用户名: 密码: 验证码:
钱塘江河口物质输移与能量数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口是陆海相互作用最为剧烈的区域,在径流和潮流的双重作用下水动力特性复杂,尤其在钱塘江河口,潮强流急、涌潮汹涌、洪水暴涨暴落、河床急冲骤淤,盐水入侵、污染物和泥沙输移等各类物质输移及相应的能量变化问题十分突出,对河口水环境、水生态和饮用水源质量以及河口工程安全有显著影响。因此研究钱塘江河口的物质输移和能量无论在河口学的理论上还是工程实践上均具有重要意义。
     本文在分析强潮河口物质输移的多样性、复杂性以及一定程度的危害性的基础上,介绍了对此类输移问题的主要研究方法和国内外对此相关问题的研究现状,并采用数值模拟的方法对各类物质输移的问题进行了系列研究。
     针对盐度输移引起的强潮河口盐水入侵对饮用水源地危害极大的问题,基于笛卡尔坐标系中雷诺平均N-S方程及盐度输运方程的有限体积法离散,建立了水动力盐度耦合的二维模型,首次用于钱塘江强潮河口水源地附近河段的潮流及盐度输移过程的数值模拟。发现潮汐河口弯道段盐度等值线呈明显的舌状分布,盐水入侵的最远端受涨潮主流线主导,据此认为河口水源地取水口不宜靠近涨潮流主流线。水库下泄径流具有抑制盐水入侵的作用,但当径流量增加到一定程度后,单位下泄径流量产生的抑咸效果有所减弱,即水资源利用率降低,此时应考虑从蓄淡水库取水,这为蓄淡避咸水库建设、有效提高水资源综合效益提供了技术依据。
     采用正交曲线坐标系中N-S程和污染物输移方程以及ADI离散方法,建立了平面二维污染物输移模型,成功模拟了钱塘江河口污染物的输移过程。结果表明,潮汐河口污染物随涨落潮流往复输移,水体污染物浓度在潮周期内变化趋势与各点自身潮位涨落趋势相反,而浓度峰区呈现往返迁移、其峰值呈降低-增加-再降低的过程,此与无潮河流浓度峰值不断下移、降低的过程显著不同。浓度的减小是通过扩散稀释、浓度峰区逐渐分裂的过程来实现的。并说明了强潮河口在突发污染事故后用加大水库下泄流量的方法以在最短时间内实现水源水质安全是可行的。
     结合N-S方程、对流扩散方程和河床变形方程建立了正交曲线坐标系下的三维泥沙输移模型,模拟了特大洪水条件下5天内的泥沙输移。得到钱塘江河口在不同频率洪水条件下的泥沙输移量,与小流量情形相比,大流量条件下河床更快进入剧烈冲刷状态,但单日输移量比值逐日递减,最后一天的泥沙输移量已趋于相同。大流量持续冲刷数天后,最大冲刷深度将不再增加,代之以断面底部的横向扩展。受丁坝影响的断面,深槽位置会向另一侧转移。
     从流体机械能概念出发,结合三维流场数学模型,首次精细计算了钱塘江河口闻家堰至仓前段的能量分布场。基于欧拉法观点分析研究了强潮河口不同时刻重力势能和动能空间变化特征,发现在强潮河口重力势能一般居于主导地位,相同时间内水体势能变化值量级大于动能变化值量级。随着大洪水下泄河床发生大幅度冲刷时,重力势能与动能之比趋于减小,且水深越大的区域单位体积水体重力势能越小、动能越大。在弯道段凹岸水体重力势能与动能之比小于凸岸水体。在上下弯道间急剧过渡的情况下,下弯道的能量分布格局与上弯道恰好相反,凸岸的重力势能与动能之比显著增加以致超过凹岸。冲深越大的区域重力势能损失越多。
     在河口环境问题日益突出并愈来愈受到人们关注的今天,本文通过建立数学模型对强潮河口物质输移进行了数值模拟,对河口各类输移物质的分布特征以及输移特性进行了探讨分析,有助于揭示强潮河口物质输移的本质,以便采取有效措施来保护河口区水环境、保障水源水质安全。
Estuaries are affected by both runoff and tides, so that the hydrodynamic characteristics are particularly sophisticated. The transport processes of sediment, salinity and pollutants and the change of energy in estuaries are important issues, which have significant effects on estuarine environment, ecology and drinking water quality, and estuarine engineering. Therefore, the study on mass transport and energy in Qiantang estuary is important not only for theory but also for engineering practice.
     The diversity, complicity and impacts of mass transport in estuaries are summarized, the main methods and the status quo of the research of mass transport both at home and abroad are introduced. In addition, a series of studies on numerical simulation of mass transport are carried out.
     Focusing on the impacts of salt-water intrusion to drinking water sources in macrotidal estuaries, a 2D hydrodynamic-salinity model was established and numerically simulated the process of hydrodynamics and salt transport in Qiantang estuary. It was found that when the effect of salinity transport in macrotidal estuary reaches the maximum, the river bend is significantly affected by the main streamlines of flood and ebb currents, which causes greater salinity at the river bank near the streamlines of flood current than another bank. As a result, in terms of mere salt-water intrusion, at the river bend of macrotidal estuary, water intake should not be close to the main streamlines of flood current. Once runoff reaches a certain extend, the effect of increasing runoff on restraining salinity would be reduced, which means the utilization rate of water resources is decreased, In this case, water supply from reservoirs would effectively save water resources. This provides technical evidence for the construction of reservoirs to store fresh water and avoid over-salinity.
     Based on the Navier-Stokes equation under the hypothesis of incompressibility and Boussinnesq constitutive relation in orthogonal curvilinear coordinates, pollutants tranport in a hypothetical pollution accident in Qiantang estuary were numerically simulated. It was found that pollutants in macrotidal estuary diffused due to turbulence and were transported by tide to and fro. The variation of pollutants concentration was opposite to that of water level during each tidal cycle. an increase in upstream flow would effectively reduce the impacts of pollutants to water quality, which demonstrates that increasing upstream flow is feasible to ensure water quality from pollution accidents as soon as possible.
     Based on Navier-Stokes equation, convection-diffusion equation for sediment transport, a model under orthogonal curvilinear coordinates was established and applied to simulate sediment transport during extreme flood. It was found that increasing runoff would bring greater extend of sediment transport. It took less time to reach drastic erosion status under high flow than under low flow. Sediment transport would tend stable after several days. Increasing runoff would not cause unlimited vertical erosion but lateral erosion. In addition, the location of deep channel would deviate owing to groins.
     Based on 3D mathematical model, the spatial distribution of energy in flow-field planes from Wenjiayan to Cangqiao were finely calculated and analyzed in view of Euler method. It was found that geopotential energy was larger order of magnitude than kinetic energy of unit water volume, and that the ratio of geopotential energy to kinetic energy became smaller with scour. The ratio in convex banks was smaller than that in concave banks. However, the distribution of energy at the last river bend gradually went to opposite. There would be greater potential energy losses in deeper area.
     Nowadays, people are paying more attention to estuarine environment. Numerical calculation of mass transport and energy in macrotidal estuaries will have practical significance in order to reserve environment in macrotidal estuary, to ensure water quality and to improve human being's living conditions.
引文
[1]沈焕庭,茅志昌,朱建荣.长江河口盐水入侵[M].北京:海洋出版社,2003.
    [2]沈焕庭等.长江河口物质通量[M].北京:海洋出版社,2001.
    [3]张瑞谨,谢鉴衡,王明甫.河流泥沙动力学[M].北京:中国水利电力出版社,1989.
    [4]万新宁,李九发,何青等.国内外河口悬沙通量研究进展[J].地球科学进展.2002,17(6):864-870.
    [5]熊绍隆,胡玉棠.潮汐河口悬移质动床实物模型的理论与实践[J].泥沙研究,1999, (1):1-6.
    [6]沈焕庭.中国河口数学模拟研究的进展[J].海洋通报,1997,16(2):80-85.
    [7]李孟国.海岸河口泥沙数学模拟研究进展[J].海洋工程,2006,24(1):139-154.
    [8]窦国仁,赵士清,黄亦芬.河道二维全沙数学模型研究[J].水利水运科学研究,1987,(2):1-12.
    [9]朱志夏,韩其为,丁平兴.应用多重尺度法推导浅水波方程和泥沙扩散方程[J].水动力学研究与进展,Ser.A,2001,16(3):279-294.
    [10]金生,倪汉根.水流和泥沙问题数值模拟与工程应用[J].大连理工大学学报,2000,40(S1):S78-S82.
    [11]丁平兴,孔亚珍,朱首贤,等.波-流共同作用下的三维悬沙输运数学模型[J].自然科学进展,2001,11(2):147-152.
    [12]林秉南,赵雪华,施麟宝.河口建筑对毗邻海湾潮波变形的计算(二维特征理论法)[J].水利学报,1980,(3):16-26.
    [13]李浩麟,项有法.河口二维潮流单元积分的数值计算[J].水利学报,1984,(11):66-72.
    [14]韩曾萃,程杭平.一、二维污染浓度场及质点跟踪的耦合模型.水污染防治及城市污水资源化技术.北京:科学出版社,1993:231-238.
    [15]徐贵泉,褚君达.河口分层流的三维数值模拟[J].水利学报,1992,(9):39-49.
    [16]李身铎,顾思美.杭州湾潮波三维数值模型[J].海洋与湖沼,1993,1:7-15.
    [17]王尚毅,顾元棪,郭传镇.河口工程泥沙数学模型[M].北京,海洋出版社,1990.
    [18]Wu W M, Rodi W, Wenka T.3D Numerical modeling of flow and sediment and sediment transport in open channels[J]. Journal of Hydraulic Engineering, ASCE. 2000,126(1):4-15.
    [19]刘卓,郭冬建,朱江等.长江口水流和泥沙冲淤的数值模拟的初步研究——Ⅰ自适应网格的构造和水流计算[J].1999,01.
    [20]Pritchard D W.Salinity distribution and circulation in the Chesapeake Bay estuarine system[J]. Journal of Marine Research,1952,11:106-123.
    [21]Pritchard D W. A study on the salt balance in a coastal plain estuary[J]. Journal of Marine Research,1954,13:133-144.
    [22]Pritchard D W.The dynamic structure of a costal plain estuary[J]. Journal of Marine Research,1956,15:33-42.
    [23]沈焕庭,茅志昌,谷国传等.长江口盐水入侵的初步研究—兼谈南水北调[J].人民长江,1980,3:20-26.
    [24]沈焕庭,贺松林,潘定安等.长江河口最大浑浊带研究[J].地理学报,1992,47(5):472-479.
    [25]沈焕庭,袁震东,茅志昌等.连续不宜取水天数的预测.数学的实践与认识,1997,27(2): 1-6.
    [26]沈焕庭,王晓春,杨清书.长江河口径流与盐度的谱分析[J].海洋学报,22(2):17-23.
    [27]沈焕庭,茅志昌,顾玉亮.东线南水北调工程对长江口咸水入侵影响及对策[J].长江流域资源与环境,2002,11(2):150-154.
    [28]茅志昌,沈焕庭.潮汐分汊河口盐水入侵类型探讨——以长江口河口为例[J].华东师范大学学报(自然科学版),1995(3):77-85.
    [29]茅志昌,沈焕庭,徐彭令.长江河口咸水入侵规律及淡水资源利用[J].地理学报,2000,55(2):243-250.
    [30]茅志昌,沈焕庭,肖成猷.长江口北支盐水倒灌南支对青草沙水源地的影响[J].海洋与湖沼,2001,32(1):58-66.
    [31]韩乃斌.长江口南支河段氯度变化分析[J].水利水运科学研究,1983, (1):74-81.
    [32]韩乃斌,蒋星科.长江口南北支二维氯度数学模型[J].海洋工程,1996,14(1): 47-54.
    [33]Schijf J B, Schonfled J C. Theoretical considerations on the motion of salt and fresh water[J]. Hydraulic Engineering,1953:321-333.
    [34]Bowden K F. circulation and mixing in the mersey estuary. International Association for Scientific Hydrology, Committee on Surface Waters.1960: 352-360.
    [35]Bowden K F. The mixing processes in a tidal estuary[J]. International Journal of Air and Water Pollution,1963,7(4/5):343-356.
    [36]Bowden K F. Circulation, Salinity and River Discharge in the Mersey Estuary[J]. Geophysical Journal of the Royal Astronomical Society,1966,10(4): 383-399.
    [37]Prandle D. Salinity Intrusion in Estuaries[J]. Journal of Physical Oceanography, 1981,11(10):1311-1324
    [38]Kostaschuk R A, Atwood A. River discharge and tidal controls on salt-wedge position and implications for channel shoaling:Fraser River, British Columbia[J]. Canadian Journal of Civil Engineering,1990,17:452-459.
    [39]韩乃斌.南水北调对长江口盐水入侵影响的预测[J].地理研究,1983,2:
    [40]肖成猷,沈焕庭.长江河口盐水入侵影响因子分析[J].华东师范大学学报:自然科学版,1998,3:74-80.
    [41]茅志昌,沈焕庭.长江径流变化对南港盐水入侵影响分析[J].海洋科学,1994,2:60-63.
    [42]金元欢,孙志林.中国河口盐淡水混合特征研究[J].地理学报,1992,7(2):165-173.
    [43]茅志昌,沈焕庭,姚运达.长江口南支南岸水域盐水入侵来源分析[J].海洋通报,12(1):15-17.
    [44]包芸,刘杰斌,任杰等.磨刀门水道盐水强烈上溯规律和动力机制研究[J].中国科学G辑:物理力学天文学,2009,39(10):1527-1534.
    [45]朱雅敏,陈子燊.珠江口内伶仃洋河口湾盐度输运机理[J].海洋通报.2008,1:
    [46]Grigg N J, Ivey G N. A laboratory investigation into shear-generated mixing in a
    salt wedge estuary[J]. Geophysical & Astrophysical Fluid Dynamics,1997, 85(1-2):65-95.
    [47]卢祥兴.钱塘江河口盐水入侵的模型试验[J].水利水运科学研究,1991,4:403-410.
    [48]Nassehi V, Kafai A. A moving boundary computer model for hydrodynamics and salt transport in the Tay Estuary[J]. Advances in Environmental Research,1999, 3(3):293-308.
    [49]Hu, Guangdou Gordon. Modeling study of saltwater intrusion in loxahatchee river, Florida [C]. Proceedings of the International Conference on Estuarine and Coastal Modeling,2004:667-680.
    [50]Zhen-Gang Ji, Guangdou Hu et al. Three-dimensional modeling of hydrodynamic processes in the St. Lucie[J]. Estuary.Estuarine, Coastal and Shelf Science,2007, 72(1-2):188-200.
    [51]E A Meselhe M ASCE, H M Noshi M ASCE. Hydrodynamic and Salinity Modeling of the Calcasieu-Sabine Basin[C]. Proceedings of World Water and Environmental Resources Congress,2001.
    [52]E A Meselhe M ASCE, H M Noshi M ASCE. Hydrodynamic and Salinity Modeling of the Calcasieu-Sabine Basin[C]. Proceedings of World Water and Environmental Resources Congress,2001.
    [53]陶学为.长江口海水入侵研究,[J].水利学报,1991,9:36-41.
    [54]周济福,刘青泉,李家春.河口混合过程研究[J].中国科学(A辑),1999,29(9):835-843.
    [55]宋元平,胡方西,谷国传等.长江口口外海滨盐度扩散分层数学模型[J].华东师范大学学报:自然科学版,1990,4:74-83.
    [56]王义刚,朱留正.河口盐水入侵垂向二维数值计算[J].河海大学学报:自然科学版,1991,19(4):1-8.
    [57]马钢峰,刘曙光,戚定满.长江口盐水入侵数值模型研究[J].水动力学研究与进展:A辑,2006,21(1):53-61.
    [58]包芸,任杰.采用改进的盐度场数值格式模拟珠江口盐度分层现象[J].热带海洋 学报,2001,20(4):28-34.
    [59]Brice L, Nino C Yarko, Escauriaza M Christian. Finite volume modeling of variable density shallow-water flow equations for a well-mixed estuary:Application to the Rio Maipo estuary in central Chile[J]. Journal of Hydraulic Research,2005, 43(4):339-350.
    [60]Streeter H W, Phelps Earle B. A Study of the Pollution and Natural Purification of the Ohio River,Ⅲ. Factors concerning the phenomena of oxidation and recreation. US. Public Health Service. Pub. Health Bulltin,1925,146.
    [61]Koncsos L, Fonyo G. Analysis of the transport of cyanide spill on the Tisza River[J]. Water Science and Technology,2004,50(5):101-107.
    [62]富国.河流污染物通量估算方法分析(Ⅰ)—时段通量估算方法比较分析[J].环境科学研究,2003,16(1):1-4.
    [63]Barber R W.1, Wearing M J. Analytical determination of pollution susceptibility in coastal marinas[J]. Progress in Water Resources,2003,8:207-216.
    [64]Baek Kyong Oh, Seo Ⅱ Won, Jeong Seong Jin. Evaluation of dispersion coefficients in meandering channels from transient tracer tests[J]. Journal of Hydraulic Engineering,2006,132(10):1021-1032.
    [65]金红,邹志利,邱大洪等.波生流对海岸污染物输移的影响[J].海洋学报,200,28(6): 144-150.
    [66]唐军,沈永明,邱大洪.近岸沿岸流及污染物运动的数值模拟[J].海洋学报,2008,30(1):147-155.
    [67]孙涛,陶建华.波浪作用下近岸区污染物输移扩散的数学模型及其实验验证[J].海洋学报,2003,25(3):104-112.
    [68]王泽良,王日新,陶建华.渤海湾流场以及污染物分布的数值模拟研究[J].海洋与湖沼,1999,30(2):224-230.
    [69]Rodriguez A, Sanchez-arcilla A, Redondo J et al. Pollutant dispersion in the nearshore region:modelling and measurements [J]. Water Science and Technology,1995,32(9-10):169-178.
    [70]Kachiashvili K, Gordeziani D, Lazarov R et al. Modeling and simulation of pollutants transport in rivers[J]. Applied Mathematical Modelling,2007,31 (7): 1371-1396.
    [71]Meyer JFCA, Diniz GL. Pollutant dispersion in wetland systems:Mathematical modelling and numerical simulation [J]. Ecological Modelling,2007,200(3-4): 360-370.
    [72]Petti M, Bosa S, Accurate shock-capturing finite volume method for advection-dominated flow and pollution transport [J]. Computers & Fluids,2007, 36(2):455-466.
    [73]Gupta I, Dhage S, Chandorkar AA et al.Numerical modeling for Thane creek [J]. Environmental Modelling & Software,2004,19(6):571-579.
    [74]Cunha CDD, Rosman PCC, Ferreira AP et al. Hydrodynamics and water quality models applied to Sepetiba Bay [J]. Continental Shelf Research,2006,26(16): 1940-1953.
    [75]Sun T, Tao JH. Numerical simulation of pollutant transport acted by wave for a shallow water sea bay [J]. International Journal for Numerical Methods in Fluids, 2006,51(5):469-487.
    [76]Sun T, Tao JH. Numerical simulation of pollutant transport acted by wave for a shallow water sea bay [J]. International Journal for Numerical Methods in Fluids, 2006,51(5):469-487.
    [77]Van Pagee J A, Gerritsen H, De Ruijter W P M. Transport and Water Quality Modelling in The Southern North Sea in Relation to Coastal Pollution Research And Control[J]. Water Science And Technology,1985,18(4-5):245-256.
    [78]Di Guardo A, Ferrari C, Infantino A. Development of a dynamic aquatic model (DynA Model):Estimating temporal emissions of DDT to Lake Maggiore (N. Italy) [J]. Environmental Science and Pollution research,2006,13(1):50-58.
    [79]Chau K W1, Jiang Y W. Simulation of transboundary pollutant transport action in the Pearl River delta.Chemosphere,2003,52(9):1615-1621.
    [80]Chau K W 1, Jiang Y W. A three-dimensional pollutant transport model in orthogonal curvilinear and sigma coordinate system for Pearl river estuary[J]. International Journal of Environment and Pollution,2004,21(2): 188-198.
    [81]Stijnen J W, Heemink A W, Lin H X. An efficient 3D particle transport model for use in stratified flow[J]. International Journal for Numerical Methods in Fluids, 2006,51(3):331-350.
    [82]袁德奎,林斌良,陶建华,波浪作用下污染物的混合和离散[J].水利学报,2004,(08): 76-80.
    [83]陶建华,韩光.波浪对浅海近岸污染物输移扩散规律的影响[J].中国科学E辑,2003,33(11):1045-1056.
    [84]沈永明,郑永红,吴修广.近岸海域污染物迁移转化的三维水质动力学模型[J].自然科学进展,2004,14(6):694-670.
    [85]吴修广,沈永明,郑永红等.非正交曲线坐标下水流和污染物扩散输移的数值计算[J].中国工程科学,2003,5(2):57-61.
    [86]沈永明,郑永红,邱大洪.香港维多利亚港三维污染精细预报模型研究[J].水利学报,2000,(08):60-64.
    [87]许金电,江毓武.港湾三维水动力和污染物扩散数值模型[J].台湾海峡,2003,(01): 85-91.
    [88]刘成,李行伟,韦鹤平等.长江口水动力及污水稀释扩散模拟[J].海洋与湖沼,2003,(05):474-483.
    [89]Brebbia CA, Anagnostopoulos P. Modelling hydrodynamic, sediment and contaminant transport processes in coastal and estuarine waters[J]. Water Pollution V-Modelling, Measuring and Prediction,1999,1:3-13.
    [90]王光谦.中国泥沙研究述评[J].水科学进展.1999,10(3):337-344.
    [91]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1983.
    [92]钱宁,张仁,周惠德.河床演变学[M].北京:科学出版社,1987.
    [93]张瑞谨,谢鉴衡,陈文彪.河流动力学[M].武汉,武汉大学出版社,2007.
    [94]吴宋仁.海岸动力学[M],北京:人民交通出版社,2000.
    [95]黄胜,卢启苗.河口动力学[M],北京:水利水电出版社,1995.
    [96]赵今声,赵子丹,员瑛等.海岸河口动力学[M].北京:海洋出版社,1993.
    [97]窦希萍,罗肇森.波浪潮流共同作用下的二维泥沙数学模型[J].水利水运科学研究,1992,(4):331-336.
    [98]曹文洪,何少苓,方春明.黄河河口海岸二维非恒定水流泥沙数学模型[J].水利学报,2001,(1):42-48.
    [99]Lumborg U, Windelin A. Hydrography and cohesive sediment modelling: Application to the Rm Dyb tidal area[J]. Journal of Marine Systems,2003, 38(3-4):287-303.
    [100]窦国仁.潮汐水流中悬沙运动及其冲淤计算[J].水利学报,1963,(4):13-23.
    [101]白玉川,顾元棪,蒋昌波.潮流波浪联合输沙及海床冲淤演变的理论体系与其数学模拟[J].海洋与湖沼,2000,31(2):186-196.
    [102]张修忠,王光谦.河道及河口一维及二维欠套泥沙数学模型[J].水利学报,2001,(10):82-87.
    [103]王光谦.中国泥沙研究述评[J].水科学进展,1999,10(3):337-344.
    [104]李孟国.伶仃洋三维流场数值模拟[J].水动力学研究与进展,1996,11(3)342-351.
    [105]李孟国,时钟,秦崇仁.伶仃洋三维潮流输沙的数值模拟[J].水利学报,2003,(4):54-57.
    [106]李孟国.海岸河口泥沙数学模型研究进展[J].海洋工程,2006,24(1):139-154.
    [107]Jansen J M L, R B Painter. Predictiong sediment yield from climate and topography[J]. Journal of Hydrology,1974,21:371-380.
    [108]Probst J L, P Amiotte-Suchet. Fluvial suspended sediment transport and mechanical erosion in the Maghreb(North Africa) [J]. Hydrological Science Journal,1992,37:621-637.
    [109]Alnert F. Functional relationships between denudation, relief and uplift in large mid-latitude drainage basins[J]. American Journal of Science,1970,268:243-263.
    [110]Milliman J D, J P M Syvitski. Geomorphic/tectonic control of sediment discharge to the ocean:The importance of small mountainous rivers[J]. Journal of Geology, 1992,100:525-544.
    [111]Summerfied M A, N J Hulton. Natural control of fluvial denudation rates in major world drainage basins[J]. Journal of Geophysical Research.1994,99(B7): 13871-13883.
    [1]2]孙效功,杨作升,陈彰榕.现行黄河口海域泥沙冲淤的定计算及其规律探讨[J].海洋学报,1993,15:129-136.
    [113]毕敖洪,孙志林.椒江河口过程初步研究[J].泥沙研究,1984,3:12-26.
    [114]沈健,沈焕庭,潘定安等.长江河口最大浑浊带水沙输运机制分析[J].地理学报,1995,50(5):411-420.
    [115]王康墡,苏纪兰.长江口南港环流及悬沙物质输移的计算分析[J].海洋学报,1987,9(5):627-637.
    [116]师长兴.1855年以来黄河泥沙输移系统的泥沙淤积分布分析[J].泥沙研究,2003,2:1-6.
    [117]林承坤.长江口及其邻近海域粘性泥沙的数量和输移[J].地理学报,1992,47(2): 108-117.
    [118]林承坤.长江口泥沙的数量和输移[J].中国科学(A辑),1988,1:104-112.
    [119]吴华林,沈焕庭,胡辉等.GIS支持下的长江口拦门沙泥沙冲淤定量计算[J].海洋学报,2002,24(2):84-93.
    [120]Milliman J D, H T Shen, Z S Yang et al. Transport and deposition of river sediment in the Changjiang estuary and adjacent shelf [J]. Continental Shelf Research,1985,4:37-45.
    [121]Kemp J. Flood channel morphology of a quiet river, the Lachlan downstream from Cowra, southeastern Australia[J]. Geomorphology,2004,60:171-190.
    [122]Gilbert G K. The Transportation of Debris by Running Water. U S Geol Sur Prof Paper,1914,86(1)-263.
    [123]窦国仁.全沙河工模型试验的研究[J].科学通报,1979,14:
    [124]刘金梅,王光谦,王士强.沙质河道冲刷不平衡输沙机理及规律研究[J].水科学进展,2003,14(5):563-568.
    [125]熊绍隆.杭州湾北岸深槽冲淤变化试验研究[J].水利学报,1994,10:54-60.
    [126]董年虎,赵新建,刘燕等.黄河下游丁坝缩窄河道泥沙冲淤特性试验研究[J]. 水利学报,2009,39(6):688-695.
    [127]郝品正,普晓刚.湘江株洲航电枢纽坝区河段河床变形预报试验研究[J].泥沙研究,2005,(4).
    [128]高学平,张亚.波浪作用下堤前沙质海床冲淤形态[J].天津大学学报,2004,5,37(5).
    [129]许卫亿,苏纪兰.杭州湾二维潮波计算及底质分布的动力成因[J].海洋与湖沼,1986,6:493-523.
    [130]周济福,王涛.径流与潮流对长江口泥沙输运的影响[J].水动力学研究与进展:A辑,1999,14(1):90-100.
    [131]张世奇.二维动边界潮流输沙及河床变形计算[J].泥沙研究,1988,4.
    [132]郑金海.贴体正交曲线坐标系下水流泥沙数学模型的构建与应用[J].海洋通报,2003,1.
    [133]赵连军,淡广鸣,韦直林等.黄河下游河道悬移质泥沙与床沙交换计算研究[J].水科学进展,2005,16(2):155-163.
    [134]朱志夏,韩其为,丁平兴.海岸悬沙运移数学模型[J].海洋学报,2002,24(1):101-107.
    [135]陈晓宏,陈永勤,赖国友.珠江口悬浮泥沙迁移数值模拟[J].海洋学报,2003,25(2):120-127.
    [136]Clarke S, Elliott AJ. Modelling suspended sediment concentrations in the firth of forth[J]. Estuarine Coastal and Shelf Science,1998,47(3):235-250.
    [137]J.Lou, P V Ridd. Modelling of suspended sediment transport in coast areas under waves and currents[J]. Estuarine, Coastal and Shelf Science,1997,45(1):1-16.
    [138]G I Shapiro. A 2.5D model for sand transport in a shallow sea:Effect of Ekman Veering[J]. Continental Shelf Research,2004,1(24):659-671.
    [139]Peter Cole, Gordon V Miles. Two-Dimensional Model of Mud Transport[J]. Journal of Hydraulic Engineering,1983,109(1):1-12.
    [140]A.Sandrine, R Vincent et al. Modelling of suspended sediment fluxes off the rhone river mouth[J]. Journal of Coast Research,1999,15(1):61-73.
    [141]Mead CT. An investigation of the suitability of two-dimensional mathematical models for predicting sand deposition in dredged trenches across estuaries[J]. Journal of Hydraulic Research,1999,37(4):447-464.
    [142]Yang C T. Potentical Energy and Stream Morphology[J]. Water Resources Research,1971,7(2):312.
    [143]Yang C T.Minimum Unit stream Power and Fluvial Hydraulics[J]. J of Hy-draulic Engineering, ASCE,1976,102(HY7):919-934.
    [144]Yang CT, Song C S. Theory of Minimum Rate of Energy Dissipation[J]. J of Hy-draulic Engineering, ASCE,1979,105(HY7):769.
    [145]Song C S, Yang C T. Minimum Stream Power:Theory[J]. J of Hy-draulic Engineering, ASCE,1980,6,106(HY7):1477.
    [146]庞炳东.复式断面河流洪水的水流特性[J].泥沙研究,1995, (1):16-21.
    [147]庞炳东.河流洪水流场中的能量分布[J].水利学报,1997,(5):36-41.
    [148]Abrahams A D, Atkinson J F. Relation between grain velocity and sediment concentration in overland flow[J]. Water Resources Research,1993,29:3021-3028
    [149]Bagnold R A. An approach to the sediment transport problem for general physics. Geological Survey Professional Paper(U.S.),1966:442-1.
    [150]Lal R主编.土壤侵蚀研究方法[M].黄河水利委员会宣传出版中心译.北京:科学出版社,1991:125-152.
    [151]赵鸿雁,吴钦孝,刘向东等.水土流失系统物质与能量交换途径的研讨[J].水土保持学报,1993,7(1):61-68.
    [152]陆中臣;李忠艳;陈浩等.黄河下游河流下凹型纵剖面成因分析[J].泥沙研究,2003,5:15-20.
    [153]陈绪坚,胡春宏.基于最小可用能耗率原理的河流水沙数学模型[J].水利学报,2004,8:38-45.
    [154]黄克中,钟恩清.最小水流能量损失率理论在河相关系中的应用[J].地理学报,1991,46(2):178-185.
    [155]Yang CT, Song CCS, Woldenberg MJ. Hydraulic Geometry and Minimum Rate of Energy Dissipation[J]. Water Resources Research,1981,17(4):1014-1018.
    [156]Chen M, Wartel S. Estuarine Hydrodynamics and Energy. Proceedings of the 5th International Conference on Asian and Pacific Coasts,2009,1:216-222.
    [157]Sun T, Meakin P, Jossang T. Minimum Energy-dissipation Model for River Basin Geometry[J]. Physical Review E,1994,49(6):4865-4872.
    [158]Molnar P, Ramirez JA. Energy dissipation theories and optimal channel characteristics of river networks[J]. Water Resources Research,1998,34(7): 1809-1818.
    [159]Chen XJ, Hu CH. Mathematic model based on minimum rate of available energy dissipation and its application in the Lower Yellow Rive. Proceedings of the ninth International Symposium on River Sedimentation,2004,1-4:1544-1549.
    [160]Wyrick JR, Pasternack GB. Modeling energy dissipation and hydraulic jump regime responses to channel nonuniformity at river steps [J]. Journal of Geophysical Research-earth Surface,2008,113(F3)
    [161]Rodrigueziturbe I, Rinaldo A, Rigon RL et al. Energy-dissipation, Runoff Production, and the 3-dimensional structure of river basins [J]. Water Resources Research,1992,28(4):1095-1103.
    [162]钱宁,谢汉祥,周志德等.钱塘江河口沙坎的近代过程[J].地理学报,1964,2(30):124-148.
    [163]冯应俊,.李炎,李伯根.杭州湾地貌、沉积特征及其与水系锋面的关系.中国海洋学文集第2集.北京:海洋出版社,1992.
    [164]胡方西.杭州湾盐度变化的基本特征.海岸河口区动力地貌沉积过程论文集.海洋出版社,1990.
    [165]Rodi W. Turbulence models and their applications in hydraulics, IAHR, Publications, Delft, The Netherlands,1984.
    [166]Roe P L. Approximate Riemann solvers, parameter vectors, and difference-schemes[J]. Journal of Computational Physics,1981,43:357-372.
    [167]Sleigh P A, Gaskell P H. An unstructured finite-VOlUme algorithm for predicting flow in rivers and estuaries[J]. Computers & Fluids,1998,27(4): 479-508.
    [168]Jawahar P, Kamath H. A high-resolution procedure for Euler and Navier-Stokes computations on unstructured grids [J]. Comput Phys,2000,164:165-203.
    [169]Hirsch C. Numerical Computation of Internal and External Flows, Computational Methods for Inviscid and Viscous Flows, Wiley,1990, (2)
    [170]Darwish M S, Moukalled F. TVE schemes for unstructured grids[J]. Int.J.of Heat and Mass Transfor,2003,46:599-611.
    [171]Delft hydraulics. Delft3D-Flow user manual [M]. WL Delft hydraulics,2006.
    [172]Van Rijn L C. Sediment Transport, Part Ⅰ:Bed Load Transport[J]. Journal of Hydraulic Engineering,1984,110(10).
    [173]Van Rijn L C. Sediment Transport, Part Ⅱ: Suspended Load Transport[J]. Journal of Hydraulic Engineering,1984,110(11).
    [174]Van Rijn L C. Sediment Transport, Part Ⅲ:Bed Forms and Alluvial Roughness[J] Journal of Hydraulic Engineering,1984,110(12).
    [175]Van Rijn L C.Sediment Pick-Up Functions [J] Journal of Hydraulic Engineering, 1984,110(10).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700