用户名: 密码: 验证码:
钢管混凝土非线性稳定承载能力与可靠度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有良好的力学性能,特别是良好的抗压性能,钢管混凝土已广泛应用于建筑结构中,并在桥梁结构中多用作拱桥拱肋。雅泸高速公路中首次采用劲性骨架钢管混凝土做为桥墩。本论文以腊八斤连续刚构桥为研究背景,开展钢管混凝土桥墩稳定性研究,其中最高桥墩达182米,为亚洲第一高墩。本文内容主要包括以下三个部分:
     论文的第一部分,在阅读大量国内外文献基础上,综述了钢管混凝土承载能力与可靠度研究现状。并提出了进行钢管混凝土稳定承载能力分析与可靠度研究的课题。
     论文的第二部分,主要解决钢管混凝土非线性稳定极限承载能力的问题。首先建议了考虑偏心影响的约束混凝土应力—应变关系,利用退化梁理论编制了钢管混凝土材料非线性分析的有限元程序,并利用弧长法求解钢管混凝土非线性问题。采用钢管混凝土轴压与偏压试验,验证本文非线性有限元程序的正确性。利用非线性分析程序与既有钢管混凝土短柱偏压试验,研究钢管混凝土偏压柱的受力机理。研究结果表明在偏心荷载作用下,核心混凝土部分受拉开裂,开裂程度与偏心率有关。核心混凝土开裂后,混凝土体积膨胀受到抑制,导致套箍效应削弱。钢管混凝土构件在轴向荷载与小偏心荷载作用下,破坏时以混凝土受压破坏为主;大偏心与纯弯构件破坏时,核心混凝土大量开裂,构件破坏形式为钢材受拉屈服,其承载能力主要取决于钢管强度与含钢率;介于小偏心与大偏心之间的构件,其破坏时混凝土部分受拉开裂,钢管混凝土的套箍效应受到削弱。为了解决钢管混凝土稳定极限承载能力的求解,在考虑材料非线性的有限元分析基础上,应考虑几何非线性分析。论文利用U.L列式推导了退化梁单元的几何刚度矩阵。利用已有的钢管混凝土长柱,钢管混凝土拱试验与本文开展的超高墩模型试验,验证了本文的非线性有限元程序的正确性。利用参数分析,考察几何非线性对承载能力的影响。以腊八斤大桥中的钢管混凝土桥墩为例,对混凝土强度等级,钢材型号,轴向荷载偏心距展开参数分析。
     论文的第三部分,主要解决钢管混凝土非线性稳定极限承载能力的可靠度分析问题。首先利用蒙特卡罗方法,考察了钢管混凝土短柱轴压极限承载能力概率分布,并得到钢管混凝土轴压短柱可靠度的简化计算公式。其次,介绍了钢管混凝土结构初始几何缺陷的一致缺陷模态法与随机场缺陷法描述两种方法。讨论了随机网格划分数目的上限问题,提出了采用插值技术的随机场网格离散方法,并研究该方法的离散精度。利用已有的文献中的可靠度分析结果,验证了该方法的正确性与有效性。最后,利用响应面理论,建议了钢管混凝结构稳定极限承载能力的可靠度计算方法。利用优化原理,采用序列无约束极小化技术,解决由于非线性引起的FORM验算点搜索困难。利用钢管混凝土柱,钢管混凝土拱与钢管混凝土超高墩的可靠度分析实例,对几何非线性与初始缺陷的影响,稳定系数的取值,钢材、混凝土材料特性与径厚比对可靠度影响等问题展开讨论。
Because of the good mechanical performance, the concrete-filled tube (CFT) is widely applied in the structure. CFT usually is demonstrated as a suitable structural element for arch ribs through bridge engineering practices, for the CFT element exhibits excellent compressive resistance capacity. Rigid framework with CFT was in service as super high pier in Ya Lu High Way. The stability of CFT piers are studied, relying on the LaBaJin and HeiShiGou continuous rigid frame bridge in this thesis, of which is the highest pier in Asia (182m). The dissertation includes three parts mainly:
     In the first part, based on a large number of literatures, the overviews of CFT structures and reliability are undertaken. The research project to study the ultimate resistance and reliability of CFT structures is put forward.
     In the second part, the nonlinear analysis of ultimate stability resistance is solved. First, a modified stress-strain relation for confined concrete which involves the influence of load eccentricity on confining pressure is proposed. The nonlinear finite element software of CFT is presented, adopting in formulation of degenerated beam element. To study the whole-process behavior of the CFT structure, the arc-length method is introduced in the nonlinear analysis program. The nonlinear behaviors of experimental CFT short columns are investigated, and the accuracy of the proposed constitutive model for confined concrete is mainly concerned. The results demonstrate that because of the crack of confining concrete with increment of eccentricity, the volume expansion of core concrete may decrease gradually, which leads the steel tube to provide weaker confining pressure on core concrete. It can be found that the core concrete is under whole-section compression, for the small eccentrically loaded column. On the contrary, as large eccentrically loaded column, a large portion of core concrete has been tensile cracked, and trivial confining pressure can be predicted. The case can be viewed as an intermediate state between small and large eccentrically loaded column, and a reduction of confining pressure may be an appropriate way to reflect the actual behavior. To solve the ultimate stability resistance of CFT, the geometrical nonlinearity should be considered as well as material nonlinearity. Second, geometrical stiffness matrix induced by large deformation is derived by updated Lagrange formulation. The behaviors of CFT slender test columns and test arch are simulated by the program developed in this part. The numerical data are suitable for the test results well. The effect of geometrical nonlinearity is studied by parametric analysis. In additional, the effects of concrete strength, steel strength and eccentricity to the ultimate resistance of high pier in LaBaJin Bridge are investigated. A model experiment of CFT high pier is accomplished. The accuracy of the nonlinear analysis program is proved by the experimental results.
     In the third part, the main propose is to present a reliability analysis method of nonlinear ultimate stability resistance of CFT. Probability distributions of ultimate resistance capacity of axial loaded short CFT column are investigated by Monte Carlo method. Means and mean-square deviations of those are presented by regression analysis. The distributions don't refuse normal distributions through K-S method. The reliability index can be calculated easily with the suggested probability distribution model. Next, consistent mode imperfection method and random field imperfection method are introduced to deal with the initial imperfection of CFT structures. The upper limit of random variables of exponential decay model and square exponential decay model are induced, considering the range of variables in person computer. Based on the interpolating technology, a new method is suggested to mesh random field, verified by exiting literature. Finally, a general and versatile reliability analysis program of nonlinear ultimate bearing capacity of CFT is developed by response surface method. The difficult of searching designing point induced by nonlinear is solved through Sequential Unconstrained Minimization Technique (SUMT). The stability coefficient and influences of geometrical, initial imperfection, concrete strength, steel strength and D/t to reliability index are discussed in the numerical examples.
引文
[1]Kloppel V K, Goder W. An investigation of the load carrying capacity of concrete-filled steel tubes and development of design formla[J]. Der Stahlbau.1957,26(1):1-10.
    [2]Kloppel V K, Goder W. An investigation of the load carrying capacity of concrete-filled steel tubes and development of design formla[J]. Der Stahlbau.1957,26(2):44-50.
    [3]Furlong R W. Strength of steel-encased concrete beam-columns[J]. Journal of structural division, ASCE. 1967,93(ST5):113-124.
    [4]Neogi P K, Sen H K, Chapman J C. Concrete-filled tubular steel columns under eccentric loading [J]. the Sturctural engineer.1969,47:187-195.
    [5]Knowles R B, Par K R. Strength of concrete filled steel tubular columns[J]. Journal of structural division, ASCE.1969,95(ST12):2565-2587.
    [6]Knowles R B, Par K R. Axial load design for concrete filled steel tubes[J]. Journal of structural division, ASCE.1970,95(ST10):2125-2153.
    [7]Gardner J, Jacobson E R. Structural behaviour of concrete filled steel tube[J]. ACI Structure Journal. 1967,64(7):404-413.
    [8]Bridge R Q. Concrete filled steel tubular columns[R]. Sydney:School of Civil Enaineerina in University of Sydney,1976.
    [9]Tomii M, Yoshimaro K, Morishita Y. Experimental study on concrete filled steel tubular stub column under concentric loading[C]. Washington:SSRC/ASCE,1979.
    [10]Tomii M, Sakino K. Experimental studies on the ultimate moment of concrete filled square steel tubular beam-columns[R]. Transactions of Japan concrete Insitute,1979.
    [11]Tomii M, Sakino K. Elasto-plastic behaviour of concrete filled square steel tubular beam-columns[R]. Transactions of Japan Concrete Institute,1979.
    [12]Tomii M, Sakino K. Experimental studies on concrete filled square steel tubular beam-columns subject to monotonic shearing force and constant axial force[R]. Transactions of Japan concrete Insitute,1979.
    [13]Elchalakani M, Zhao X L, Grzebieta R H. Concrete-filled circular steel tubes subjected to pure bending[J]. Journal of Constructional Steel Research.2001,57(11):1141-1168.
    [14]汤关祚,招炳泉,竺惠仙,等.钢管混凝土基本力学性能的研究[J].建筑结构学报.1982,3(1):13-31.
    [15]蔡绍怀,焦占拴.钢管混凝土短柱的基本性能和强度计算[J].建筑结构学报.1984(06):2-11.
    [16]蔡绍怀,邸小坛.钢管混凝土偏压柱的性能和强度计算[J].建筑结构学报.1985(04).
    [17]顾维平,蔡绍怀,冯文林.钢管高强混凝土偏压柱性能与承载能力的研究[J].建筑科学.1993(03).
    [18]谭克锋,蒲心诚,蔡绍怀.钢管超高强混凝土的性能与极限承载能力的研究[J].建筑结构学报.1999(01):10-15.
    [19]谭克锋,蒲心诚.Optimum Choice of Formulae for Calculating Load-bearing Capacity of Superhigh Strength Concrete Filled Steel Tubes[J].建筑科学.2000(03).
    [20]余志武,丁发兴,林松.钢管高性能混凝土短柱受力性能研究[J].2002.
    [21]王力尚,钱稼茹.钢管高强混凝土柱轴心受压承载力试验[J].2003.
    [22]韩林海著.钢管混凝土结构[M].北京:科学出版社,2007.
    [23]Furlong R W. Columns rules of ACI, SSLC, and LRFD compared[J]. Journal of structural division, ASCE.1983,109(10):2375-2386.
    [24]Shikir-Khalil H. Pushout strength of concrete-filled steel hollow sections[J]. The structure engineer.1993, 71(13):230-233.
    [25]Shikir-Khalil H. Resistance of concrete-filled steel tubes to pushout force[J]. The structure engineer. 1993,71(13):234-243.
    [26]蔡绍怀著.现代钢管混凝土结构[M].北京:人民交通出版社,2007.
    [27]钟善桐著.钢管混凝土结构[M].北京:清华大学出版社,2003.
    [28]Hajjar J F, Gourley B C. Representation of concrete-filled tubes, Ⅰ:formulation[J]. Journal of Structural Engineering,ASCE.1996,123(6):736-744.
    [29]Hu H T, Huang C S, Wu M H, et al. Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect[J]. ournal of Structural Engineering, ASCE.2003, V129(10):1322-1329.
    [30]韩林海.钢管混凝土压弯扭构件工作机理研究[D].哈尔滨:哈尔滨建筑工程学院,1993.
    [31]韩林海.钢管混凝土统一设计理论研究.博士后研究工作报告[R].黑龙江:国家地震局工程力学研究所,1995.
    [32]韩林海,钟善桐.钢管混凝土力学[M].大连:大连理工大学出版社,1996.
    [33]陈洪涛,钟善桐.钢管混凝土构件双重非线性分析[J].哈尔滨建筑大学学报.2001,34(6):32-35.
    [34]徐兴.钢管混凝土轴心受压构件极限承载力的有限元分析[J].固体力学学报.2002,23(4):419-425.
    [35]严志刚,王德军,盛洪飞.钢管混凝土三维非线性梁单元的研究与应用[J].哈尔滨工业大学学报.2003,35(3):334-337.
    [36]程晓东,程莉莎,叶贵如.圆钢管混凝土压弯长柱非线性屈曲承载力的理论研究[J].工程力学.2004,21(6):131-137.
    [37]Saenz L P. Equation for the stress-strain curve of concrete[J]. Journal of ACI.1964, V61(9):1229-1235.
    [38]Fe R, A B, R1 B. A study of the failure of concrete under combined compressive stresses. Bull.185. Champaign (IL, USA)[R]. University of Illinois Engineering Experimental Station,1928.
    [39]陈洪寿.各种截面钢管混凝土轴压短柱基本系能连续性的理论研究[D].哈尔滨工业大学,2001.
    [40]韩林海,钟善桐.利用内时理论描述钢管混凝土在复杂受力状况下核心混凝土本构模型[J].哈尔滨建筑工程学院学报.1993,26(2):48-54.
    [41]常大民,江克斌编著.桥梁结构可靠性分析与设计[M].北京:中国铁道出版社,1995:324.
    [42]张建仁等编著.结构可靠度理论及其在桥梁工程中的应用[M].北京:人民交通出版社,2003:180.
    [43]李继华等编著.建筑结构概率极限状态设计[M].北京:中国建筑工业出版社,:426.
    [44]赵国藩,曹居易,张宽权.工程可靠度[M].水利电力出版社,1984.
    [45]Freudenthal A M. The safety of structures[J]. Trans.,ASCE.1947:112.
    [46]Freudenthal A M. The analysis of structural safety[J]. J.Struct. Div,ASCE.1966,92(1):267-325.
    [47]Cornell C A. A probability-based structural code[J]. ACI J.1969,66(12):974-985.
    [48]Lind N C. Consistent partial safety factors.[J]. J. Struct. Div,ASCE.1971,97(ST6):1651-1699.
    [49]Hasofer A M, Lind N C. An exact and invariant first order reliability format[J]. J.Eng.Mech.Div,ASCE. 1974,100(1):111-121.
    [50]Engelund S, Rackwitz R. A benchmark study on importance sampling techniques in structural reliability[J]. Structural Safety.1993,12(4):255-276.
    [51]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,1990.
    [52]Liu P, Der K. Multivariate distribution models with prescribed marginals and covariances[J]. Probabilistic Engineering Mechanics.1986,1(2):105-112.
    [53]Der K A, Liu P L. Structural Reliability Under Incomplete Probability Information[J]. Journal of Engineering Mechanics,ASCE.1986,112(1):85-104.
    [54]秦权,林道锦,梅刚.结构可靠度随机有限—理论及工程应用[M].北京:清华大学出版社,2006.
    [55]Fiessler B, Neumann H, Rackwitz R. Quadratic limit states in structural reliability[J]. J.Eng.Mech.Div,ASCE.1979,105(EM4):661-676.
    [56]Tvedt L. The distribution of quadratic forms in the normal space-an application to structural reliability[J]. J.Eng.Mech.1990,116(6):1183-1197.
    [57]Kiureghian A D, Lin H, Hwang S J. Second-order reliability approximation[J]. J.Eng.Mech.,ASCE.1987, 113(8):1208-1225.
    [58]Cai G Q, Elishakoff I. Refined Second-order reliablity analysis[J]. Structural Safety.1994,14(4): 267-276.
    [59]Borri A, Speranzini E. Structural Reliability Analysis using a Standard Deterministic Finite Element Code[J]. Structural Safety.1997,19(4):361-382.
    [60]Maymon G. Probability of Failure of Structures Without a Closed-form Failure Function[J]. Computers&Structures.1993,49(2):301.
    [61]Maymon G. Direct Computation of the Design Point of a Stochastic Structure Using a Finite Element Code[J]. Structural Safety.1994,14(3):185-202.
    [62]Thacker B H, Harren S V, Millwater H R. Combined Stress and Resistance Modeling with the NESSUS Software System[J]. ASME,Design Engineering Division(Publication)DE.1991,30:49-54.
    [63]Bucher C G, Schueller G I. Software for Reliability-Based Analysis[J]. Structural Safety.1994,16(1,2): 13-22.
    [64]Estes A C, Frangopol D. RELSYS:A computer Program for Structural System Reliability[J]. Structural Engineering and Mechanics.1998,6(8):901-919.
    [65]Riha D S, Millwater H R, Vellathottam G, et al. Finite Element Based Progbability Contouring Method for Structural Analysis[C]. Probabilistic Mechanics and Structural and Geotechnical Reliability, Proceedings of the Spcialty Conference,1996.922-925.
    [66]Imai K, Frangopol D M. System Reliability of Suspension Bridge[J]. Structural Safety.2002,24(2-4): 219-259.
    [67]Der K A, Ke J B. Finite element based reliability analysis of fram structures[Z]. Proceeding of 4th International Conference on Structural Safety and Reliability,Kobe,Japan,1985:395-404.
    [68]Mahadevan S, Haldar A. Stochastic FEM-based evaluation of LRFD[J]. Journal of Structural Engineering.1991,117(5):1393-1412.
    [69]Liu P, Der K. Optimization algorithms for structural reliability [J]. Structural Safety.1991,9(3): 161-177.
    [70]Deodatis G. Stochastic FEM sensitivity analysis of nonlinear dynamic problems [J]. Probabilistic Engineering Mechanics.1989,4(3):135-141.
    [71]Der K A, Ke J. The stochastic finite element method in structural reliability[J]. Probabilistic Engineering Mechanics.1988,3(2):83-91.
    [72]Vanmarcke E H. Stochastic finite elements and experimental measurements [J]. Probabilistic Engineering Mechanics.1994,9(3):103-114.
    [73]Vanmarcke, H E, Shinozuka M, et al. Random fields and stochastic finite elements [J]. Structural Safety. 1986,3(3):143-166.
    [74]K L W, T B, A M. Random field finite elements[J]. Internation Journal for Numerical Methods in Engineering.1986,23:1831-1845.
    [75]D S P, R G. Stochastic finite element expansion for random media[J]. Journal of Engineering Mechanics. 1989,115(5):1035-1052.
    [76]B Z J, Ellingwood. Orthogonal series expansions of random fields in reliability analysis[J]. Journal of Engineering Mechanics.1993,120(12):2660-2677.
    [77]Li C C, Der K A. Optimal discretization of random fields[J]. Journal Engineering Mechanics.1993, 119(6):1136-1154.
    [78]Xiang T, Tong Y, Zhao R. A general and versatile nonlinear analysis program for concrete bridge structure [J]. Advances in Engineering Software.2005,36(10):681-690.
    [79]陈宝春,王来永,欧智菁,等.钢管混凝土偏心受压应力-应变关系试验研究[J].2003.
    [80]Hu H, Huang C, Chen Z. Finite element analysis of CFT columns subjected to an axial compressive force and bending moment in combination [J]. Journal of Constructional Steel Research.2005,61(12):1692-1712.
    [81]张彦玲,戴运良,李运生.钢管混凝土拱肋体系可靠度的研究[J].石家庄铁道学院学报.1998,11(2):67-71.
    [82]许富友,张健仁,郝海霞.钢管混凝土拱桥的拱肋稳定性可靠度分析[J].长沙交通学院学报.2004,20(1):6-10.
    [83]周圣斌.钢管混凝土柱极限承载力可靠度校准分析[J].建筑科学.2009,25(3):79-81.
    [84]陶忠,韩林海,杨华.钢管混凝土构件设计计算及可靠度分析[J].工业建筑.2000,30(6):1-6.
    [85]余志武,贺飒飒.钢管混凝土短柱极限承载力可靠度分析[J].工程力学.2006,23(11):139-144.
    [86]滕启杰,张哲,李生勇.大跨度钢管混凝土窄拱桥稳定性可靠度分析[J].大连理工大学学报.,46(增刊):144-150.
    [87]Elremaily A, Azizinamini A. Behavior and strength of circular concrete-filled tube columns [J]. Journal of Constructional Steel Research.2002,58(12):1567-1591.
    [88]Schneider S P. Axially loaded concrete-filled steel tubes[J]. Journal of Structural Engineering, ASCE. 1998,V124(10):1125-1138.
    [89]Susantha K A S, Ge H, Usami T. Uniaxial stress-strain relationship of concrete confined by various shaped steel tubes [J]. Engineering Structures.2001,23(10):1331-1347.
    [90]Hatzigeorgiou G D. Numerical model for the behavior and capacity of circular CFT columns, Part Ⅰ: Theory [J]. Engineering Structures.2008,30(6):1573-1578.
    [91]Huang C S, Yeh Y K, G Y Liu, et al. Axial Load Behavior of Stiffened Concrete-Filled Steel Columns[J]. Journal of Structural Engineering, ASCE.2002, V128 (9):1222-1230.
    [92]Gupta P K, Sarda S M, Kumar M S. Experimental and computational study of concrete filled steel tubular columns under axial loads[J]. Journal of Constructional Steel Research.2007, V63:182-193.
    [93]向天宇,童育强,赵人达.基于退化梁单元的混凝土结构徐变分析[J].2006.
    [94]童育强,向天宇,赵人达.基于退化理论的空间梁单元有限元分析[J].2006.
    [95]江见鲸,陆新征,叶列平编著.混凝土结构有限元分析[M].北京:清华大学出版社,2005.
    [96]Ga W. Discrete approximations related to non-linear theories of solids[J]. Int J. Solids Struct.1971(7): 1581-1599.
    [97]E R. The application of Newton's method to the problem of elastic stability[J]. J. Appl Mech.1972,39: 1060-1066.
    [98]Lam W F M C T. Arc-length method for passing limit points in structural calculation[J]. Journal of Structural Engineering.1992,118:169-185.
    [99]Crisfield M A. A arc-length method including line searches and accelerations[J]. International Journal of Numerical Methods in Engineering.1983, V19:1269-1289.
    [100]向天宇,赵人达,刘海波.混凝土结构全过程非线性分析的弧长法研究[J].铁道学报.2002,24(3):67-70.
    [101]Matsui C, Tsuda K, Ishibashi Y. Slender concrete filled steel tubular columns under combined compression and bending [Z]. Singapore:199529-36.
    [102]李国豪.桥梁结构稳定与振动(修订版)[M].北京:人民铁道出版社,1996.
    [103]姚敏红,赵伟封,马保林,et al.薄壁特高墩预应力混凝土连续刚构桥的空间稳定性[J].长安大学学报(自然科学版).2004(No.4):51-54.
    [104]蒋丽忠,丁发兴,余志武.圆钢管混凝土结构非线性有限元分析[J].建筑结构学报.2006(4):110-115.
    [105]向天宇.预应力高强混凝土箱型连续梁结构行为的非线性分析[D].西南交通大学,2002.
    [106]Wood R D, Zienkiewicz O C. Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells [J]. Computers & Structures.1977,7(6):725-735.
    [107]Zeghiche J, Chaoui K. An experimental behaviour of concrete-filled steel tubular columns J. Zeghichea,, and K. Chaouib[J]. Journal of Constructional Steel Research.2005,61(1):53-66.
    [108]陈宝春,陈友杰.钢管混凝土肋拱面内受力全过程试验研究[J].2000.
    [109]Hohenbichler M, Rackwitz R. Nonnormal Dependent Vectors in Structural Reliability[J]. Journal of Engineering Mechanics Division,ASCE.1981,107:1127-1238.
    [110]Nataf A. Determination des Distribution dont les Marges sont Donneses[J]. Comptes Rendus de l'Academie des Sciences.1962,225:42-43.
    [111]肖刚,李天柁著.系统可靠性分析中的蒙特卡罗方法[M].北京:科学出版社,2003.
    [112]李亚东.结构可靠性理论及其在铁路桥梁中的应用[D].西南交通大学,1992.
    [113]Melchers R E. Importance sampling in structural systems [J]. Structural Safety.1989,6(1):3-10.
    [114]Ibrahim Y. Observations on applications of importance sampling in structural reliability analysis This article is not included in your organization's subscription. However, you may be able to access this article under your organization's agreement with Elsevier. Yaacob Ibrahim[J]. Structural Safety.1991,9(4):269-281.
    [115]Stix G I S. A critical appraisal of methods to determine failure probabilities*1 This article is not included in your organization's subscription. However, you may be able to access this article under your organization's agreement with Elsevier. G. I. SchuAller[J]. Structural Safety.1987,4(4):293-309.
    [116]Melchers R E. Simulation in time-invariant and time-variant reliability problem[Z]. Berlin:Springer, 199139-82.
    [117]Liu P, Der K A. Finite element reliability of geometrical nonlinear uncertain structures[J]. J. Engrg. Mech. 1991,117(8):1806-1825.
    [118]GB 50010-2002,混凝土结构设计规范[S].2002.
    [119]CECS 28:90钢管混凝土结构设计与施工规程[S].1990.
    [120]韩林海,杨有福著.现代钢管混凝土结构技术[M].北京:中国建筑工业出版社,2004.
    [121]BS EN10210-2. British Standard:Hot finished structural hollow sections of non-alloy and fine grain steels Part 2:Tolerances, dimensions and sectional properties. British Standards Institution[S].2006.
    [122]BS EN1993-1-1. Eurocode 3:Design of steel structures_Part 1-1:General rules and rules for buildings. British Standards Institution[S].2005.
    [123]沈世钊.网壳结构的稳定性[M].北京:科学技术出版社,1999:52-60.
    [124]李中学.初始几何缺陷对网壳结构静、动力稳定性承载力的影响[J].土木工程学报.2002,35(1):11-15.
    [125]梅刚.基于非线性随机有限元的结构可靠度问题研究[D].清华大学;,2005.
    [126]L F. Response-surface approach for reliability analysis[J]. Journal of engineering mechanics.1989, 115(12).
    [127]Bucher C G, Bourgund U. A fast and efficient response surface approach for structural reliability problems[J]. Structural Safety.1990,7:57-66.
    [128]Rajashekhar M R, Eillingwood B R. A new look at response surface approach for reliability analysis[J]. Structural Safety.1993,12:205-220.
    [129]Maymon G. Probability of failure of structures without a close-form failiure function[J]. Computers and Structures.1994,49(2):301-313.
    [130]终晓利,赵国藩.一种与结构可靠度分析几何法相结合的响应面方法[J].土木工程学报.1997,30(4):51-57.
    [131]Box G P, William G H, Hunter J. Statistics for experiments:An introduction to design, data analysis and modeling building[M]. New York:Wiley,1978.
    [132]Box M J, Wilson K B. On the experimental attainment of optimum conditions (with discussion)[J]. J. Royal Statistical Society.1951, B13:1-45.
    [133]亢战,罗阳军.计算结构可靠度指标的修正迭代算法[J].工程力学.2008(11).
    [134]薛嘉庆.最优化原理与方法[M].北京:冶金工业出版社,1992.
    [135]陈宇.有限元模型修正技术在桥梁工程中的应用研究[D].西南交通大学;,2006.
    [136]中华人民共和国交通部.公路斜拉桥设计细则[S].2007.
    [137]Japan Aij A I O. Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures[S].1997.
    [138]中华人民共和国交通部.GB/T 50283-1999,公路工程结构可靠度设计统一标准[S].1999.
    [139]李扬海,鲍卫刚,郭修武,等.公路桥梁结构可靠度与概率极限状态设计[M].北京:人民交通出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700