用户名: 密码: 验证码:
已建软基桥梁桥头跳车的处治方法机理分析及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在浙江省的东部沿海地区,软土分布极为广泛。软土本身承载力弱、沉降明显的特点给该地区公路桥梁的正常运营带来不利的影响。如何正确处治、分析和评价已建软土地基上道路与桥梁构筑物之间的差异沉降和冲击响应问题,具有理论价值和工程指导意义。
     本文以典型的已建桥梁的软基桥梁桥头跳车问题处理为背景,研究提出了深层混凝土过渡板和EPS混凝土换填法两种新的处治方法,并进行了现场试验研究。对深层过渡板处治的路桥过渡段进行了有限元数值模拟计算、过渡板作用机理、影响因素及理论分析探索,结果表明,桥头深层混凝土过渡板具有均匀分布车辆荷载及避免车辆直接冲击作用,减小路桥过渡段沉降差,结构处理整体性较好的优点。
     EPS混凝土轻质换填材料在施工前进行室内配合比及材料特性试验研究,得到该材料的一般强度推荐值。通过长期现场试验研究观测及过渡段静力分析,得到EPS混凝土换填后路桥过渡段的受力及变形规律。结果表明,采用EPS混凝土换填路桥过渡段路基可以明显降低路基填料的自重、减小地基的沉降及提高路基的稳定性,同时土体的侧向压力对原桥台的推挤作用小,造价合理,兼顾废料回收利用更加环保。
     通过将深层混凝土过渡板简化为在Winkler地基上双向受力的弹性地基板模型,结合弹性地基梁理论,推导了均布荷载作用下具有特定边界条件的弹性地基板挠度曲线及板底地基反力的解析解。文中还通过将深层混凝土过渡板简化为Kelvin地基上上覆弹性土介质的无限大Kirchhoff薄板模型,对上覆弹性土体采用Navier波动方程模拟,并对土体的位移场进行Helmholtz矢量分解,结合Fourier正逆变换,导出了该板在移动简谐点荷载作用下的挠度响应半解析解表达式。
     通过将路桥过渡段表层路面板结构体系简化为粘弹性地基上半无限长薄板模型,采用半波正弦荷载来模拟车辆对路桥过渡段的冲击作用,结合Fourier-Laplace变换及逆变换变化,求解得到路桥过渡段表层路面板结构体系在车辆冲击荷载作用下的瞬态挠度;并进一步探讨了将路桥过渡段表层路面板结构体系简化为粘弹性地基上无限大的薄板,在其上作用移动恒定的均布矩形荷载,导出了移动四轮车辆荷载作用下路桥过渡段表层路面板结构体系的稳态响应,并进行了相应的参数分析。
     最后,通过建立采用两种不同处治方法后的路桥过渡段有限元动力模型,其上作用简化的车辆冲击荷载,分析研究了路桥过渡段路面、过渡板、路基及土基的动力响应。结果表明:深层混凝土过渡板处治和EPS混凝土回填处治的路桥过渡段减振隔振效果好,可为今后路桥过渡段设计、养护及维修的选择、提高车辆行驶的安全性、舒适性及路桥过渡段的交通服务水平等级提供依据。
The soft soil is widely distributed in the east coastal area of Zhejiang province. The characteristic which the bearing of soft soil is weak and the settlement is obvious has the adverse influence of the normal operation on the traffic bridge structure for the area. It is theoretical value and engineering guiding significance how to process, analyze and appraise the different settlement and impact response between the road and the bridge structure built on the soft soil.
     The study puts forward the deep-seated concrete slab and EPS concrete replacement method on the background of the typical bridge approach with vehicle bumping problem built on soft foundation in country provincial highway. The field experimental research was carried out. The finite element numerical simulation analysis of the bridge approach with deep-seated concrete slab, the mechanism analysis of transitional slab, influencing factors and theoretical study show that there are the advantages of distributing the vehicle loads, decreasing the settlement difference and the processed structure wholeness are better for the bridge approach with deep-seated concrete slab.
     By virtue of test study on EPS concrete light filling materials for indoors mix proportions before the constructing, the recommended values of the normal strength is obtained. By the long-term observation of the field experiment and the finite element analysis on the soil elastic-plastic characteristics for the bridgehead settlement, gains the study on the law of the stress and deformation form of bridge approach filled with EPS concrete. Using the EPS concrete light filling materials can decrease the dead-weight obviously, reduce the soil foundation settlement and increase the stability of the roadbed; the soil lateral pressure has little broaching effect on original abutment, thus cost is reasonable, considering to recycle and use the waste for more environmental protection, this method is much economic and environmental protection.
     The deep-seated slab is simplified to the elastic foundation plate under bidirectional stress on the Winkler foundation. The analytical solution deflection and base reaction of the foundation plate with specific boundaries under uniform load are calculated by elastic foundation beam theory. The deep-seated slab is also simplified to the infinite Kirchhoff plate under the elastic medium of soil on the Kelvin foundation. The elastic medium of soil is simulated by Navier wave equation where the displacement field of soil is establish by Helmholtz vector decomposition.The corresponding expression of plate under moving harmonic point load is calculated by Fourier inverse transform.
     The structure system of superficial pavement slab at bridge approach is simplified to the model of semi-infinite thin plate on viscoelastic foundation. The sinusoidal half-wave impact load is described as the vehicle impact action on bridge approach. Combined with Fourier-Laplace transformation and inverse transformation, the superficial pavement slab's deflection of transient response under the vehicle impact load can be derived. For the further discussion, the structure system of superficial pavement slab at bridge approach is also simplified to the model of infinite thin plate on viscoelastic foundation under moving invariable load. The steady-state response of the superficial pavement slab at bridge approach under moving load, each uniformly distributed over four rectangular areas, is derived and parameter analysis is carried out.
     From the finite element dynamical analysis of bridge approach models with two kinds of,treatment methods, in which vehicle load is simplified to impact load, the results show that the bridge approach treated by the deep-seated concrete slab and EPS concrete exhibit good effect on vibration reduction and isolation. The analysis results of dynamic responses of the superficial pavement slab, transitional slab, subgrade and soil foundation provide evidence for the design and the maintenance of bridge approach. Therefore, the safety and comfortableness during the vehicle driving and service level of the bridge approach can improve.
引文
[]]李盛霖.全面完成十一五目标任务加快发展现代交通运输业—在2010年全国交通运输工作会议上的讲话[J].交通财会.2010,(2):4-15.
    [2]冯忠居,方贻立.高等级公路桥头跳车的危害及其机理的分析[J].西安公路交通大学学报.1999,19(4):33-35.
    [3]肖念婷,杨有海,师歌.桥头跳车及防治措施研究综述[J].公路交通技术.2008,(2):94-97.
    [4]黄良钦.解决高等级公路桥头跳车的理论与施工[J].桥梁建设.1999,(3):52-54.
    [5]黄土地区公路路基设计施工技术研究报告[R].西安:长安大学.2007.
    [6]肖礼经.气泡混合轻质填土技术在解决高等级公路软基路堤桥头跳车问题中的应用[J].中外公路.2003,23(5):121-123.
    [7]Kwak H G, Filippou F C. Nonlinear FE analysis of reinforced concrete structures under monotonic loads [J]. Computer Structure.1997,65(4):585-592.
    [8]H.K. W.Wong. Effect of orientation of approach slabs on pavement deformation[J]. Journal of Transportation Engineering.1994:590-602.
    [9]SHI Xiaomin, CAI Chunsheng. Finite element analysis of concrete approach slab on soil embankment [J]. Geotechnical Engineering for Transportation Projects.2004(126):393-402.
    [10]CAI Chunsheng, SHI Xiaomin. Structural performance of bridge approach slabs under given embankment settlement [J]. Journal of Bridge Engineering.2005,10(4):482-489.
    [11]J L Robison, R Luna. Deformation Analysis of Modeling of Missouri Bridge Approach Embankments [J]. Geo Trans.2004:2020-2027.
    [12]CHEN Darhao, Nazarian S, Bilyeu J. Failure analysis of a bridge embankment with cracked approach slabs and leaking sand[J]. Journal of Performance of Constructed Facilities.2007,21(5): 375-381.
    [13]Roy S, Thiagarajan G. Nonlinear finite-element analysis of reinforced concrete bridge approach slab [J]. Journal of Bridge Engineering.2007,12(6):801-806.
    [14]Jean-Louis Briaud, Yujin Lim. Soil-Nailed Wall under Piled Bridge Abutment-Simulation and Guidelines [J]. Journal of Geotechnical and Geo-environmental Engineering.1997:1043-1050.
    [15]Kai Qiu Lin. Use of Deep Cement Mixing to Reduce Settlements at Bridge Approaches [J]. Journal of Geotechnical and Geoenvironmental Engineering.1999:309-320.
    [16]David P. Shiells, Thomas W. Pelnik. Deep mixing:an owner's perspective [J]. Grouting.2004: 489-500.
    [17]Cyril Plomteux, Ali Porbaha. CMC Foundation System for Embankment Support-A Case History [J]. Geo Support.2004.
    [18]Edward M.Zamiskie Jr.. Vibro Concrete Columns Solve Problems for Victory Bridge Approach Fill [J]. Geo Trans.2004:1884-1893.
    [19]S.H.Chew, H.L.Phoon. Geotextile Reinforced Piled Embankment for Highway Bridges[J]. Transportation Engineering.2004:438-443.
    [20]J.Han.2D Numerical Modeling of a Constructed Geosynthetic-Reinforced Embankment over Deep Mixed Columns [J]. Contemporary Issues in Foundation Engineering.2005:131-141.
    [21]K.N.Gunalan. Accelerating Construction of Bridge Abutments Legacy Parkway Project, UT [J]. Geo Trans.2004:488-495.
    [22]Reda M. Bakeer. Performance of pile-supported bridge approach slabs [J]. Journal of Bridge Engineering.2005:228-237.
    [23]Christopher L.Snow. Case Study of EPS Geofoam Lightweight Fill for Settlement Control at Bridge Approach Embankment [J]. Geo Trans.2004:580-589.
    [24]Christopher R.Byrum,Kevin C.McDevitt.Instrumented Geofoam and Sheet Pile Wall for a Roadway Lane Addition in a Peat Marsh[J]. Geotechnical Engineering For Transportation Projects. 2004:600-608.
    [25]Hany L-Riad.Analysis and Design of EPS-Geofoam Embankments for Seismic Loading[J]. Geotechnical Engineering For Transportation Projects.2004:2028-2037.
    [26]D.Negussey,X.Huang.Modulus of Subgrade Reaction for EPS Geofoam[J]. Pavement Mechanics and performance.2006:165-172.
    [27]Dan Yang,Blair Gohl.Geotechnical and Seismic Design of Innovative Roger Pierlet Bridge and Approach Structures[C]. Soil and Rock Behavior and Modeling-Proceedings of the GeoShanghai Conference.2006,150:458-465.
    [28]James R.Lambrechts. Analyzing Surcharge Needs to Reduce Secondary Compression at Embankment Interfaces [J]. Geo Trans.:2048-2057.
    [29]John O'Leary, John Vitorelo. Ground Improvement Methods for the Geofill Project at the Oakland Mole Touchdown [J]. Geo Trans.2004:312-320.
    [30]A. Alarc 6 n-Guzman M..Analysis and Behavior of Embankments on Soft Soils of Marine Origen [J]. Geo Congress.2006.
    [31]Tatsuoka F.. Cement-Mixed Soil for Trans-Tokyo Bay Highway and Railway Bridge Abutments [J]. Geo Trans.2004:18-76.
    [32]Jason Y.Wu. The Settlement Behaviors of Granular Backfill Materials for High Speed Rail Embankment [J]. Geo Trans.2004:1584-1590.
    [33]Ata G.Doven.Material Properties of High Volume Fly Ash Cement Paste Structural Fill[J]. Journal of Materials in Civil Engineering.2005:686-693.
    [34]Korkut. Geobag Performance as Scour Countermeasure for Bridge Abutments [J]. Journal of Hydraulic Engineering.2007:431-439.
    [35]Eli Zlotnik, P.G.. Growth Fault Design for Katy Freeway Reconstruction Project IH-10, Houston, Texas [J]. Geo Trans.2004:1747-1754.
    [36]Michael Hasen.Geotechnical Design for Katy Freeway Reconstruction Project (1-10), Houston, Texas [J]. Geo Trans.2005:2246-2253.
    [37]俞永华,谢永利.桥头楔形柔性搭板作用性状的仿真[J].长安大学学报(自然科学版),2004,24(6):29-32.
    [38]陈永福.Netlon土工网在高等级公路桥台跳车处理中的试验研究[J].土木工程学报:长沙交通学院,1996,29(1):41-47.
    [39]陈永福.Netlon土工网对土体抗压中的加固作用[J].长沙交通学院学报:长沙交通学院,1995,11(4):38-46.
    [40]喻泽红,韩理安.土工网处理桥头差异沉降的有限元分析[J].岩土工程学报,1996,18(6):24-30.
    [41]喻泽红,张起森.土工网与土相互作用机理的有限元分析[J].岩土工程学报,1997,19(3):76-81.
    [42]田小革,应荣华.应用土工格栅处理软土地基上的桥头跳车问题[J].岩土工程学报,2000,22(6):744-746.
    [43]周志刚,郑健龙.土工格栅加筋柔性桥台的机理分析[J].中国公路学报,2000,13(1):18-21.
    [44]郑健龙.桥台台背填土加筋的竖向布网间距设计方法研究[J].中国公路学报,1999增刊,12:55-61.
    [45]戴为民,周志刚.土工格网处理桥头跳车机理的有限元分析[J].长沙电力学院学报(自然科学版),2002,17(1):62-66.
    [46]冯光乐,许志鸿,凌天清.台背回填加筋竖向间距设计方法研究[J].同济大学学报(自然科学版),2003,31(11):1299-1303.
    [47]凌建明,彭聚才.土工网在桥头引道路堤中的应用研究[J].建筑材料学报,2004,7(4)437-441.
    [48]王初生,王园,土工织物加筋柔性桥台合理间距的模型试验对比研究[J].公路交通科技,2004,21(5):36-38.
    [49]张宏光,谢永利.楔型柔性搭板模型试验[J].长安大学学报(自然科学版),2005,25(3):54-57.
    [50]张宏光,谢永利.桥台柔性搭板的数值仿真[J].长安大学学报(自然科学版),2006,26(3)39-42.
    [51]俞永华.路桥过渡段差异沉降处治技术研究[D].西安:长安大学博士学位论文,2004.
    [52]牛思胜.黄土地区台后跳车柔性搭板处治技术研究[D].西安:长安大学博士学位论文,2006.
    [53]谢弘帅,宰金璋.真空降水堆载联合预压加固高速公路桥坡软基技术研究[J].中国公路学报,2003,16(2):27-31.
    [54]陈兰云,朱建才.真空-堆载联合预压加固高等级公路软基的工程实例分析[J].岩石力学与工程学报,2004,23(增1):4628-4633.
    [55]金小荣,俞建霖,龚晓南.缓解深厚软基桥头跳车两种方法的现场试验[J].煤田地质与勘探,2006,34(3):58-61.
    [56]温高峰.高等级公路桥头台背路基回填处理研究[J].公路交通科技,2004,21(6):33-35.
    [57]曾卫兵,张毅.公路桥背回填压实试验[J].长安大学学报(自然科学版),2004,24(1):65-68.
    [58]孙文怀,崔国喜.高速公路桥台背填土压实的RIC工法试验研究[J].岩土工程学报,2004,26(5):702-705.
    [59]俞亚南,张仪萍.桥头软基粉喷桩处理现场试验研究[J].土木工程学报,2002,35(4):65-69.
    [60]孟杰,赵明华.砂桩复合地基防止桥头跳车的研究[J].西安公路交通大学学报,2001,21(2):41-43.
    [61]周建.高速公路软土地基低强度应用研究[J].地基处理.2002,13(2):3-15.
    [62]曾开华,俞建霖,龚晓南.高速公路通道软基低强度混凝土桩处理试验研究[J].岩土工程学报,2003,25(6):715-719.
    [63]潘殿琦.水泥搅拌咬合桩的施工与检测[J].岩石力学与工程学报,2004,23(3):518-521.
    [64]李海芳,龚晓南,温晓贵.桥头段刚性桩复合地基现场观测结果分析[J].岩石力学与工程学报,2005,24(15):2780-2785.
    [65]朱奎,徐日庆.路堤荷载下刚-柔性桩复合地基应力特性研究[J].煤田地质与勘探,2005,33(6):46-49.
    [66]朱奎.刚-柔性桩复合地基特性研究[D].杭州:浙江大学博士学位论文,2006.
    [67]沈水龙,石名磊,杜守继.软土地基上道路桥头跳车缓解工法的设计与工程实践[J].岩石力学与工程学报,2005,24(7):1173-1177.
    [68]郭庆海,周顺华,王祥.信息化施工在高速公路中的应用[J].岩石力学与工程学报,2006,25(增1):3239-3244.
    [69]叶俊能,朱向荣.沉管灌注筒桩在处理高速公路桥头软基的应用[J].岩土工程学报,2005,27(1):100-104.
    [70]胡春林,王茂丽.基于沉降控制的软土路基粉喷桩加固设计方法探讨[J].岩土力学,2006,27(6):969-972.
    [71]苏燕,周健.沉降控制复合桩基在桥头跳车问题中的应用(英文)[J].岩土工程学报,2006,28(1):68-72.
    [72]R.P.Chen, Y M Chen. Interaction of Rigid Pile-Supported Embankment on Soft Soil [J]. Advance in Earth Structures:Research to Practice.2006:231-238.
    [73]王亦麟.软土地基桥头跳车处理探讨[J].公路交通科技,2000,17(1):28-30.
    [74]虞文景.高速公路早期病害与防治问题探讨[J].公路交通科技,2000,17(6):10-14.
    [75]丁彦昕.浅议公路桥头跳车的成因与防治[J].公路交通科技,2002,19(5):92-98.
    [76]杨学祥.均布荷载下一端固定的文克尔地基梁的基底压力特性及其工程意义[J].工程力学,2006,23(11):76-79.
    [77]杨学祥.埋置一端固定的弹性地基梁解决“桥头跳车”的设想与分析[J].长江大学学报(自科版).2005,2(4):177-179.
    [78]高燕希,张军.软弱地基桥台台背填筑EPS的结构分析[J].中国公路学报,2003,16(3) 27-30.
    [79]朱向荣,方鹏飞.EPS动力特性试验研究[J].岩土工程学报,2005,27(11):1253-1256.
    [80]Fang Pengfei, Zhu Xiangrong. Experiment Study on Static and Dynamic Behavior of EPS [C]. Proceedings of Sessions of GeoShanghai 200.Shanghai:Ground Modification and Seismic Mitigation.2006:223-230.
    [81]舒江新.EPS材料在沪青平高速公路工程中的应用[J].中国市政工程,2004,(3):23-24.
    [82]唐虹.泡沫混凝土在现代建筑中的应用[J].贵州工业大学学报(自然科学版),2005,34(3):116-117.
    [83]张磊.轻质泡沫混凝土的研究及应用现状[J].混凝土,2005(8):44-48.
    [84]高倩,王兆利.泡沫混凝土[J].青岛建筑工程学院学报,2002,23(3):113-115.
    [85]陈忠平,王树林.气泡混合轻质土及其应用综述[J].中外公路.2003,23(5):117-120.
    [86]肖礼经.气泡混合轻质填土技术在解决高等级公路软基路堤桥头跳车问题中的应用[J].中外公路.2003,23(5):121-123.
    [87]蔡力,陈忠平,吴立监.气泡混合轻质土的主要力学特性及应用综述[J].公路交通科技.2005,22(12):71-74.
    [88]周卫东,蒯国辉.现浇轻质泡沫混凝土的研究和制备[J].混凝土与水泥制品,2005(6):41-43.
    [89]魏越强,王锐佳.无砂混凝土在桥头跳车病害防治技术中的应用[J].建筑材料学报,2004,7(3):307-310.
    [90]沈正.桥台回填轻质固化粉煤灰应用技术研究[D].南京:东南大学博士学位论文,2007.
    [91]彭华,张新东,崔俊杰.既有线提速改造路基工程关键问题及其对策[C].第11届铁路地质和路基工程科技动态报告会、中国铁道学会铁道工作学会工程地质与路基专委会第20届年会暨学术交流会.武汉:中国铁道学会.2004:128-133.
    [92]冯忠居,方贻立.高等级公路桥头跳车的危害及其机理的分析[J].西安公路交通大学学报,1999,19(4):33-35.
    [93]张洪亮.路桥过渡段车路动力学分析及容许差异沉降研究[D].西安:长安大学博士学位论文,2003.
    [94]张洪亮,胡长顺.路桥过渡段桥头搭板容许坡差确定的参数影响[J].长安大学学报(自然科学版),2003,23(3):11-14.
    [95]袁捷,凌建明.桥头引道工后沉降评价与养护标准的研究[J].同济大学学报(自然科学版),2004,32(1):49-53.
    [96]冯光乐.基于水泥路面结构功能的桥头引道沉降标准研究[J].公路交通科技,2004,21(4).
    [97]冯光乐,许志鸿.基于道路使用功能的桥头引道沉降标准研究[J].公路交通科技,2005,22(2):33-36.
    [98]陶向华.路桥过渡段差异沉降控制标准与人车路相互作用[D].南京:东南大学博士学位论文,2005.
    [99]刘萌成.桥台后回填差异沉降控制标准及设计方法研究[D].南京:东南大学博士学位论 文,2005.
    [100]Hong-liang Zhang. Determination of Allowable Differential Settlement in Bridge Approach due to Vehicle Vibrations[J]. Journal of Bridge Engineering.2007:154-163.
    [101]张军辉.软土地基上高速公路加宽变形特性及差异沉降控制标准研究[D].南京:东南大学博士学位论文,2006.
    [102]陈晓麟,支喜兰.路桥过渡段沉降控制指标的研究[J].公路交通科技,2006,23(2):15-18.
    [103]朱孔源,余群.车辆-路面相互作用系统的研究现状和展望[J].西安公路交通大学学报.2001,21(2):6-9.
    [104]邓学钧,孙璐.车辆-地面结构系统动力学[M].北京:人们交通出版社,2000.
    [105]M.S.A.Hardy,D.Cebon. Response of continuous pavements to moving dynamic loads[J]. Journal of Engineering Mechanics.1993,119(9):1762-1780.
    [106]A V Kononov, H A Dieterman.A uniformly moving constant load along a Winkler supported strip[J].European Journal of Mechanics-A/Solids.1999,18:731-743.
    [107]M.H.Huang,D.P.Thambiratnam.Deflection response of Plate on Winkler foundation to moving accelerated loads[J].Engineering Structures.2001,23(9):1134-1141.
    [108]M.H.Huang,D.P.Thambiratnam.Dynamic Response of Plates on Elastie Foundation to Moving Loads[J] Journal of Engineering Mechanics.2002,128(9):1016-1022.
    [109]Seong-Min Kim, B Frank McCullough. Dynamic response of plate on viscous Winkler foundation to moving loads of varying amplitude [J]. Engineering Structures.2003,25(9):1179-1188.
    [110]A Rystwej,P Sniady.Dynamic Response of an infinite beam and plate to a stochastic train of moving force[J].Journal of Sound and Vibration.2007,299(4):1033-1048.
    [111]成祥生.弹性地基上的自由边矩形板[J].应用数学和力学.1992,13(10):935-940.
    [112]许金余.飞机-道面-土基动力耦合系统有限元分析[J].计算结构力学及其应用.1994,11(1):78-84.
    [113]邓学钧,黄晓明,沈伟新.弹性层状体系的动力响应分析[J].土木工程学报.1995,28(3):9-16.
    [114]俞建荣,陈荣生.半刚性基层与刚性面层联结状态对刚性路面荷载应力的影响分析[J].岩土工程学报.1996,18(4):34-39
    [115]王虎,胡长顺,王秉纲.连续配筋混凝土路面动荷响应分析[J].工程力学.2001,18(5):119-126.
    [116]郝大力,王秉纲.路面结构动力响应分析[J].长安大学学报(自然科学版).2002,22(3):9-12.
    [117]张洪亮,胡长顺,许伟清.移动荷载作用下柔性路面的动力响应[J].长安大学学报(自然科学版).2005,25(5):6-10.
    [118]周华飞.移动荷载作用下结构与地基动力响应特性研究[D].杭州:浙江大学博士学位论文,2005.
    [119]蒋建群,周华飞,张土乔.移动荷载下粘弹性地基上无限大板的稳态响应[J].中国公路学报.2006,19(1):6-11.
    [120]颜可珍,夏唐代,周新民.运动荷载作用下弹性地基无限长板动力响应[J].浙江大学学报(工学版).2005,39(12):1875-1879.
    [121]颜可珍.弹性地基薄板的动力响应研究[D].杭州:浙江大学博士学位论文,2005.
    [122]刘俊卿.地基-路面结构体系的静动力特性研究[D].西安:西安建筑科技大学博士学位论文,2006.
    [123]王金昌,朱向荣.软土地基上含反射裂缝沥青道路的动力响应分析[J].中国公路学报.2004,17(1):1-6.
    [124]姚海林,卢正,刘干斌.黏弹性地基上路面板在多轮荷载作用下的响应分析[J].岩土力学.2009,30(2):367-373.
    [125]曹志刚,蔡袁强,徐长节.移动车辆荷载作用下路面的动力响应[J].浙江大学学报(工学版).2009,43(4):777-781.
    [126]王国才,陈龙珠,陈胜立.上覆单相弹性层的饱和地基上刚性圆板的扭转振动分析[J].固体力学学报.2003,24(1):24-30.
    [127]徐长节,蔡袁强,李庆金.上覆单相弹性层饱和地基上弹性基础的竖向振动分析[J].固体力学学报.2006,27(2):191-196.
    [128]蔡袁强,赵国兴,郑灶锋.上覆弹性土层横观各向同性饱和地基竖向振动分析[J].浙江大学学报(工学版).2006,40(2):267-271.
    [129]卢正,姚海林,杨洋.上覆弹性板双层地基在移动荷载作用下的动力响应[J].岩石力学与工程学报.2008,27(增2):3312-3319.
    [130]Ian N.Sneddon. The stress produced by a pulse of pressure moving along the surface of a semi-infinite solid. Rendiconti del Circolo Matematico di Palermo.1952,1(1):57-62. [131] J.COLE,J.HUTH.Stresses produced in a half-plane by moving loads.Journal of Applied Mechanics.1958,25:433-436.
    [132]G. Eason. The stresses produced in a semi-infinite solid by a moving surface force[J]. International Journal of Engineering Science.1965,2(6):581-609.
    [133]B.Alabi. A model for the problem of ground vibration induced by the wheels of a moving train[J].Applying Mathematics Modelling,1989,13(12):710-715.
    [134]F.C.P.de Barros, J.E.Luco.Response of layered viscoelastic half-space to a moving point load[J].Wave Motion.1994,19(2):189-210.
    [135]H Grundmann, M Lieb, E Trommer. The response of a layered half-space to traffic loads moving along its surface. Archive of Applied Mechanics.1999,69:55-67.
    [136]H.G.Georgiadis, G.Lykotrafitis. A method based on the radon transform for Three-dimensional elastodynamic problems of moving loads[J].Journal of Elasticity.2001,65:87-129.
    [137]A Karlstrom, A Bostrom. An analytical model for train-induced ground vibrations from railways [J]. Journal of Sound and Vibration.2006,292(1):221-241.
    [138]蒋建群,周华飞,张土乔.弹性半空间体在移动集中荷载作用下的稳态响应[J].岩土工程学报.2004,26(4):440-444.
    [139]金波.高速荷载下多孔饱和地基的动力响应[J].力学季刊.2004,25(2):168-174.
    [140]刘干斌,汪鹏程,姚海林.矩形运动荷载作用下软土地基的三维振动研究[J].岩土力学.2006,27(10):1658-1662.
    [141]Yuanqiang Cai,Honglei Sun,Changjie Xu.Steady state responses of poroelastic half-space soil medium to a moving rectangular load[J].International Journal of Solids and Structures.2007,44(22-23):7183-7196.
    [142]刘飞禹.交通荷载作用下软土地基动力特性及加筋道路动力响应研究[D].杭州:浙江大学博士学位论文,2007.
    [143]孙宏雷.高速交通荷载作用下饱和土体与线路系统的动力响应[D].杭州:浙江大学博士学位论文,2008.
    [144]卢正,姚海林,骆行文.公路交通荷载作用下分层地基的三维动响应分析[J].岩土力学.2009,30(10):2965-2970.
    [145]张艳美,梁波.几何不平顺条件下高速公路路基的动态响应[J].兰州铁道学院学报(自然科学版).2001,20(4):66-69.
    [146]兰辉萍,李德建.高速公路路基的动力响应分析[J].西部探矿工程.2003,(8):160-162.
    [147]查文华,洪宝宁.交通荷载下低路堤路基的动力响应[J].江苏大学学报(自然科学版).2008,29(3):264-268.
    [148]冯忠居,程继夏.路桥过渡段行车荷载的计算[J].西安建筑科技大学学报(自然科学版),2004,36(3):318-320.
    [149]赵衡,刘晓明.桥头跳车引起的路面受力计算分析[J].公路交通科技.2005,22(5):59-63.
    [150]张洪亮,胡长顺,陈培芳.移动荷载作用下桥头搭板动力响应分析[J].中南公路工程.2005,30(4):91-95.
    [151]刘萌成,黄晓明,陶向华.移动荷载作用下近桥台处路面结构动力响应的有限元法分析[J].公路交通科技.2006,23(5):1-6.
    [152]王照宇,沈正.交通荷载下粉煤灰回填桥台路面动力特性分析[J].路基工程.2008,(5):95-96.
    [153]Nicos Makris.Eismic Response Analysis of a Highway Overcrossing Equipped with Elastomeric Bearings and Fluid Dampers[J]. Journal of Structural Engineering.2004:830-845.
    [154]Mehmet Inel.Seismic Design of Columns of Short Bridges Accounting for Embankment Flexibility [J]. Journal of Structural Engineering.2004:1515-1528.
    [155]T.E.Price.Factors Contributing to Bridge Embankment Interaction[J]. Journal of Structural Engineering.2005:1345-1354.
    [156]杨英武,韩舟轮,王柏生,刘承斌.车辆通过减速带引起的振动分析[J].振动工程学 报.2007,20(5):502-506.
    [157]翟婉明.车辆-轨道耦合动力学[M].北京:中国铁道出版社,1997.
    [158]王其昌,蔡成标,罗强,蔡英.高速铁路路桥过渡段轨道折角限值的分析[J].铁道学报.1998,20(3):109-113.
    [159]罗强,蔡英,李成辉.高速铁路路桥过渡段的动力分析与结构设计[J].’路基工程.1998,(1):1-4.
    [160]罗强,蔡英.高速铁路路桥过渡段变形限值与合理长度研究[J].铁道标准设计.2000,20(6):2-4.
    [161]翟婉明,蔡成标,王其昌.列车提速对线路的动力影响研究与对策[J].中国铁道科学.2000,21(3):11-19.
    [162]翟婉明.车辆-轨道耦合动力学研究的新进展[J].中国铁道科学.2002,23(2):7-11.
    [163]蔡成标,翟婉明,赵铁军,田利民,王志朋.列车通过路桥过渡段时的动力作用研究[J].交通运输工程学报.2001,1(1):17-19.
    [164]李献民,王永和,杨果林,肖宏彬,范臻辉.高速下过渡段路基动响应特性研究[J].岩土工程学报.2004,26(1):100-104.
    [165]李献民,肖宏彬,王永和.行车速度对桥路过渡段路基动应力的影响[J].地震工程与工程振动.2005,25(1):50-53.
    [166]刘林芽,雷晓燕,刘晓燕.既有线路桥过渡段的设计与动力学性能评价[J].铁道标准设计.2004,(1):9-10.
    [167]刘林芽,雷晓燕,练松良.提速铁路过渡段的动力响应测试分析[J].铁道工程学报.2005,(5):15-19.
    [168]陈雪华,律文田,王永和.高速铁路路桥过渡段路基动响应特性研究[J].振动与冲击.2006,25(3):95-98.
    [169]梁波,孙常新.高速铁路路基动力响应中的双峰现象分析[J].土木工程学报.2006,39(9):117-122.
    [170]梁波,邓剑辰.桩板结构路基的动力响应分析[J].铁道学报.2008,30(5):80-84.
    [171]马学宁,梁波.高速铁路路基结构时变系统耦合动力分析[J].铁道学报.2006,28(5):65-70.
    [172]陈果元,杨果林,魏丽敏.不同型式路桥过渡段动力特性对比分析[J].铁道科学与工程学报.2008,5(4):44-49.
    [173]董亮,赵成刚,蔡德钩,张千里,叶阳升.高速铁路路基的动力响应分析方法[J].工程力学.2008,25(11):231-240.
    [174]孙常新,刘桂香,梁波.基于有限元方法的铁路路基动力响应场分析[J].路基工程.2008,(2):28-30.
    [175]黄义,何芳社.弹性地基上的梁、板、壳[M].北京:科学出版社,2005.
    [1]SHI Xiaomin,CAI Chunsheng. Finite element analysis of concrete approach slab on soil embankment [J]. Geotechnical Engineering for Transportation Projects.2004(126):393-402.
    [2]CAI Chunsheng.SHI Xiaomin. Structural performance of bridge approach slabs under given embankment settlement [J]. Journal of Bridge Engineering.2005,10(4):482-489.
    [3]Xiaomin Shi, C. S. Cai, Suren Chen. Vehicle Induced Dynamic Behavior of Short-Span Slab Bridges Considering Effect of Approach Slab Condition [J]. Journal of Bridge Engineering. 2008,13(1):83-92.
    [4]Roy S, Thiagarajan G. Nonlinear finite-element analysis of reinforced concrete bridge approach slab [J]. Journal of Bridge Engineering.2007,12(6):801-806.
    [5]Wong H.K.W. Effect of orientation of approach slabs on pavement deformation [J]. Journal of Transportation Engineering,1994,120(4):590-602.
    [6]王淑波,赖国麟.斜交桥头搭板受力分析[J].中国公路学报.1996,9(3):47-61.
    [7]顾锋,邵容光,裴世保.桥头搭板设计[J].公路.1996,(1):1-5.
    [8]陈鹏,郑传超.路桥过渡段搭板受力分析[J].西安公路交通大学学报.1998,18(3(B)):244-251.
    [9]张巍.样条子域法在桥头搭板内力分析中的应用[J].太原理工大学学报.1999,30(5):532-536.
    [10]周玉民,谈至明.桥头搭板结构分析[J].公路.2004,(1):82-86.
    [11]俞永华,谢永利,杨晓华.桥头搭板受力特性及适应性[J].交通运输工程学报.2006,6(3):51-56.
    [12]黄斌.高速公路桥头搭板的改进设计[J].公路.2003(1):132-134.
    [13]徐变,王伟,徐厚福.桥头搭板的改进设计[J].中外公路.2005,25(1):28-31.
    [14]陈显荣译.桥头跳车的防治与处理[J].国外公路.1999,19(1):39-40.
    [15]杨学祥.埋置一端固定的弹性地基梁解决“桥头跳车”的设想与分析[J].长江大学学报(自科版).2005,2(4):177-179.
    [16]罗强,蔡英,李成辉.高速铁路路桥过渡段的动力分析与结构设计[J].路基工程.1998,(1):1-4.
    [17]杨学祥.均布荷载下一端固定的文克尔地基梁的基底压力特性及其工程意义[J].工程力学,2006,23(11):76-79.
    [18]张洪亮,胡长顺.路桥过渡段桥头搭板容许坡差确定的参数影响[J].长安大学学报(自然科学版),2003,23(3):11-14.
    [19]张洪亮.路桥过渡段车路动力学分析及容许差异沉降研究[D].西安:长安大学博士学位论文,2003.
    [20]Christopher R.Byrum, Kevin C.McDevitt. Instrumented Geofoam and Sheet Pile Wall for a Roadway Lane Addition in a Peat Marsh [C]. Geotechnical Engineering for Transportation Projects-Proceedings of GeoTrans 2004.2004:600-608.
    [21]Christopher L. Snow. Case Study of EPS Geofoam Lightweight Fill for Settlement Control at Bridge Approach Embankment [C]. Geotechnical Engineering for Transportation Projects-Proceedings of GeoTrans 2004.2004:580-589.
    [22]Dan Yang, Blair Gohl. Geotechnical and Seismic Design of Innovative Roger Pierlet Bridge and Approach Structures [C]. Soil and Rock Behavior and Modeling-Proceedings of Sessions of GeoShanghai 2006.2006:458-465.
    [23]高燕希,张军.软弱地基桥台台背填筑EPS的结构分析[J].中国公路学报,2003.16(3):27-30.
    [24]李明东,朱伟.EPS颗粒混合轻质土的施工技术及其应用实例[J].岩土工程学报,2006.28(4):533-536.
    [25]汤峻,朱伟.砂土EPS颗粒混合轻质土的物理力学特性[J].岩土力学,2007,28(5):1045-1049.
    [26]高玉峰,王庶懋.动荷载下砂土与EPS颗粒混合的轻质土变形特性的试验研究[J].岩土力学,2007,28(9):1 773-1778.
    [27]陈忠平,王树林.气泡混合轻质土及其应用综述[J].中外公路,2003.23(5):117-120.
    [28]张忠坤,侯学渊.粉煤灰与EPS路堤研究综述[J].岩石力学及工程力学,2001,20(4):538-542.
    [29]冯海宁,杨有海,龚晓南.粉煤灰工程特性的试验研究[J].岩土力学,2002,23(5):579-582.
    [30]林彤,刘祖德.粉煤灰与生石灰加固软土的室内试验研究[J].岩土力学,2003,24(6):1049-1052.
    [31]Cook D J. Expanded Polystyrene Beads as Lightweight Aggregate for Concrete [J]. Precast Concrete.1973(4):691-693.
    [32]Ravubdrarajah R S, Tuck A J. Properties of Hardened Concrete Containing Treated Expanded Polystyrene Beads [J].Cement and Concrete Composites.1994,16(3):273-277.
    [33]郑秀华,葛勇.EPS混凝土配合比的研究[J].哈尔滨建筑大学学报,1998,31(6):94-98.
    [34]吴秋生,余其俊.EPS轻骨料混凝土工作性能改善与评价方法研究[J].新型建筑材料,2007,(11):63-66.
    [35]陈兵,陈龙珠.EPS轻质混凝土力学性能研究[J].混凝土与水泥制品,2004,(3):41-45.
    [36]李俊峰.EPS轻混凝土的生产与应用[J].施工技术,1 998,(2):43-44.
    [37]王录民,张大英,王树明.废旧聚苯乙烯泡沫混凝土试验研究[J].混凝土,2008,5:103-105.
    [38]潘武略,邓德华.EPS轻混凝土配合比对其流动性与力学性能的影响[J].混凝土,2006,(2):63-65.
    [39]金福根,金辉.EPS混凝土在处治桥头跳车问题中的应用研究[J].建筑施工,2008,30(8):729-731.
    [40]龚晓楠.高等土力学[M].杭州:浙江大学出版社.2005.
    [41]李洪涛.振动碾压水泥混凝土路面施工[J].甘肃科技纵横.2006,35(6):150-151.
    [42]中华人民共和国交通部.JTG F30-2003.公路水泥混凝土路面施工技术规范[S].北京:人民交通出版社,2003.
    [43]中华人民共和国交通部.JTGF10-2006.公路路基施工技术规范[S].北京:人民交通出版社,2006.
    [1]祝龙根,刘利民,耿乃兴.地基基础测试新技术[M].机械工业出版社,2002.
    [2]王春生,王明江.高速公路软土地基沉降观测的程序和方法[J].筑路机械与施工机械化.2006,23(3):52-53.
    [3]王辉.关于高速公路软土路基沉降及稳定性监测[J].商情.2009,(23):127.
    [4]叶见曙.桥头引道工后沉降控制标准的研究[J].东南大学学报.1997,27(3):12-17.
    [5]Daniel J T, Maher K.T, Joseph V.B. State of the art for control of bridge approach settlement. In:Bridge Evaluation Repair and Rehabilitation [M].USA:Kluwer Academic Publishers,1990: 57-67.
    [6]中华人民共和国交通部.JTG D60-2004公路桥涵设计通用规范[S].北京:人民交通出版社,2004.
    [7]陈兵,陈龙珠.EPS轻质混凝土力学性能研究[J].混凝土与水泥制品,2004,(3):41-45.
    [1]贾宁.软土地基高速公路拓宽的沉降特性及处理研究[D].浙江大学博士学位论文,2004.
    [2]龚晓南.高等土力学[M].杭州:浙江大学出版社.2002:120-128.
    [3]王志亮.软基路堤沉降预测和计算[D].东南大学博士学位论文,2004.
    [4]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利电力出版社.1996.
    [5]卢廷浩.岩土数值分析[M].北京:中国水利水电出版社.2008.
    [6]吴小建.高速公路台后填土的粘弹塑性BIOT固结有限元分析[J].西部探矿工程.2007,(2):148-150.
    [7]韩炜洁,梅甫良,侯密山.状态方程法在渗流-应力耦合场求解中的应用[J].岩土力学.2008,29(1):203-211.
    [8]陈平山,房营光,莫海鸿.真空预压法加固软基三维有限元计算[J].岩土工程学报.2009,31(4):564-570.
    [9]魏鸿,唐伯明,董元帅.基于Biot理论的沙井地基固结沉降分析[J].重庆交通大学学报(自然科学版).2009,28(5):887-891.
    [10]龚先兵.单桩沉桩引起的初始超孔隙水压力及其消散的计算[J].长沙理工大学学报(自然科学版).2009,6(2):39-43.
    [11]刘金龙,栾茂田,汪东林.土工织物与塑料排水板联合处理软基的效果分析[J].岩土力学.2009,30(6):1726-1 730.
    [12]张小玲,栾茂田,郭莹.考虑人工边界的海底管线地震应力分析[J].大连理工大学学报.2009,49(4):551-557..
    [13]刘萌成,黄晓明.软土地基上桥台后填土工后沉降的数值分析[J].公路交通科技.2004,21(12):22-26.
    [14]沈正,黄晓明.软土地基桥台后回填固化粉煤灰工后沉降与差异沉降分析[J].公路交通科技.2007,24(5):53-56.
    [15]王金昌,陈页开ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006.
    [16]中华人民共和国交通部JTG D60-2004公路桥涵设计通用规范[S].北京:人民交通出版社,2004.
    [1]杨学祥.埋置一端固定的弹性地基梁解决“桥头跳车”的设想与分析[J].长江大学学报(自科版).2005,2(4):177-179.
    [2]杨学祥.均布荷载下一端固定的文克尔地基梁的基底压力特性及其工程意义[J].工程力学,2006,23(11):76-79.
    [3]SHI Xiaomin, CAI Chunsheng. Finite element analysis of concrete approach slab on soil embankment [J]. Geotechnical Engineering for Transportation Projects.2004(126):393-402.
    [4]CAI Chunsheng, SHI Xiaomin. Structural performance of bridge approach slabs under given embankment settlement [J]. Journal of Bridge Engineering.2005,10(4):482-489.
    [5]Xiaomin Shi, C. S. Cai, Suren Chen. Vehicle Induced Dynamic Behavior of Short-Span Slab Bridges Considering Effect of Approach Slab Condition [J]. Journal of Bridge Engineering. 2008,13(1):83-92.
    [6]中国船舶工业总公司第九设计研究院.弹性地基梁及矩形板计算[M].北京:国防工业出版社,1982.
    [7]张福范.弹性薄板[M].北京:科学出版社,1984.
    [8]Roy S, Thiagarajan G. Nonlinear finite-element analysis of reinforced concrete bridge approach slab [J]. Journal of Bridge Engineering.2007,12(6):801-806.
    [9]顾晓鲁.地基与基础(第三版).北京:中国建筑工业出版社,2003.
    [10]吴小刚.交通荷载作用下软土地基中管道的受力分析模型研究[D].杭州:浙江大学博士学位论文,2004.
    [11]莫海鸿.基础工程[M].北京:中国建筑工业出版社,2003.
    [12]中华人民共和国交通部.JTJ 017-96公路软土地基路堤设计与施工技术规范[S].北京:人民交通出版社,2002.
    [1]王虎,胡长顺,王秉纲.连续配筋混凝土路面动荷响应分析[J].工程力学.2001,18(5):119-126.
    [2]颜可珍.弹性地基上薄板的动力响应研究[D].杭州:浙江大学博士学位论文,2005.
    [3]周华飞.移动荷载作用下结构与地基动力响应特性研究[D].杭州:浙江大学博士学位论文,2005.
    [4]姚海林,卢正,刘干斌.黏弹性地基上路面板在多轮荷载作用下的响应分析[J].岩土力学.2009,30(2):367-373.
    [5]Seong-Min Kim, B Frank McCullough. Dynamic response of plate on viscous Winkler foundation to moving loads of varying amplitude [J]. Engineering Structures.2003,25(9): 1179-1188.
    [6]杨桂通.弹性动力学[M].北京:中国铁道出版社.1988.
    [7]吴世明.土动力学.[M].北京:中国建筑工业出版社,2000.
    [8]A Karlstrom, A Bostrom. An analytical model for train-induced ground vibrations from railways [J]. Journal of Sound and Vibration.2006,292(1):221-241.
    [9]孙璐,邓学钧.速度与车辆动态特性对于车路相互作用的影响[J].土木工程学报,1997,30(6):34-40.
    [10]耿大新,钟才根,杨林德.行车荷载作用下刚性路面结构体系的动力响应[J].中南公路工程.2003,28(4):16-19.
    [11]Kim S.M., Roesset J.M. Moving loads on a plate on elastic foundation [J].Journal of engineering mechanics.1998 (9):1010-1017.
    [12]陆辉.国内路面动力学研究概述[J].上海公路,2000(1):6-8.
    [13]徐芝纶.弹性力学[M].北京:高等教育出版社,2002.
    [14]陶向华.路桥过渡段差异沉降控制标准与人车路相互作用[D].南京:东南大学博士学位论文,2005.
    [15]廖公云,黄晓明.ABAQUS有限元软件在道路工程中的应用[M].东南大学出版社.2008.
    [1]陶向华.路桥过渡段差异沉降控制标准与人车路相互作用[D].南京:东南大学博士学位论文,2005.
    [2]聂志红.高速铁路轨道路基竖向动力响应研究[D].长沙:中南大学博士学位论文,2005.
    [3]王金昌,陈页开.ABAQUS在土木工程中的应用[M].浙江大学出版社.2006.
    [4]Cai C.S, X.M.Shi, G.Z.Voyiadjis. Structural Performance of Bridge Approach Slabs under Given Embankment Settlement [J]. Journal of Bridge Engineering.2005,10(4):482-489.
    [5]王其昌.高速铁路土木工程[M].成都:西南交通大学出版社,1999.
    [6]陈震.高速铁路路基动力响应研究[D].武汉:中国科学院武汉岩土力学研究所博士学位论文,2006.
    [7]周华飞.移动荷载作用下结构与地基动力响应特性研究[D].杭州:浙江大学博士学位论文,2005.
    [8]廖公云,黄晓明.ABAQUS有限元软件在道路工程中的应用[M].东南大学出版社.2008.
    [9]朱志铎,郝建新,赵黎明.交通荷载作用下粉土路基变形特性分析[J].地下空间与工程学报.2009,5(5):1013-1019.
    [10]Hyodo M, Yasuhara K. Analytical procedure for evaluating pore-water pressure and deformation of saturated clay ground subjected to traffic loads. Proc.6thlnt. Con.f on Num. Meth. In Geomech.1988,653-658.
    [11]Toshlkazu Hanazato. Three-dimensional analysis of traffic-induced ground vibrations[J]. Journal of Geotechnical Engineering.1991,117(8):1413-1434.
    [12]张艳美,梁波.几何不平顺条件下高速公路路基的动态响应[J].兰州铁道学院学报(自然科学版).2001,20(4):66-69.
    [13]刘萌成,黄晓明,陶向华.移动荷载作用下近桥台处路面结构动力响应的有限元法分析[J].公路交通科技.2006,23(5):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700