用户名: 密码: 验证码:
管道内壁腐蚀监测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管道运输是现代工业生产中一种重要的运输方式,其运行的安全可靠性已经引起了高度的重视,针对管道外壁腐蚀状况的监、检测技术已经日趋成熟,但目前对于管道内壁腐蚀状态的实时监测尚无法实现。本文依托“中国海洋石油总公司海底管道内腐蚀及磨损监测技术研究”项目,应用传感器结合计算机技术开发了管道内壁腐蚀实时监测系统,并且在实验室的模拟管道中进行了试验研究。
     本文所开展的主要工作以及结论归纳如下:
     (1)针对密闭管道腐蚀环境提出了通过管道内流质环境监测评估管道内壁平均腐蚀厚度的监测方法。管道内流质中腐蚀性物质成分的含量是环境介质腐蚀能力的主要因素,通过监测管道内部流质在管道的入口和出口处的腐蚀能力的变化,分析确定监测期内腐蚀性物质成分的消耗量,根据腐蚀反应的当量关系即可估算出管道内壁的平均腐蚀厚度,作为评估管道内壁腐蚀状态的重要依据。
     (2)应用传感器结合计算机技术研发了管道内壁腐蚀监测系统。针对管道内电解质流质和非电解质流质,设计制作腐蚀电偶式传感器和电阻探针式传感器,并设计制作了DG-OF3型数据采集仪实时监测管道内流质的腐蚀能力;以DG-OF3型腐蚀监测仪、腐蚀传感器为核心硬件,以VB及SQL Server为开发工具,基于TCP/IP的客户机与SQLServer网络数据库技术,开发管道内腐蚀监测系统,实现了在远程客户端实时获得现场采集数据并以图形、数表方式显示管道内壁的腐蚀状态。
     (3)分别对腐蚀电偶式传感器和电阻探针式传感器进行基础试验研究,通过长期试验,发现传感器监测信息与管内流质的温度、流速以及腐蚀性物质成分的含量之间存在复杂的非线性关系,应用BP神经网络方法,实现了通过传感器监测信息及管内流质的流速、温度等参数评价环境腐蚀能力的功能。
     (4)建立了基于最大蚀坑深度的管道内壁腐蚀状态评估方法。基于点蚀形貌的统计特征,建立管道内壁腐蚀模型;通过腐蚀模型建立点蚀形貌特征参数与对应总腐蚀体积的数据库,经数学分析后得到最大蚀坑深度与总腐蚀体积之间的非线性关系。基于上述非线性模型,腐蚀监测技术得到的管道内壁总腐蚀体积可以进一步求解得到管道内壁的最大蚀坑深度,对管道内壁腐蚀状态做出更加详细的评估,进而为管道安全评估提供依据。
Pipeline transportation occupies a very important position in modern industry, and high attention has been paid to the safety reliability of the pipeline operation. The detection technique and the monitoring technique of external corrosion are maturing, but there is no completed real-time monitoring system for the internal corrosion of pipeline. To ensure the security of pipeline operation, Dalian University of technology and CNOOC applied for the project of monitoring technology of the internal corrosion in submarine pipeline. In this paper, the relevant researches were carried out, and the internal-pipeline real-time monitoring system was developed; moreover a new safety evaluation method of internal-pipeline corrosion was proposed. The major contents and conclusions are surmmarised as follows:
     (1) An indirect monitoring method was put forward. It is indicated that the corrosion rate is closely related to the corrosion capability of the fluid in the pipeline. Corrosion capability is decided by the content level of the corrosive conponents. There is a corrosion equivalent relationship between the consumption of corrosion capability and the consumption of metal. The internal-pipeline corrosion monitoring system was developed to evaluate the consumption of metal based on monitoring the changes of the corrosion capability of the fluid.
     (2) Real-time monitoring system, centering on the sensors and corrosion monitoring instrument, is developed by VB and SQL Server 2000. The connection based on TCP/IP between client and the web database server, which has more flexibility and is available for long-distance safeguarding.
     (3) Galvanic sensor and electric resistance sensor were respectively developed to the electrolyte environment and the non-electrolyte environment, and fundamental researches on the sensors were carried out in the laboratory. Artificial seawater was applied to the test as the corrosion medium, and consequently concentration of dissolved oxygen was the scale of corrosion capability. After long-term testing in a 50-metre-long pipeline and analysis, the effective working period of the sensors were found, and the influence caused by the oxidative film on the electrode working face was eliminated by an amendatory coefficient; a complex and nonlinear relationship, among the monitoring signals and the temperature, velocity and the concentration of dissolved oxygen of the fluid in pipeline, is acquired. Finally, BP artificial neural network is applied to estimate the concentration of dissolved oxygen of the fluid through other factors. In this way, the consumption of the dissolved oxygen can be estimated by the galvanic sensors setting at the entrance and the exit of the pipeline. Furthermore, the corrosion condition of the internal pipeline, which was evaluated by the average corrosion thickness, can be evaluated in the monitoring system.
     (4) A new safety assessment method by the max pitting depth was put forword. Based on the topography characteristics and optimal distribution of pitting corrosion, a statistical model was established by assuming the diameter and the depth of pitting subordinated to log-normal distribution. Thereby, the total volume consumed by corrosion can be calculated by the model. Quadratic polynomial curve-fit was used to build the non-linear relationship among the total corrosion volume, pitting number, diameter-depth ratio and shape factor and the max pitting depth. Consequently, the max pitting depth can be calculated by the average corrosion thickness, and the internal-pipeline corrosion safety assessment can be given according to SY/T6151.
引文
[1]阎光灿.世界长输天然气管道综述.天然气与石油[J],2000,18(、3):9-19.
    [2]王疆戈.世界油气管道现状[J].中国石化,2004,226(7):18-19.
    [3]National Transportation Statistics[R], U.S.A, Bureau of Transportation Statistics, Department of Transportation,2007.
    [4]Gas Pipeline Incidents,5th Report of the European Pipeline incident Data Group [R], EGIG-Group.Document No.02.R.0058,2001.
    [5]Pipeline Special Investigation Report [R], NATIONAL TRANSPORTATION SAFETY BOARD. WASHINGTON, D.C.20594,1996
    [6]冯耀荣,王新虎,赵冬岩.油气输送管失效事故的调查与分析[J].中国海上油气,1999.
    [7]严大凡、翁永基、董绍华,油气长输管道风险评价与完整性管理[M],化学工业出版社,2005.
    [8]郎需庆,赵志勇,油气管道事故统计分析与安全运行对策[J].安全.健康和环境,2006,6(10):15-17.
    [9]赵水韬,赵常就.工业腐蚀监测的发展及其仪器的智能化[J].腐蚀与防护,2000,21(11):515-517.
    [10]宋生奎,李洪海,欧阳晓东等.输油管道腐蚀监测及评估技术的现状及发展趋势[J].石油商技,2004,22(6):19-21.
    [11]化学工业部化工机械研究院.腐蚀与防护手册-腐蚀理论.试验及监测[M].北京:化学工业出版社,1987:501-503.
    [12]Smith, F., Development and Plant Corrosion Monitoring With Mechanically Sealed Probes[C]. On Line Surveillancl and Monitoring of Process Plant,1977:22.
    [13]汤天遴,高亚楠,石伟等人.腐蚀监测技术在中原油田的应用[J].腐蚀科学与防护技术,2003,15(1):47-49.
    [14]Nomura T., Single-dtop method for determination of cyanide in solution with a piezoelectric quartz crystal [J], Anal.Chim.Acta,1981,124(1):81.
    [15]Bruckenstein S, Experimental aspects of use of the quartz crystal microbalance in solution [J]. Electrochim. Acta,1985,30(10):1295.
    [16]Wu B L, Lei HW, Cha C S.J, [J]. Electroanal.chem.,1994,374:97.
    [17]R E Johnson, V S Agarwala. Fluorescence based chemical sensors for corrosion detection [C]. Corrosion, Houston:NACE,1997, Paper No.304.
    [18]刘建华,李兰娟等.基于荧光特性的铝合金腐蚀早期预测技术研究[J].腐蚀科学与防护技术,2007,19(2):141-144.
    [19]K.D.Bennett, L.R.McLaughlin.Monitoring of corrosion in large steel structures using low cost optical filter sensor [C]. Proc. SPIE,1995,24(46):71-82.
    [20]P.L.Fuhr, T.P.Ambrose, D.R.Huston, A.P.McPadden.Fiber optic corrosion sensing for bridges and roadway surfaces[C]. Proc.SPIE,1995,2446:2-8.
    [21]黎学明,陈伟民,黄尚廉等.金属腐蚀监测的光波导传感方法研究[J].电化学,2000,6(4):412-416.
    [22]张来斌,杨占才,王朝晖等.声发射技术用于诊断发动机活塞与缸套间磨损故障实验研究[J].石油大学学报:自然科学版,2001,25(5):60-62.
    [23]吴前驱.表面无损检测[M].北京:水利电力出版社,1991.
    [24]陈益飞.涡流法检测锈蚀的研究[M].电工技术,2000,4:34-36.
    [25]J.C.Hudoson, Corrosion of Bare Ferrous Metals [J] J.inst.Metals,1957,40:194-201.
    [26]A.J.Freedman, A.Cataldi. An improved MER technique is MER based on so-called corrosion sensor [J] Corrosion.1958,14:567-574.
    [27]吴建华,赵永韬.钢筋混凝土的腐蚀监测、检测[J].腐蚀与防护,2003,24(10):421-425.
    [28]左慧君,金文房.电阻探针MS3500E在线腐蚀监测应用[J].腐蚀与防护,2002,21(12):557-558.
    [29]刘幼平.设备腐蚀与控制技术[J].设备管理与维修,1997,9:38-42.
    [30]洪振甫,文学,吴巍等.油气管道的腐蚀监测、检测及评估[J].全面腐蚀控制,2004,18(5):34.
    [31]杜元龙.电化学传感器及其在腐蚀检测/监测中应用的研究[C].全国腐蚀电化学及测试方法学术讨论会论文集.1998:30-33.
    [32]扈显琦,江成浩.交流阻抗技术的发展及应用[J].腐蚀与防护,2004,25(2):57.
    [33]余强,司云森,曾初升.交流阻抗技术及其在腐蚀科学中的应用[J].化学工程师,2005,9:35.
    [34]Joost Gulicers. Development of a galvanic monitoring probe to improve service life prediction of reinforced concrete structures with respect to reinforcement corrosion [J]. Construction and Building Materials.1997,11(3):143-148.
    [35]JOHN D G, SEARSON P C, DAWSON J L. Use of AC impedance technique in study on steel in concrete in immersed condition [J]. Br Corros J,1981,16(2):102.
    [36]Elsener, B., and Bohni, H., Monitoring Corrosion of Steel in Concrete-An Impedance Approach [J], Proc.8th European Congress on Corrosion, Paris,1985,1:19-21.
    [37]Thompson, N. G., et al., Monitoring Cathodically Protected Steel in Concrete Structures With Electrochemical Impedance Techniques [J]. Corrosion,1988,44(8):581-588.
    [38]CHEN T P, LEE J T. Corrosion of reinforcements in artificial seawater and concentrated sulfate. Cement[J] Concrete Research,1990,20(2):243-250.
    [39]Farrell, D. M., et al., Electrochemical Monitoring of High Temperature Corrosion Processes [J], High Temp Technol,1985,3(1):15-21.
    [40]Gao, G., Stott, F. H., Dawson, J. L., and Farrell, D. M., Electrochemical Monitoring of High-Temperature Molten-Salt Corrosion [J], Oxidation of Metals,1990,33(1):79-94.
    [41]Britton, C. F., Internal Corrosion Monitoring of Subsea Pipelines [J], Corros. Prevent. Contr., 1986,33(3):57-63.
    [42]Roberge, P. R., and Sastri, V. S., Monitoring Localized Corrosion in Sour Media [C],11th International Corrosion Congress, Associazione Italiana Di Metallurgia,Milan, Italy,1990,5(4): 4375-4382.
    [43]Y. Chen, T. Hong, M. Gopal, W.P. Jepson. EIS studies of a corrosion inhibitor behavior under multiphase flow conditions [J]. Corrosion Science,2000,42:979-990.
    [44]Y. Chen, T. Hong, W.P. Jepson. Study on corrosion inhibitor in large pipeline under multiphase flow using EIS [J]. Corrosion Science,2002,44:101-112.
    [45]Vera Cruz R. P., Nishikata A, Tsuru T. AC impedance monitoring of pitting corrosion of stainless steel under a wet—dry cyclic condition in chloride-containing environment [J]. Corrosion Science,1996,38(8):1397-1406.
    [46]赵永韬,赵常就.冷却水腐蚀监测的发展概况[J].四川化工与腐蚀控制,1998,6:28.
    [47]冯业铭,耿小兰,郑立群,弱极化法腐蚀速度测试仪的研制[J].传感器技术,1999,18(5):38.
    [48]Britton, C. F., Monitoring Internal Corrosion in Offshore Installation [J], Corro. Prev. Cont.. 1980,27(2):10-12.
    [49]Christensen, C., Maahn, E., Juhl, C., and Hagerup, O., Evaluation of Inhibitors for Sour Crude Oil Transmission Pipe Lines [C], Paper 198, Corrosion 88, NACE, Houston,1988.
    [50]Asperger, R. G., and Hewitt, P. G., Real-Time Electronic Monitoring of a Pitted and Leaking Gas Gathering Pipeline, Materials Performance [J],1986,25(9):47-57.
    [51]Van Gelder, K., van Bodegom, L., and Visser, A., Inhibition of CO2 Corrosion of Carbon Steel Pipelines Transporting Wet Gas [J], Materials Performance,1988,27(4):17-21.
    [52]Arnold, C. G., and Hixson, D. R., Corrosion Monitoring in an Ammonia Concentration Column [J], Materials Performance,1982:21(2):21-24.
    [53]Alvarado, R. M., and Arnold, C. G., Computerized Corrosion Data Monitoring in a Chemical Process Plant [C], Paper 69, Corrosion 86, NACE, Houston,1986.
    [54]Rizzi, R., et al., Corrosion Monitoring in District Heating Circuits Inhibited by a Molybdate-Based System [C], Proceedings of the 6th European Symposium on Corrosion Inhibitors 1985, Suppl.(8):1145-1158.
    [55]郑立群,左晋,荀伟等.腐蚀监测技术在工业循环水中的应用[J].工业水处理,2000,20(4):35-37.
    [56]BlancG, GabrielliC, KsourtiM, Experimental study of the relationships between the electrochemical noise and the structure of the electrodeposits of metals[J]. Electrochemical Acta, 1978,23(4):337-352.
    [57]Eden, D. A., Rothwell, A. N., and Dawson, J. L., Electrochemical Noise for Detection of Susceptibility to Stress Corrosion Cracking [C], Corrosion 91, NACE, Houston,1991, Paper 444.
    [58]Hardon, R. G., et al., Relationship between Electrochemical Noise and Corrosion Rate of Steel in Salt-Contaminated Concrete [J], British Corrosion Journal,1988,23(4):225-228.
    [59]Hladky, K., and Dawson, J. L., The Measurement of Localized Corrosion Using Electrochemical Noise [J], Corrosion Science,1981,21(4):317-322.
    [60]Smith, S., and Francis, R., Use of Electrochemical Current Noise to Detect Initiation of Pitting Conditions on Copper Tubes [J], British Corrosion Journal,1991,25(4):285-291.
    [61]Newman, R. C., and Sieradski, K., Correlation of Acoustic and Electrochemical Noise in the Stress Corrosion Cracking of a Brass [J], Scripta Metallurgica, 1983,17(5):621-624.
    [62]Metikos-Hukovic, M., Loncar, J., and Zevnik, C., Monitoring the Electrochemical Potential Noise Produced by Coated Metal Electrodes [J], Werkstoffe und Korrosion,1989,40:494-499.
    [63]Eden, D. A., et al., Electrochemical Noise Measurements and Their Applications to Coated Systems [J], Div. of PMSE,1985,53:.388-390.
    [64]Chen J F, Shadley J, RybickiE F. Pitting corrosion monitoring with an improved electrochemical noise technique [C]. Corrosion, NACE,1999,9(2):44-50.
    [65]余兴增,邱富荣,许世力.电化学噪音分析的数据处理[J].腐蚀科学与防护技术,1999,11(4):25-30.
    [66]宜爱国.电化学噪声测试技术[J].武汉化工学院学报,2003,25(2):20-25.
    [67]曹发和,张昭,施彦彦等.电化学噪声频谱的VisionC++实现[J].中国腐蚀与防护学报,2005,25(1):8-12.
    [68]Barker G. C. In Trans. Symp. Electrode Proc[M]. New York:Wiley Publishing,1961.237-250.
    [69]Kanno K, Suguki P. An application of coulostatic method for rapid evaluation of metal corrosion rate in solution [J]. J. Electrochem. Soc,1978,125:1389-1401.
    [70]KannoK, SatoG C. Tafel slope determination of corrosion reaction by the coulostatic method [J]. Corrosion Science,1980,20:1059-1065.
    [71]Rodriguez P, Millard S G. Use of the coulostatic method for measuring corrosion rates of embedded metal in concrete research [J]. Corrosion,1994,46(167):91-96.
    [72]赵常就,陈范才.恒电量腐蚀监测仪[J].腐蚀与防护,1984,8(4):8-12.
    [73]赵永韬,吴建华,赵常就.评价混凝土中钢筋腐蚀的恒电量技术[J].电化学,2001,7(3):358.
    [74]赵永韬,陈光章.基于远程通讯的恒电量腐蚀监测[J].仪器仪表学报,2004,25(4):390.
    [75]张小华,陈范才,赵常就.恒电量仪在钢筋混凝土腐蚀监测中的应用[J].湖南大学学报(自然科学版),2001,28(5):61-66.
    [76]孙勇志.使用埋入混凝土内的微型探测器监测钢筋锈蚀[J].贵州工业大学学报,1998,27(6):90-93.
    [77]赵永韬,吴建华,王佳.船用钢的薄层液膜下腐蚀监测与研究[J],腐蚀化学与防护技术,2001,13(5):289-293.
    [78]王保成,朱金华.低碳钢自腐蚀电位与缓蚀剂吸附性能关系的探讨[J].西安交通大学学报,2005,39(9):1035-1038.
    [79]Tsubakino H, Yamakawa K. Hydrogen penetration and damage to Oil Field Steels [J]. Corros. Eng(Jpn),1985,33:159.
    [80]肖恺,闫一功等.氢传感器在腐蚀检测中的研究现状[J].腐蚀与防护,2001,22(3):118-121.
    [81]Devanathan MAV, Stachursk Z. A new method of permeation hydrogen measurement [C].Proc R Soc,1962,20:90-102.
    [82]Mansfeld F, Jeanjaquet S, Roe D K.Barnacle. Electrode Measurement System for Hydrogen in Steels. Mater [J] Perf,1982,2(2):35-38.
    [83]Yamakawa K, Nishimura R. Hydrogen Permeation of Carbon Steel in Weak Alkaline Solution Containing Hydrogen Sulfide and Cyanide ion [J]. Corroison,1999,55(1):1230-1241.
    [84]刘晓方,黄淑菊,王汉功.计算机在腐蚀与防护领域中的应用[J].腐蚀科学与防护技术,1998,10(4):222-225.
    [85]朱卫东,陈范才.智能化腐蚀监测仪的发展现状及趋势[J].腐蚀科学与防护技术,2003,15(1):29-3.
    [86]Agoston, N. Dorr, B. Jakoby. Corrosion sensors for engine oils-laboratory evaluation and field tests [J]. Sensors and Actuators B:Chemical,2007,127(1):15-21.
    [87]Na Young Lee, Seung Gi Lee, Kyung Ha Ryu, et al. On-line monitoring system development for single-phase flow accelerated corrosion [J]. Nuclear Engineering and Design,2007,237(7): 761-767.
    [88]L.R. Hilbert. Monitoring corrosion rates and localised corrosion in low conductivity water [J]. Corrosion Science,2006,48(12):3907-3923.
    [89]Twinsburg, Innovations in corrosion monitoring[J]. World Pumps,2005,2005(470):20-24.
    [90]张莉,徐翠竹,林竹等.腐蚀监测技术在中原油田的应用[C].2007全国埋地管线腐蚀控制和监测评估工程技术交流会.2007:109-202.
    [91]杨喜云,赵常就,高继东.CCMW-9810库仑斯特智能腐蚀监测仪在工业循环冷却水中的应用.腐蚀与防护[J],1999,20(11):504-509.
    [92]施岱艳,杨朔,杨诚等.腐蚀监测技术在四川含硫气田的应用.天然气工业[J],1998(6):31.
    [93]Guedes Soares C, Garbatov Y. Reliability of maintained, corrosion protected plates subjected to non-linear corrosion and compressive loads [J]. Marine Structures,1999,12:425-445.
    [94]ASME, Manual of Determining the Remaining Strength of Corroded Pipeline[S], a supplement to ANSI/ASME B31 G Code for Pressure Piping.1991.
    [95]DnV RP-F-101. Corrosion Pipelines[S], Norway, Det Norske Veritas, Oct,2004.
    [96]API579:Recommended practice for fitness-for-service[S],2000.
    [97]SY/T6151—1995[S],钢质管道管体腐蚀损伤评价方法.1995.
    [98]黄桂桥.铸铁在海水中的腐蚀行为[J].腐蚀与防护,2001,22(9):384-386.
    [99]Melchers R E. Probabilistic modeling of immersion corrosion of steels in marine waters Proceedings [C] of Offshore Mechanics and Arctic Engineering Conference,2001. Rio de Janeiro,2001.
    [100]Evans U R. The corrosion and oxidation of metals:scientific principles and practical applications [M]. London, UK:Edward Arnold Publishers Ltd.,1966.
    [101]Tomashev N. D. Theory of corrosion and protection of metals [M].. New York:The MacMillan Co.,1966.
    [102]Chernov B B. Predicting the corrosion of steels in seawater from its physiochemical characteristics [C]. Protection of Metals,1990,26(2):238-241.
    [103]Chernov B B. Ponomarenko SA. Physiochemical modeling of metal corrosion in seawater [C]. Protection of Metals,1991,27(5):612-615.
    [104]Melchers R E. Corrosion uncertainty modlling for steel structures [C]. Journal of Constructional Steel Research,1999,52:3-19.
    [105]Melchers R E. Modeling of marine immersion corrosion for mild and low alloy steels-Part 1: Phenomenological model [J]. Corrosion (NACE),2003,59(4):319-334.
    [106]Southwell C R, Bultman J D, Hummer Jr C W. Estimating of service life of steel in seawater[M]. In:Schumacher M,editor. Seawater Corrosion Handbook. New Jersey:Noyes Data Corporation,1979,374-387.
    [107]Melchers R E, Ahammed M. Nonlinear modeling of corrosion of steel in marine environments[R]. Research Report 106.09.1994, Department of Civil Engineering and Surveying, The University of Newcastle,1994.
    [108]朱相荣,王相润.金属材料的海洋腐蚀与防护[M].北京:国防工业出版社.1999.6-33.
    [109]杨武,肖京先等.金属的局部腐蚀[M].北京:化学工业出版社,1995.68-103.
    [110]Melchers R E. Pitting corrosion of mild steel in marine immersion environment-1: maximum pit depth [C]. Corrosion (NACE),2004,60(9):824-836.
    [111]Melchers R E. Pitting corrosion of mild steel in marine immersion environment-2: variability of maximum pit depth [C]. Corrosion (NACE),2004,60(10):937-944.
    [112]Melchers R E. Representation of uncertainty in maximum depth of marine corrosion pits. Structural Safety [C],2005.
    [113]汪学华等编著, 自然环境试验技术[M],航空工业出版社,2003
    [114]王蕾,李帆.埋地钢质燃气管道点蚀数据的概率统计分析[M],煤气与热力.2004,24(12):657-659
    [115]Riekel,L.E.,统计物理现代教程[M],黄均等译校, 北京大学出版社,1983年
    [116]Nakai T, Matsushita H, Yamamoto N, Arai H.Effect of pitting corrosion on local strength of hold frames of bulk carriers [J].Marine Structure,2004,17:403-432.
    [117]周向阳,柯伟.点蚀坑的形貌与腐蚀疲劳裂纹萌生[J].金属学报.1992,28(8):356-360.
    [118]方华灿,油气长输管线的安全可靠性分析[M],北京:石油工业出版社,2002.
    [119]SY/T6621-2005,输气管道系统完整性管理[S],2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700