPKs facilitates decoding of calcium signals emanating from distinct cellular stores. Plant J.61: 211-22
    21 Blatt M. R. (2000). Ca2+signaling and control of guard-cell volume in stomatal movements. Current Opinion in Plant Biology.3:196-204
    22 Becker D., Hoth S., Ache P., Wenkel S., Roelfsema M. R., Meyerhoff O., Hartung W., and Hedrich R. (2003). Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress, FEBS Lett.554(1-2):119-26
    23 Bogeat-Triboulot M., Brosche M, Renaut J, Jouve L, Thiec D. L., Fayyaz P., Vinocur B., Witters E., Laukens K., Teichmann T., Altman A, Hausman J. F., Polle A., Kangasjarvi J., and Dreyer E. (2007). Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physio.l 143:876-892
    24 Boudsocq M., and Lauriere C. (2005). Osmotic signaling in plants. Multiple pathways mediated by emerging kinase families. Plant Physiology.138:1185-1194
    25 Braam J., Sistrunk M. L., Polisensky D. H., Xu W., Purugganan M. M., Antosiewicz D. M., Campbell P., and Johnson K. A. (1997). Plant responses to environmental stresses:regulation and functions of the Arabidopsis TCH genes. Planta.203:S35-S41
    26 Bush D. S. (1996). Effects of gibberellic acid and environmental factors on cytosolic calcium in wheat aleurone cells. Planta 199:89-99
    27 Chen S. L., Li J. K., Wang T. H., Wang S. S., Polle A., Huttermann A. (2003). Gas exchange, xylem ions and abscisic acid response to Na+-salts and Cl-salts in Populus euphratica. Acta Bot Sin.45 (5): 561-566
    28 Chen S. L., Fritz E., Wang S. S., Huttermann A., Liu Q. L., Jiang X. N. (2000). Cellular distribution of ions in salt-stressed cells of Populus euphratica and P. tomentosa. For Stu China,2 (2):8-16
    29 Chen S. L., Li J. K., Wang T. H., Wang S. S., Polle A., Huttermann A. (2002). Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar. J Plant Growth Regul.21:224-233
    30 Cheong Y. H., Kim K. N., Pandey G. K., Gupta R., Grant J. J., and Luan S. (2003). CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell.15 1833-1845
    31 Cheong Y. H., Pandey G. K., Grant J. J., Batistic O., Li L., Kim B. G., Lee S. C., Kudla J., and Luan S. (2007). Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J.52:223-239
    32 Chinnusamy V., Schumaker K., and Zhu J. K. (2004). Molecular genetic perspectives on cross-talk and specificity in abiotic stress stress signaling in Plants. J Exp Bot.55:225-236
    33 Chung W. S., Lee S. H., Kim J. C., Heo W. D., Kim M. C., Park C. Y, Park H. C., Lim C. O., Kim W. B., and Harper J. F. (2000). Identification of a calmodulin-regulated soybean Ca2+-ATPase (SCA1) that is located in the plasma membrane. Plant Cell.12:1393-1407
    34 Cong M., Li Y. J., Dal X., Tian M., Li Z. G. (1997). Involvement of calcium and calmodulin in the acquisition of heat shock induced thermo tolerance in maize. Plant Physiol.150:615-621
    35 Clark G. B., Sessions A., Eastburn D. J., and Roux S. J. (2001). Differential expression of members of the annexin mutigene family in Arabidopsis. Plant Physiology.126:1072-1084
    36 Crawford N.M. (1995). Nitrate:nutrient and signal for plant growth. Plant Cell 7:859-868
    37 D'Angelo C., Weinl S., Batistic O., Pandey G. K., Cheong Y. H., Schultke S., Albrecht V., Ehlert B., Schulz B., Harter K., Luan S., Bock R., and Kudla J. (2006). Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J.48:857-872
    38 De Angeli, A., Monachello, D., Ephritikhine, G., Frachisse, J.M., Thomine, S., Gambale, F., and Barbier-Brygoo, H. (2009). Review. CLC-mediated anion transport in plant cells. Philos. Trans. R. Soc. Lond. B Biol. Sci.364:195-201
    39 Dodd A.N., Kudla J., Sanders D. (2010). The Language of Calcium Signalling Annu Rev Plant Biol.
    40 Finkelstein R. R., Gampala S. S. and Rock C. D. (2002). Abscisic acid signaling in seeds and seedlings. Plant Cell,14:S15-S45.
    41 Forde B.G. (2000). Nitrate transporters in plants:structure, function and regulation. Biochim. Biophys. Acta 1465:219-235
    42 Fuglsang A. T., Guo Y., Cuin T. A., Qiu Q., Song C., Kristiansen K. A., Bych K., Schulz A., Shabala S., Schumaker K. S., Palmgren M. P., and Zhu J. K. (2007). Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant cell. 19:1617-1634
    43 Fujii H. and Zhu J. K. (2009) Arabidopsis mutant deficient in 3 abscisic acidactivated protein kinases reveals critical roles in growth, reproduction, and stress. Proc. Natl Acad. Sci. USA.106: 8380-8385
    44 Furuichi T., Cunningham K. W., and Muto S. (2001). A putative two pore channel AtTPC1 mediate Ca2+flux in Arabidopsis leaf cells. Plant and Cell Physiology.42:900-905
    45 Geisler M., Frangne N., Gomes E., Martinonia E., and Palmgren M. G. (2000). The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improved salt tolerance in yeast. Plant Physiol.124:1814-1827
    46 Gosti F., Beaudoin N., Serizet C., Webb A. A., Vartanian N. and Giraudat J. (1999). ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell.11:1897-1910
    47 Gu R. S., Fonseca S., Puskas L. G., Jr Hackler L.H., Zvara A., Dudits D., Pais M. S (2004). Transcript identification and profiling during salt stress and recovery of Populus euphratica. Tree Physiol.24:265-276
    48 Guerini D. (1997). Calcineurin:not just a simple protein phosphatase. Biochem Biophys Res Commun 235:271-275
    49 Guo Y, Xiong L., Song C. P., Gong D., Halfter U. and Zhu J. K. (2002). A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev. Cell.3: 233-244
    50 Haeseleer F., Imanlshl Y, Sokal I., FⅢpek S., Palczewskl K. (2002). Calcium-binding proteins: intracellular sensors from the calmodulin superfamily. Biochem Biophys Res Commun 290, 615-623
    51 Halfter U., Ishitani M., and Zhu J. K. (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA.97: 3735-3740
    52 Harmon A. C., Grlbakov M., Gubrlum E., Harper J. F. (2001). The CDPK super family of protein kinases. New Phytol.151:5859-5867
    53 Harper J. F. (2001). Dissecting calcium oscillators in plant cell. Trends Plant. Science 6:395-397.
    54 Harper J. F., Breton G., and Harmon A. (2004). Decoding Ca (2+) signals though plant protein kinase. Annu Rev Plant Biol.55:263-288
    55 Hetherington A. M., Brownlee C. (2004). The generation of Ca2+signals in plants. Annual Review of Plant Biology 55:401-427
    56 Hetherington A. M., Woodward F. I. (2003). The role of stomata in sensing and driving environmental change. Nature.424:901-908
    57 Ho C. H, Lin S. H., Hu H. C. and Tsay Y F. (2009). CHL1 functions as a nitrate sensor in plants. Cell.l38(6):1184-94
    58 Hosy E., Vavasseur A., Mouline K., Dreyer 1., Gaymard F., Poree F., Boucherez J., Lebaudy A., Bouchez D., Very A. A., Simonneau T., Thibaud J. B., and Sentenac H. (2003). The Arabidopsis outward K+channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA.100 (9):4976-4977
    59 Hu H.C., Wang Y.Y., and Tsay Y.F. (2009). AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. Plant J.57:264-278.
    60 Huang N. C., Liu K. H., Lo H. J., and Tsay Y. F. (1999). Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell 11:1381-1392
    61 Ishitani M., Liu J., Halfter U., Kim C. S., Shi W., and Zhu J. K. (2000). SOS3 function in plant salt tolerance requires N-myristoylation and calcium-binding. Plant Cell.12:1667-1677
    62 Kim K. N., Lee J. S., Han H., Choi S. A., Go S. J., and Yoon I. N. (2003a). Isolation and characterization of a novel rice Ca2+-regulated protein kinase gene involved in response to diverse signals including cold, light, cytokins, sugars and salts. Plant Molecular Biology.52:1191-1202
    63 Kim K. N., Chong Y. H., John J., Grant., Girdhar K., Pandey., and Luan S. (2003b). CIPK3, A calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. The Plant Cell.15:411-423
    64 Kim K. N., Chong Y. H., Gupta R., Luan S. (2000). Interaction specificity of Arabidopsis calcineurin B-like calcium sensors and their target kinases. Plant Physiol.124:1844-1853
    65 Kim M. C., Chung W. S., Yun D., Cho M. J. (2009). Calcium and calmodulin-mediated regulation of gene expression in plants. Molecular Plant 2:13-21
    66 Kim B. G., Waadt R., Cheong Y H., Pandey G. K., Dominguez-Solis J. R., Schultke S., Lee S. C., Kudla J and Luan S. (2007). The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J.52:473-484
    67 Kinoshita T., and Shimazaki K. (2002). Biochemical evidence for the requirement of 14-3-3 protein binding in activation of the guard-cell plasma membrane H-ATPase by blue light. Plant Cell Physiol. 43:1359-1365
    68 Knight H., Brand S., and Knight M. R. (1998). A history of stress alters drought calcium signaling pathways in Arabidopsis. Plant J.16:251-264
    69 Kolukisaoglu,U., Weinl, S., Blazevic, D., Batistic, O., and Kudla, J. (2004). Calcium sensors and their interacting protein kinases:Genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol.134:43-58
    70 Kudla J., Batistic O. and Hashimoto K. (2010). Calcium Signals:the lead currency of plant information processing. Plant Cell.2010 Mar 31. [Epub ahead of print]
    71 Kudla J., Xu Q., Harter K., Gruissem W., and Luan S. (1999). Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc. Natl. Acad Sci USA.96: 4718-4723
    72 Kuhn J. M., Boisson-Dernier A., Dizon M. B., Maktabi M. H. and Schroeder J. I. (2006). The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abhl on AtPP2CA mRNA. Plant Physiol.140:127-139
    73 Kobayashi Y., Yamamoto S., Minami H., Kagaya Y., and Hattori T. (2004). Differential activation of the rice sucrose nonfermentingl-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell.16:1163-1177
    74 Lee E. J., Iai H., Sano H., and Koizumi N. (2005). Sugar responsible and tissue specific expression of a gene encoding AtCIPK14, an Arabidopsis CBL-interacting protein kinase. Biosci Biotechnol Biochem.69(1):242-245
    75 Lee S. C., Lan W. Z., Kim B. G., Li L., Cheong Y. H., Pandey G. K., Lu G., Buchanan B. B., Luan S. (2007). A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proc Natl Acad Sci USA.104:15959-15964
    76 Leung J., Bouvier-Durand M., Morris P. C., Guerrier D., Chefdor F. and Giraudat J. (1994). Arabidopsis ABA response gene ABI1:features of a calcium-modulated protein phosphatase. Science:264:1448-1452
    77 Leung J., and Giraudat J. (1998). Abscisic acid signal transduction. Annu Rev Plant Physiol Plant MolBiol.49,199-222.
    78 Leung J., Merlot S. and Giraudat J. (1997). The Arabidopsis ABSCISIC ACID INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell.9:759-771
    79 Li L., Kim B. G., Cheong Y. H., Pandey G. K., and Luan S. (2006). A Ca2+signaling pathway regulated a K+channel for low-K response in Arabidopsis. Proc Natl Acad Sci USA.103: 12625-12630
    80 Li W., Wang Y, Okamoto M., Crawford N. M., Siddiqi M.Y, and Glass, A. D. (2007). Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiol.143: 425-433
    81 Little D. Y, Rao H., Oliva S., Daniel-Vedele F., Krapp A., and Malamy J. E. (2005). The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc. Natl. Acad. Sci. USA 102:13693-13698
    82 Liu K. H., and Tsay, Y.F. (2003). Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J.22:1005-1013
    83 Liu K. H., Huang C. Y., and Tsay Y. F. (1999). CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11:865-874.
    84 Liu H. T., Li B., Shang Z. L., Mu R. L., Sun D. Y, and Zhou R. G. (2003). Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol.132:1186-1195
    85 Liu J. and Zhu J. K. (1998) A calcium sensor homolog required for plant salt tolerance. Science.280: 1943-1945
    86 Liu J. P., and Zhu J. K. (2000). A calcium sensor homolog required for plant salt tolerance. Science. 280:1943-1945
    87 Luan S., Kudla J., Rodriguez-Concepcion, M., Yalovsky, S., and Gruissem, W. (2002). Calmodulins and calcineurin B-like proteins:Calcium sensors for specific signal response coupling in plants. Plant Cell.14 (suppl.):S389-S400
    88 Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E. (2009) Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors. Science.324:1064-1068
    89 Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic Relationships within Cation Transporter Families of Arabidopsis. Plant Physiol 126:1646-1667
    90 Maser P, Hosoo Y, Goshima S, Horie T, Eckelman B, Yamada K, Yoshida K, Bakker E. P, Shinmyo A, Oiki S, Schroeder J. I, Uozumi N (2002). Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proc. Natl Acad. Sci. USA.99:6428-6433
    91 Marre E. (1979). Fusicoccin:Atoolinplantphysiology.Annu. Rev Plant Physiol.30:273-288 Mahaian, S., Sopory, S. K., and Tuteja, N. (2006). Cloning and characterization of CBL-CIPK signaling components from a legume (Pisum sativum). FEBS J.273 (5):907-925
    92 Mazars C., Thion L., Thuleau P., Graziana G, Knight M. R., Moreau M., and Banjeva R. (1997). Orgnization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts. Cell Calcium.22:413-420
    93 Merlot S., Gosti F., Guerrier D., Vavasseur A. and Giraudat J. (2001). The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plan J,25:295-303
    94 Mori I. C., Murata Y., Yang Y, Munemasa S., Wang Y. F., Andreoli S., Tiriac H., Alonso J. M., Harper J. F., Ecker J. R., Kwak J. M., and Schroeder J. I. (2006). CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion and Ca (2+)-permeable channels and stomatal closure. PloS Biol.4:(e327)1749-1761
    95 Munos S., Cazettes C., Fizames C., Gaymard F., Tillard P., Lepetit M., Lejay L., and Gojon A. (2004). Transcript profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. Plant Cell 16,2433-2447.
    96 Nishimura N., Hitomi K., Arvai A. S. Rambo R. P., Hitomi C., Cutler S. R., Schroeder J. I., Getzoff E. D. (2009). Structural Mechanism of Abscisic Acid Binding and Signaling by Dimeric PYR1. Science.326:1373-1379
    97 Nishimura N., Yoshida T., Kitahata N., Asami T., Shinozaki K. and Hirayama T. (2007). ABA-Hypersensitive Germinationl encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J.50:935-949.
    98 Ok S. H., Jeong H. J., Bae J. M., Shin J. S., Luan S., and Kim K. (2005). Novel CIPK1-associated proteins in Arabidopsis contain an evolutionarily conserved C-Terminal region that mediates nuclear localization. Plant Physiol 139:138-150
    99 Ottow E. A, Brinker M., Teichmann T., Fritz E., Kaiser W., Brosche M., Kangasjarvi J., Jiang X. N., Polle A. (2005a). Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiol.139:1762-1772
    100 Ottow E. A., Polle A., Brosche M., Kangasjarvi J., Dibrov P., Zorb C., Teichmann T. (2005b). Molecular characterization of PeNhaDl:the first member of the NhaD Na+/H+antiporter family of plant origin. Plant Mol Biol.58:75-88
    101 Pandey G. K., Cheong Y. H., Kim K. N., and Luan S. (2004). The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. The Plant Cell.16: 1912-1924
    102 Pandey G. K., Cheong Y. H., Kim B. G., Grant J. J., Li L., Luan S. (2007). CIPK9:a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis. Cell Research.17:411-421
    103 Park S. Y, Fung P., Nishimura N., Davin R. Jensen., Fujii H., Zhao Y, Lumba S., Santiago J., Rodrigues A., Chow T. F., Alfred S. E., Bonetta D, Finkelstein R, Provart N. J., Desveaux D., Rodriguez P. L., McCourt P., Zhu J. H., Schroeder J. I., Volkman B. F., Cutler S. R. (2009). Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins. Science.324:1068-1071
    104 Pei Z. M., Murata Y, Benning G., Thomine S., Klusener B., Allen G. J., Grill E., and Schroeder J. L. (2000). Calcium channels activated by hydrogen peroxide mediat abscisic acid signaling in guard cells. Nature.406,731-734.
    105 Pilot G, Pratelli R, Gaymard F, Meyer Y, Sentenac H (2003). Five-Group Distribution of the Shaker-like K+Channel Family in Higher Plants. J Mol Evol.56:418-434
    106 Price A. H., Taylor A., Rlpley S. J., Grittlths A., Trewavas A. J., Knight M. R. (1994). Oxidative signals in tobacco increase cytosolic calcium. Plant Cell.6:1301-1310
    107 Qiu Q. S., Guo Y., Dietrich M. A., Schumaker K. S., and Zhu J. K. (2002). Regulation of SOS1, a plasma membrane Na+/H+exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Nat Acad Sci USA.99:8436-8441
    108 Qiu Q. S., Barkla B. J., Vera-Estrella R., Zhu J. K. and Schumaker K. S. (2003). Na+/H+exchange activity in the plasma membrane of Arabidopsis. Plant Physiol.132:1041-1052
    109 Qiu Q. S., Guo Y, Quintero F. J., Pardo J. M., Schumaker K. S. and Zhu J. K. (2004). Regulation of vacuolar Na+/H+exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J. Biol. Chem.279,207-215
    110 Quintero J., Ohta M., Shi H., Zhu J. K., and Pardo J. M. (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+homeostasis. Proc Natl Acad Sci USA.99:9061-9066
    111 Quan R., Lin H., Mendoza I., Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo JM, and Guo Y. (2007). SCABP8/CBL10, a Putative Calcium Sensor, Interacts with the Protein Kinase SOS2 to Protect Arabidopsis Shoots from Salt Stress. Plant Cell. (19):1415-1431
    112 Rafalska I., Zhang Z., Benderska N., Wolff H., Hartmann A. M., Brack-Werner R., Stamm S. (2004). The intranuclear localization and function of YT521-B is regulated by tyrosine phosphorylation. Hum. Mol. Genet.13(15):1535-1549
    113 Remans T., Nacry P., Pervent M., Filleur S., Diatloff E., Mounier E., Tillard P., Forde B. G., and Gojon A. (2006). The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitraterich patches. Proc. Natl. Acad. Sci. USA 103,19206-19211
    114 Redinbaugh M. G, and Campbell W. H. (1991). Higher plant responses to environmental nitrate. Plant Physiol.82:640-650
    115 Rodrlgurez Mliia MA., Uno Y, Chang I. F., Townsend J., Maher E. A., Qulllcl D., Cushman J. C. (2006). A novel yeast two-hybrid approach to identify CDPK substrates:characterization of the interaction between AtCPK11 and AtDi19, a nuclear zinc finger protein. FEBS Lett 580:904-911
    116 Saijo Y, Hata S., Kyozuka J., Shimamoto K., and Izui K. (2000). Overexpression of a single Ca2+-dependent protein kinase cofers both cold and salt/drought tolerance on rice plant. Plant J.23: 319-327
    117 Santner A, Estelle M. (2009). Recent advances and emerging trends in plant hormone signaling. Nature.459:1071-1078
    118 Santiago J., Dupeux F., Round A., Antoni R., Park S. Y, Jamin M., Cutler S. R., Rodriguez P. L. Marquez J. A. (2009). The abscisic acid receptor PYR1 in complex with abscisic acid. Nature.462: 665-668
    119 Santiago J., Rodrigues A., Saez A., Rubio S., Antoni R., Dupeux F., Park S. Y., Marquez J. A., Cutler S. R. and Rodriguez P. L. (2009) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J.60(4):575-88
    120 Sanders D., Pelloux J., Brownlee C., Harper J. F. (2002). Calcium at the cross roads of signaling. Plant Cell 14 (Suppl.):S401-S417.
    121 Sanchez-Barrena M. J., Martlnez-Rlpoll M., Zhu J. K., Albert A. (2005). The structure of the Arabidopsis thaliana SOS:molecular mechanism of sensing calcium for salt stress response. J Mo Biol 345:1253-1264
    122 Scrase-Field SAMG., Knight M. R. (2003). Calcium:just a chemical switch? Current Opinion in Plant Biology 6:500-506
    123 Sheen J. (1996). Ca2+-dependent protein kinases and stress signal transduction in plants. Science. 274:1900-1902
    124 Shinozaki K., and Shinozaki K. Y. (1997). Gene expression and signal transduction in water-stress response. Plant Physiol.115:327-334
    125 Stamm S., Ben-Ari S., Rafalska I., Tang Y., Zhang Z., Toiber D., Thanaraj T. A., Soreq H. (2005). Function of alternative splicing. Gene 344:1-20
    126 Stettler R. F., Bradshaw Jr. H. D., (1996). in Biology of Populus and its implications for management and conservation, Stettler R. F., Bradshaw Jr. P. E. Heilman, T. M. Hinckley, Eds. (NRC Research Press, Ottawa,), pp.1-7.
    127 Stoilov P, Rafalska I, Stamm S. (2002). YTH:a new domain in nuclear proteins. Trends Biochem Sci.27(10):495-7
    128 Sun X. L., Li B., Zhou G., Tang W., Bai J., Sun D. Y, and Zhou R. G. (2000). Binding of the maize cytosolic Hsp70 to calmodulin, and identification of calmodulin-binding site in Hsp70. Plant Cell Physiol.41(6):804-810
    129 Shi J., Kim K. N., Ritz O., Albrecht V., Gupta R., Harter K., Luan S., and Kudla J. (1999). Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis. Plant Cell.11: 2393-2405
    130 Sterck L., Rombauts S. and Jansson S. (2005). EST data suggest that poplar is an ancient polyploidy. New Phytologist.167:165-170.
    131 Shi H., Wu S. J., and Zhu J. K. (2003).Overexpression of a plasma membrane Na+/H+antiporter improves salt tolerance in Arabidopsis. Nat. Biotechnol.21,81-85.
    132 Subbaiah C. C., and Sachs M. M. (2000). Maize capl encodes a novel SERCA-type calcium-ATPase with a calmodulin-binding domain. J Bio Chem.275(28):21678-21687
    133 Sun J., Chen S., Dai S., Wang R, Li N., Shen X., Zhou X., Lu C., Zheng X., Hu Z., Zhang Z., Song J., Xu Y. (2009). NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species Plant Physiol 149:1141-1153.
    134 Takahashi S., Katagiri T., Yamaguchi-Shinozaki K., and Shinozaki K. (2001). Hyperosmotic stress induces a rapid and transient increase in inositol 1,4,5-trisphosphate independent of abscisic acid in Arabidopsis cell culture. Plant Cell Physiol.42:214-222
    135 Townley H. E., and Knight M. R. (2000). Calmodulin as a potential negative regulator of Arabidopsis COR gene expression. Plant Physiol.128:1169-1172
    136 Tsay Y. F., Chiu C. C., Tsai C. B., Ho C. H., Hsu P. K.(2007). Nitrate transporters and peptide transporters. FEBS Lett.581(12):2290-300
    137 Tsay Y.F., Schroeder J.I., Feldmann K.A., and Crawford N.M. (1993). The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72:705-713
    138 Tuskan G. A., DiFazio S. P., Teichmann T. (2004). Poplar Genomics is Getting Popular:The Impact of the Poplar Genome Project on Tree Research. Plant Biol.6(1):2-4
    139 Tuskan G. A., DiFazio S., Jansson S., Bohlmann J., Grigoriev I., et al. (2006). The Genome of Black Cottonwood, Populus trichocarpa (Torr.& Gray). Science.313:1596-1604
    140 Urao T., Katagiri T., and Mizoguchi T. (1994). Two gene that encode Ca2+-dependent protein kinase are induced by drought and high salt stress in Arabidopsis thaliana. Mol Gen Genet.244:331-340
    141 Very A. A., and Sentenac H. (2002) Cation channels in the Arabidopsis plasma membrane. Trends Plant Science.7(4):168-175
    142 Wang R., Liu D., and Crawford N. M. (1998). The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake. Proc. Natl. Acad. Sci. USA 95:15134-15139.
    143 Walch-Liu P., and Forde B. G. (2008). Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises L-glutamate-induced changes in root architecture. Plant J.54:820-828
    144 Waadt R., Schmidt L. K., Lohse M., Hashimoto K., Bock R., and Kudla J. (2008). Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J.56:505-516
    145 Weinl S., Kudla J. (2009). The CBL-C1PK Ca (2+)-decoding signaling network:function and perspectives. New Phytol.184 (3):517-28
    146 White P. J., and Broadley P. J. (2003). Calcium in Plant. Annals of Botany.92:487-511
    147 White P. J., Bowen H. C, Demidchik V., Nichols C., and Davies J. M. (2002). Genes for calcium-permeable channels in the plasma membrane of plant root cells. Biochimica et Biophysica Acta.1564:299-309
    148 Wu S. J., Ding L. and Zhu J. K. (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell.8:617-627
    149 Xiang Y., Huang Y, and Xiong L. (2007). Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol.144:1416-1428
    150 Xiong L., Schumaker K. S., and Zhu J. K. (2002). Cell signaling during cold, drought, and salt stress. The Plant Cell. S165-S183.
    151 Xu J., Li H. D., Chen L. Q., Wang Y, Liu L. L., He L., and Wu W. H. (2006). A protein kinase, interacting with two calcineurin B-like proteins, regulates K+transporter AKT1 in Arabidopsis. Cell.125(7):1347-1360
    152 Zielinski R. E. (1998). Calmodulin and calmodulin-binding proteins in plants. Plant Mol Bio.49: 697-725
    153 Zhang M., Liang S., and Lu Y. T. (2005). Cloning and functional characterization of NtCPK.4, a new tobacco calcium-dependent protein kinase. Biochim Biophys Acta.1729(3):174-185
    154 Zhang T., Wang Q., Chen X., Tian C., Wang X., Xing T., Li Y., and Wang Y. (2005). Cloning and biochemical properties of CDPK gene OsCDPK from rice. J Mol Biol.162 (10):1149-1159
    155 Zhu J. K., Liu J., and Xiong L. (1998) Genetic analysis of salt tolerance in Arabidopsis thaliana: evidence of a critical role for potassium nutrition. Plant Cell.10:1181-1192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700