用户名: 密码: 验证码:
金属纳米粒子参与的化学发光及其在高效液相色谱分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文首先综述了化学发光、金属纳米材料的性质和常用的表征方法,以及金属纳米材料参与的化学发光及其分析应用的研究现状。虽然化学发光的基础理论和分析应用已经有多年的研究历史,但是有关化学发光的研究一直局限于分子和离子水平。最近,金属纳米粒子直接或者间接参与的化学发光拓展了化学发光理论和应用研究范畴。已经发现金属纳米粒子能够作为催化剂、还原剂、微尺度反应平台和能量接受体参与化学发光。但是,纳米化学发光体系依然十分有限,而且一些体系发光量子产率较低,很难应用于分析测定。进一步开发纳米化学发光体系不但有利于化学发光和纳米材料的基础研究而且为化学发光的分析应用提供了新方法和新思路。此外,有关化学发光反应中纳米粒子功能控制的研究鲜见报道。基于此,本论文以纳米银钯合金和纳米银为研究对象,利用胶体pH和纳米粒子表面吸附剂两种途径,设计了两个纳米化学发光新体系,实现了纳米化学发光体系的控制,探索了这些体系的化学发光行为、规律和机理。同时,利用高效液相色谱与纳米化学发光体系联用发展了一种高灵敏度的分析新方法。主要研究内容如下:
     1.利用化学还原法合成了一种银钯双金属纳米粒子,借助扫描电子显微镜、透射电子显微镜、X射线能谱分布、X射线衍射等仪器分析手段,详细研究了粒子的尺寸,形貌,化学组成和结构等。将酸性的银钯双金属胶体与鲁米诺溶液混合伴随着“闪光型”的化学发光现象。该化学发光的特点是调节胶体溶液的pH值能够可逆地调控这个化学发光的强度。当胶体溶液在酸性条件下,化学发光处于“开”的状态;当胶体溶液在碱性条件下,化学发光则处于“关”的状态。另外,研究发现酸化已经发生过化学发光反应的胶体溶液,再重复注入鲁米诺工作溶液,化学发光能够再生。而且通过这样的再生方法,胶体至少能够重复使用30次。借助化学发光光谱和紫外可见光谱:等仪器手段我们进一步深入研究了化学发光依赖于胶体溶液pH值的原因,提出了银钯纳米粒子pH依赖的催化作用机理。银钯纳米粒子在酸性条件下能够与溶解氧反应生成过氧化钯的中间体,该中间体氧化鲁米诺能够产生化学发光。由于氢离子是生成过氧化钯中间体的必备条件。所以调节银钯胶体的pH值能够控制该化学发光“开”或“关”。最后,我们研究了银原子在银钯胶体参与的化学发光中的作用,结果表明银能够催化并增强该化学发光。本章工作发现没有任何功能分子参与的简单银钯合金纳米粒子在化学发光反应中的催化活性完全受控于其所在溶液的pH值。由于pH控制的催化作用不但能够用于化学发光反应而且也能够应用于那些众多的依赖于酸碱协同催化的有机化学反应中,本章工作为将简单纳米粒子设计成为拥有pH控制的催化作用的智能纳米材料提供了一个新的思路。
     2.银纳米粒子在吸附剂(溴离子)和硫酸铜的存在下能够与鲁米诺溶液发生化学发光反应。试剂加入的顺序是该化学发光体系的关键。只有鲁米诺溶液最后加入反应体系,才能产生光发射。通过紫外吸收光谱、X射线衍射和X光电子能谱等方法确认了与化学发光密切相关的关键中间产物Cu(I)配合物,提出了化学发光的机理。在溴离子存在下,银纳米粒子还原硫酸铜获得Cu(I)的配合物,部分Cu(I)的配合物能够与溶解氧反应产生超氧基阴离子。超氧基阴离子与鲁米诺反应产生化学发光。溴离子在该化学发光体系中有两个重要的作用。一方面它是作为吸附剂增强胶体银的还原性,协助还原反应生成Cu(I)。另外一方面溴离子与Cu(I)配合防止Cu(I)在水中歧化。根据这个发光机理我们推测其它具有以上两种功能的亲核试剂如碘离子、氯离子和硫代硫酸钠也能够诱导该化学发光反应。在合理调整实验条件后我们观察到这些亲核试剂也能够成功地引发该化学发光。本章工作利用吸附剂增强纳米粒子的还原性能,构建了吸附剂存在下纳米粒子诱导的鲁米诺化学发光新体系。
     3.基于鲁米诺—硝酸银—纳米金化学发光体系,建立了一种高效液相色谱与纳米化学发光联用同时分析鼠脑透析液中单胺类神经递质及其代谢物的分析新方法。将一些与生命活动相关的还原性物质引入鲁米诺—硝酸银—纳米金化学发光体系,包括单胺类神经递质及其代谢物、尿酸和谷胱甘肽等。结果发现这些物质对该化学发光体系有明显的抑制作用。其中,单胺类神经递质及其代谢物的抑制作用非常强。以多巴胺为例,我们利用紫外光谱和停留动力学实验研究了抑制作用的机理。接着,考虑到目前还没有液相色谱和化学发光联用法能够解决儿茶酚胺类和吲哚胺类化合物的同时测定,我们基于化学发光抑制作用,发展了一种化学发光与液相色谱联用新方法同时测定单胺类神经递质及其代谢物(包括肾上腺素、去甲肾上腺素、多巴胺、5-羟色胺、3,4-二羟基苯乙酸、香草酸和5-羟基吲哚乙酸),并且成功应用于鼠脑透析液的分析检测中。该方法具有操作简便、分析时间短、选择性好等优点。本方法是首次将纳米金参与的化学发光用于液相色谱柱后检测。
     4.将碳纳米管修饰的玻碳电极用于研究在循环伏安扫描过程中鲁米诺的阴极电致化学发光。通过与裸玻碳电极比较,碳纳米管在电极表面能够使鲁米诺阴极电致化学发光的电位向正电位移动而且能够极大地增强该电致化学发光的强度。基于碳纳米管浓度、鲁米诺浓度和工作溶液pH等因素对鲁米诺的阴极电致化学发光的影响研究,发现碳纳米管对该电致化学发光的影响都来源于其对氧气还原的催化作用。氧气在碳纳米管的催化下被电还原生成过氧化氢阴离子,过氧化氢阴离子能够与鲁米诺反应产生化学发光。
In this dissertation, the state of arts in the field of chemiluminescence (CL), the properties and characterization methods of metal nano-materials and their applications in CL were reviewed. Although the theory and the application of CL have been investigated for many years, the study of CL was limited to molecular and ion systems. Recently, metal nanoparticle-involved CL became one of the most attractive developments in these fields, in which metal nanoparticles can participate in CL reactions as catalyst, reductant, naonosized platform and energy acceptor. However, most of the reported nanoparticles-involved CL systems were not of high quantum yield for many applications in analysis. The design of new nanoparticles-involved CL were valuable not only to gain a better understanding the properties of metal nanoparticles and the fundamental studies of CL but also to extend the analytical applications of CL. Meanwhile, the investigation of nanoparticle-controlled CL system has been rarely reported. Therefore, in the present dissertation, the pH-dependent catalysis of Pd-Ag nanoparticles and adsorbate-enhanced reducibility of Ag nanoparticles were employed to design new CL systems. The CL behaviors, rules and mechanisms of these new CL systems were investigated. Moreover, a novel method for simultaneous determination of monoamine neurotransmitters and their metabolites was developed by coupling high-performance liquid chromatography (HPLC) with nanoparticles-involved CL. The main results are as follows:
     1. Pd-Ag colloid was synthesized by chemical reduction method in a solution. The morphology, chemical composition and structure of the Pd-Ag nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, and X-ray diffraction patterns (XRD). It was found that the acidic Pd-Ag colloid could react with luminol to produce an unusual chemiluminescence, which could be reversibly switchable by modulating the pH of Pd-Ag colloid. When the Pd-Ag colloid was in acidic conditions, the CL was "on"; when the Pd-Ag colloid was in neutral and basic conditions, the CL was "off. Moreover, after the CL reaction, the CL emission could be regenerated by the acidification of the reacted mixture and the repetitious injection of luminol. The CL mechanism was investigated by CL spectra, UV-visible spectra, the effect of N2 and O2 on the CL reaction, and the oxidation reaction between acidic Pd-Ag colloid and 2,2'-azino-bis(3-ethyl-benzothiazoline-6-sulfonic acid). It is proposed that acidic Pd-Ag colloid reacted with the dissolved oxygen to yield Pd hydroperoxide, a key intermediate, which oxidized luminol under Ag catalysis to produce light emission. Because H+is necessary for the formation of Pd hydroperoxide, the luminol CL emission could be controlled by the pH of Pd-Ag colloid. pH-switchable chemiluminescence was successfully obtained for the first time by using simple Pd-Ag nanoparticles without coating any smart polymers or functional molecules. Pd-Ag nanoparticles as catalysts in the aerobic oxidation of luminol are very stable and could be reused for at least 30 cycles without obvious losing in their virgin catalytic activity, which is also a promising catalyst for the aerobic oxidation of other organic compounds.
     2. In the presence of adsorbates (Br-) and Cu2+, Ag nanoparticles could initiate luminol CL. To yield the CL emission, the luminol must be the last reagent added into the system. UV-visible absorption spectra showed that silver nanoparticles in the presence of NaBr could react with CUSO4 before injection of luminol. The X-ray diffraction patterns and X-ray photoelectron spectra demonstrated that Cu (Ⅰ) complex was a key reaction product in AgNPs-NaBr-CUSO4 system. Besides, it was also found that superoxide dismutase could inhibit the CL, revealing that a superoxide anion was involved in the CL reaction. On this basis, it was suggested that the luminol CL induced by silver nanoparticles in the presence of NaBr and Cu2+derived from Cu(I) complex formed via the reduction of CuSO4 by AgNPs by the aid of NaBr, which reacted with the dissolved oxygen to generate the superoxide anion; then the superoxide anion reacted with luminol to produce CL. Br- as an adsorbate was considered to decrease the oxidation potential of silver nanoparticles so that Cu(II) is readily reduced to Cu(I) and to bind to Cu(I) preventing Cu(I) from dismutation in water. As expected, other adsorbates such as Cl-, I-and thiosulfate, which were also efficient to decrease the oxidation potential of AgNPs and bind to Cu (I), could also induce the luminol CL.
     3. Based on the luminol-AgNO3-Au colloid CL system, a novel method for simultaneous determination of monoamine neurotransmitters and their metabolites was developed by coupling high-performance liquid chromatography with nanoparticle-involved CL reaction. Our previous work showed that gold nanoparticles could trigger chemiluminescence (CL) between luminol and AgNO3. In the present work, the effect of some biologically important reductive compounds, including monoamine neurotransmitters and their metabolites, reductive amino acids, ascorbic acid, uric acid, and glutathione, on the novel CL reaction were investigated for analytical purpose. It was found that all of them could inhibit the CL from the luminol-AgNO3-Au colloid system. Among them, monoamine neurotransmitters and their metabolites exhibited strong inhibition effect. Taking dopamine as a model compound, the CL mechanism was studied by measuring absorption spectra during the CL reaction and the reaction kinetics via stopped-flow technique. The CL inhibition mechanism is proposed to be due to that these tested compounds competed with luminol for AgNO3 to inhibit the formation of luminal radicals and to accelerate deposition of Ag atoms on surface of gold nanoparticles, leading to a decrease in CL intensity. Based on the inhibited CL, a novel method for simultaneous determination of monoamine neurotransmitters and their metabolites was developed by coupling high-performance liquid chromatography with this CL reaction. The new method was successfully applied to determine the compounds in a mouse brain microdialysate. Compared with the reported HPLC-CL methods, the proposed method is simple, fast, and could simultaneously determine catcholamine and indoleamine and their metabolites.
     4. The electrochemiluminescent (ECL) behavior of luminol on a carbon nanotube (CNT)-modified glass carbon electrode (GCE) during cathodic scanning was investigated. Compared with a bare glass carbon electrode, the CNT-modified GCE promoted a positive shift in ECL potential and an increase in the ECL signal. The effects of CNTs concentration, luminol concentration, and pH on the cathodic ECL of luminol were studied, and the possible cathodic ECL mechanism was proposed. CNTs could catalyze electronic reduction of dissolved oxygen to produce HO2-, which reacted with luminol to give ECL signal.
引文
[1]. Bulgakov R. G.,Kazakov V. P.,Tolstikov G. A. Chemiluminescence of Organometallics in Solution. Journal of Organometallic Chemistry,1990,387(1):11-64.
    [2]. Robards K.,Worsfold P. J. Analytical Applications of Liquid-Phase Chemiluminescence. Analytica Chimica Acta,1992,266(2):147-173.
    [3]. Bowie A. R.,Sanders M. G.,Worsfold P. J. Analytical applications of liquid phase chemiluminescence reactions-A review. Journal of Bioluminescence and Chemiluminescence, 1996,11 (2):61-90.
    [4]. M. T. Studies on chemiluminescence. Zeitschrift fur Physikalische Chemie,1905,53:1.
    [5]. Kautsky H Z. H. The relation between chemi-and photoluminescence of unsaturated silicon compounds, zeitschrift fur Physik,1922,9(1):267-284.
    [6]. L. M. Phenomena of luminescence in the course of oxidizing reactions in aqueous solution, comptes Rendus,1927,185:352-354.
    [7], HO. A. Chemiluminescence of aminophthalic hydrazide. Zeitschrift fur Physikalische Chemie,1928,136:321-330.
    [8]. Gleu K P. W. The chemiluminescence of the dimethylbiacridylium salts. Angewandte Chemie, 1933,48(3):57-59.
    [9]. Hills A. J.,Zimmerman P. R. Isoprene Measurement by Ozone-Induced Chemiluminescence. Analytical Chemistry,1990,62(10):1055-1060.
    [10].Garcia I. L.,Vinas P.,Gil J. A. M. Fia Titrations of Sulfide, Cysteine and Thiol-Containing Drugs with Chemiluminescent Detection. Fresenius Journal of Analytical Chemistry,1993, 345(11):723-726.
    [11]. Wardencki W.,Zygmunt B. Gas-Chromatographic Sulfur-Sensitive Detectors in Environmental-Analysis. Analytica Chimica Acta,1991,255(1):1-13.
    [12].Mendenhall G. D. Chemiluminescence Techniques for the Characterization of Materials. Angewandte Chemie-International Edition in English,1990,29(4):362-373.
    [13].Beck S.,Koster H. Applications of Dioxetane Chemiluminescent Probes to Molecular-Biology. Analytical Chemistry,1990,62(21):2258-2270.
    [14].Steele R. W. Clinical-Applications of Chemiluminescence of Granulocytes. Reviews of Infectious Diseases,1991,13(5):918-925.
    [15].徐叙瑢,苏勉曾,发光学与发光材料.北京:化学工业出版社,2004.
    [16].林金明,化学发光基础理论与应用.北京:化学工业出版社,2004.
    [17].Marquette C. A.,Blum L. J. Applications of the luminol chemiluminescent reaction in analytical chemistry. Analytical and Bioanalytical Chemistry,2006,385(3):546-554.
    [18].Yamaguchi M.,Yoshida H.,Nohta H. Luminol-type chemiluminescence derivatization reagents for liquid chromatography and capillary electrophoresis. Journal of Chromatography A, 2002,950(l-2):1-19.
    [19]. Wen Y. Q.,Yuan H. Y.,Mao J. F., et al. Droplet detector for the continuous flow luminol-hydrogen peroxide chemiluminescence system. Analyst,2009,134(2):354-360.
    [20], Alpeeva I. S.,Sakharov I. Y. Soybean peroxidase-catalyzed oxidation of luminol by hydrogen peroxide. Journal of Agricultural and Food Chemistry,2005,53(14):5784-5788.
    [21].Kuroda N.,Shimoda R.,Wada M., et al. Lophine derivatives and analogues as new phenolic enhancers for the luminol-hydrogen peroxide-horseradish peroxidase chemiluminescence system. Analytica Chimica Acta,2000,403(1-2):131-136.
    [22].Al-Gailani B. R. M.,Greenway G. M.,McCreedy T. Miniaturized flow-injection-analysis (mu FIA) system with on-line chemiluminescence detection based on the luminol-hypochlorite reaction for the determination of ammonium in river water. International Journal of Environmental Analytical Chemistry,2007,87(6):425-436.
    [23].Li J. Z.,Dasgupta P. K. Chemiluminescence detection with a liquid core waveguide-Determination of ammonium with electrogenerated hypochlorite based on the luminol-hypochlorite reaction. Analytica Chimica Acta,1999,398(1):33-39.
    [24].Arnhold J.,Mueller S.,Arnold K., et al. Mechanisms of Inhibition of Chemiluminescence in the Oxidation of Luminol by Sodium-Hypochlorite. Journal of Bioluminescence and Chemiluminescence,1993,8(6):307-313.
    [25]. Pan J.,Huang Y. M.,Shu W. Q., et al. Effect of pH on the characteristics of potassium permanganate-luminol CL reaction in the presence of trace aluminum(Ⅲ) and its analytical application. Talanta,2007,71(5):1861-1866.
    [26].Du J. X.,Lu J. R. Hydrazine-induced post-chemiluminescence phenomenon of permanganate-luminol reaction and its applications. Luminescence,2004,19(6):328-332.
    [27].Easwaramoorthy D.,Yu Y. C.,Huang H. J. Chemiluminescence detection of paracetamol by a luminol-permanganate based reaction. Analytica Chimica Acta,2001,439(1):95-100.
    [28]. White EH B. M. Chemiluminescence of luminol and related hydrazides:The light emission step. Journal of the American Chemical Society,1964,86(5):941-942.
    [29].Xiao C. B.,Palmer D. A.,Wesolowski D. J., et al. Carbon dioxide effects on luminol and 1,10-phenanthroline chemiluminescence. Analytical Chemistry,2002,74(9):2210-2216.
    [30]. Rose A. L.,Waite T. D. Chemiluminescence of luminol in the presence of iron(II) and oxygen: Oxidation mechanism and implications for its analytical use. Analytical Chemistry,2001, 73(24):5909-5920.
    [31].Seitz WR S. W., Hercules DM Determination of trace amounts of chromium(III) using chemiluminescence analyisis. Analytical Chemistry,1972,44(6):957-963.
    [32].IE. K. Chemiluminescent method for determining nanogram amounts of manganese. Ukrainskii Khimicheskii Zhurnal,1969,35(7):755-757.
    [33].Fujiwara T.,Tanimoto N.,Nakahara K., et al. Catalytic Behavior of Iron(Iii)-8-Quinolinol Complex in the Chemiluminescence Reaction of Luminol with Hydrogen-Peroxide in Reverse Micelles. Chemistry Letters,1991, (7):1137-1140.
    [34].Ci Y. X.,Tie J. K.,Yao F. J., et al. Catalytic Behavior of Iron(Ii)-Oxime Complexes in the Chemiluminescence Reaction of Luminol with Hydrogen-Peroxide. Analytica Chimica Acta,1993, 277(1):67-72.
    [35].Yeh H. C.,Hsu W. T.,Lin W. Y. Enhancement in chemiluminescence by carbonate for cobalt(II)-catalyzed oxidation of luminol with hydrogen peroxide. Journal of the Chinese Chemical Society,2005,52(4):657-664.
    [36].Tsukagoshi K.,Sumiyama M.,Nakajima R., et al. Chemiluminescence property of the luminol hydrogen peroxide copper(II) system in the presence of surface-carboxylated microspheres. Analytical Sciences,1998,14(2):409-412.
    [37].Ci Y. X.,Zheng Y. G.,Tie J. K., et al. Chemiluminescence Investigation of the Interaction of Metalloporphyrins with Nucleic-Acids. Analytica Chimica Acta,1993,282(3):695-701.
    [38].Kapeluich Y. L.,Rubtsova M. Y.,Egorov A. M. Enhanced chemiluminescence reaction applied to the study of horseradish peroxidase stability in the course of p-iodophenol oxidation. Journal of Bioluminescence and Chemiluminescence,1997,12(6):299-308.
    [39].Easton P. M.,Simmonds A. C.,Rakishev A., et al. Quantitative model of the enhancement of peroxidase-induced luminol luminescence. Journal of the American Chemical Society,1996, 118(28):6619-6624.
    [40].Nakamura M.,Nakamura S. One-and two-electron oxidations of luminol by peroxidase systems. Free Radical Biology and Medicine,1998,24(4):537-544.
    [41].Botchkareva A. E.,Eremin S. A.,Montoya A., et al. Development of chemiluminescent ELISAs to DDT and its metabolites in food and environmental samples. Journal of Immunological Methods,2003,283(1-2):45-57.
    [42].Rubtsova M. Y.,Kovba G. V.,Egorov A. M. Chemiluminescent biosensors based on porous supports with immobilized peroxidase. Biosensors & Bioelectronics,1998,13(1):75-85.
    [43].Zhou G. J.,Wang G,Xu J. J., et al. Reagentless chemiluminescence biosensor for determination of hydrogen peroxide based on the immobilization of horseradish peroxidase on biocompatible chitosan membrane. Sensors and Actuators B-Chemical,2002,81(2-3):334-339.
    [44].Kamidate T.,Watanabe H. Peroxidase-catalysed luminol chemiluminescence method for the determination of glutathione. Talanta,1996,43(10):1733-1738.
    [45].Kricka J. L.,Cooper M.,Ji X. Y. Synthesis and characterization of 4-iodophenylboronic acid: A new enhancer for the horseradish peroxidase-catalyzed chemiluminescent oxidation of luminol. Analytical Biochemistry,1996,240(1):119-125.
    [46].Diaz A. N.,Sanchez F. G.,Garcia J. A. G. Phenol derivatives as enhancers and inhibitors of luminol-H2O2-horseradish peroxidase chemiluminescence. Journal of Bioluminescence and Chemiluminescence,1998,13(2):75-84.
    [47].Vdovenko M. M.,Della Ciana L.,Sakharov I. Y.3-(10'-Phenothiazinyl)propane-l-sulfonate is a potent enhancer of soybean peroxidase-induced chemiluminescence. Analytical Biochemistry, 2009,392(1):54-58.
    [48].Sakharov I. Y.,Alpeeva I. S.,Efremov E. E. Use of soybean peroxidase in chemiluminescent enzyme-linked immunosorbent assay. Journal of Agricultural and Food Chemistry,2006, 54(5):1584-1587.
    [49].Sakharov I. Y.,Berlina A. N.,Zherdev A. V., et al. Advantages of Soybean Peroxidase over Horseradish Peroxidase as the Enzyme Label in Chemiluminescent Enzyme-Linked Immunosorbent Assay of Sulfamethoxypyridazine. Journal of Agricultural and Food Chemistry, 58(6):3284-3289.
    [50].陆明刚,化学发光分析.合肥:安徽科技出版社,1986.
    [51].Santafe A. A. M.,Doumeche B.,Blum L. J., et al. 1-Ethyl-3-Methylimidazolium Ethylsulfate/Copper Catalyst for the Enhancement of Glucose Chemiluminescent Detection: Effects on Light Emission and Enzyme Activity. Analytical Chemistry,82(6):2401-2404.
    [52].Lan D.,Li B. X.,Zhang Z. J. Chemiluminescence flow biosensor for glucose based on gold nano particle-enhanced activities of glucose oxidase and horseradish peroxidase. Biosensors& Bioelectronics,2008,24(4):934-938.
    [53].Li B. X.,Lan D.,Zhang Z. J. Chemiluminescence flow-through biosensor for glucose with eggshell membrane as enzyme immobilization platform. Analytical Biochemistry,2008, 374(1):64-70.
    [54]. Hong H. C.,Huang H. J. Flow injection analysis of uric acid with a uricase-and horseradish peroxidase-coupled Sepharose column based luminol chemiluminescence system. Analytica Chimica Acta,2003,499(1-2):41-46.
    [55].Wu F. Q.,Huang Y. M.,Huang C. Z. Chemiluminescence biosensor system for lactic acid using natural animal tissue as recognition element. Biosensors & Bioelectronics,2005, 21(3):518-522.
    [56].Hu Y. F.,Zhang Z. J. Determination of free cholesterol based on a novel flow-injection chemiluminescence method by immobilizing enzyme. Luminescence,2008,23(5):338-343.
    [57].Gamiz-Gracia L.,Garcia-Campana A. M.,Huertas-Perez J. F., et al. Chemiluminescence detection in liquid chromatography:Applications to clinical, pharmaceutical, environmental and food analysis-A review. Analytica Chimica Acta,2009,640(1-2):7-28.
    [58].Marquette C. A.,Blum L. J. Electrochemiluminescence of luminol for 2,4-D optical immunosensing in a flow injection analysis system. Sensors and Actuators B-Chemical,1998, 51(l-3):100-106.
    [59].Myhre O.,Andersen J. M.,Aarnes H., et al. Evaluation of the probes 2',7'-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochemical Pharmacology,2003,65(10):1575-1582.
    [60].Fan A. P.,Cao Z. J.,Li H. A., et al. Chemiluminescence Platforms in Immunoassay and DNA Analyses. Analytical Sciences,2009,25(5):587-597.
    [61].Zhao L. X.,Sun L.,Chu X. G. Chemiluminescence immunoassay. Trac-Trends in Analytical Chemistry,2009,28(4):404-415.
    [62].Rubina A. Y.,Dyukova V. I.,Dementieva E. I., et al. Quantitative immunoassay of biotoxins on hydrogel-based protein microchips. Analytical Biochemistry,2005,340(2):317-329.
    [63].Knecht B. G.,Strasser A.,Dietrich R., et al. Automated microarray system for the simultaneous detection of antibiotics in milk. Analytical Chemistry,2004,76(3):646-654.
    [64].Fall B. I.,Eberlein-Konig B.,Behrendt H., et al. Microarrays for the screening of allergen-specific IgE in human serum. Analytical Chemistry,2003,75(3):556-562.
    [65].Maskiewicz R S. D., Bruice TC Chemiluminescent reactions of lucigenin.1. Reactions of lucigenin with hydrogen peroxide. Journal of the American Chemical Society,1979, 101(18):5347-5354.
    [66].Maskiewicz R S. D., Bruice TC Chemiluminescent reaction of lucigenin.2.Reactions of lucigenin with hydroxide ion and other nucleophiles. Journal of the American Chemical Society, 1979,101(18):5355-5364.
    [67].Larena A.,Urreaga J. M. Solvent Effects on Chemiluminescence from the Hydrogen Peroxide-Lucigenin Reaction-Kinetics of Light-Emission in Mixed Polar-Solvents. Monatshefte FurChemie,1991,122(11):907-913.
    [68].Larena A.,Martinezurreaga J. Solvent Effects in the Reaction of Lucigenin with Basic Hydrogen-Peroxide-Chemiluminescence Spectra in Mixed Polar-Solvents. Monatshefte Fur Chemie,1991,122(8-9):697-704.
    [69].LAM. Determination of cobalt by lucigenin chemiluminescence. Analytical Chemistry,1979, 51(7):926-930.
    [70].Pechishcheva N. V.,Shunyaev K. Y. Application of luminescence to the determination of trace copper. Journal of Analytical Chemistry,2008,63(5):412-423.
    [71].Montano LA I. J. J. Investigation of the lucigenin chemiluminescence reaction, analytical Chemistry,1979,51(7):919-926.
    [72].Alwarthan A. A.,Altamrah S. A.,Akel A. A. Flow-Injection Determination of Kanamycin by Inhibition of the Lucigenin-H2o2-Co2+System. Analytica Chimica Acta,1994,292(1-2):201-208.
    [73].Alwarthan A. A.,Altamrah S. A.,Alakel A. A. Determination of Isoprenaline with Lucigenin Chemiluminescence Using Flow-Injection Analysis. Analytical Sciences,1994,10(3):449-452.
    [74].Chen G. N.,Xu X. Q.,Duan J. P., et al. Flow injection and liquid chromatographic detection of amino acids based on the chemiluminescence reaction of lucigenin. Analytical Communications, 1996,33(3):99-102.
    [75].RA S. Lucigenin chemiluminescence and biomolecules-determination of heparin. Analytica Chimica Acta,1983,155(1):123-129.
    [76].Sasamoto H.,Maeda M.,Tsuji A. Chemiluminescent Enzymatic Assay for Cholesterol in Serum Using Lucigenin. Analytica Chimica Acta,1995,310(2):347-353.
    [77].Perezruiz T.,Martinezlozano C.,Sanz A. Flow-Injection Chemiluminometric Determination of Ascorbic-Acid Based on Its Sensitized Photooxidation. Analytica Chimica Acta,1995, 308(1-3):299-307.
    [78].Sato K.,Chiba Y.,Tanaka S. Selective Determination of L-Ascorbic-Acid by a Chemiluminescence Method with Ascorbate Oxidase. Analytica Chimica Acta,1993, 277(1):61-65.
    [79].Yamada S.,Kohsaka N.,Iwamura M., Syntheses and properties of cell-membrane permeable lucigenin derivatives for the assay of intracellular superoxide. In Bioluminescence & Chemiluminescence:Progress and Perspectives, Tsuji, A.; Matsurnoto, M.; Maeda, M.; Kricka, L. J.; Stanley, P. E., Eds.2005; pp 359-362.
    [80].Bhakdi S.,Martin E. Superoxide Generation by Human Neutrophils Induced by Low-Doses of Escherichia-Coli Hemolysin. Infection and Immunity,1991,59(9):2955-2962.
    [81].Afanas'ev I. B.,Ostrakhovitch E. A.,Mikhal'chik E. V., et al. Direct enzymatic reduction of lucigenin decreases lucigenin-amplified chemiluminescence produced by superoxide ion. Luminescence,2001,16(5):305-307.
    [82]. Veazey RL N. T. Chemiluminescent determination of clinically important organic reductants. Analytical Chemistry,1979,51(13):2092-2096.
    [83].Nakano M. Detection of active oxygen species in biological systems. Cellular and Molecular Neurobiology,1998,18(6):565-579.
    [84].Olasehinde E. F.,Makino S.,Kondo H., et al. Application of Fenton reaction for nanomolar determination of hydrogen peroxide in seawater. Analytica Chimica Acta,2008,627(2):270-276.
    [85]. Hu Y.,Zhang Z.,Yang C. The determination of hydrogen peroxide generated from cigarette smoke with an ultrasensitive and highly selective chemilumifiescence method. Analytica Chimica Acta,2007,601(1):95-100.
    [86].Tahirovic A.,Copra A.,Omanovic-Miklicanin E., et al. A chemiluminescence sensor for the determination of hydrogen peroxide. Talanta,2007,72(4):1378-1385.
    [87]. Greenway G. M.,Leelasattarathkul T.,Liawruangrath S., et al. Ultrasound-enhanced flow injection chemiluminescence for determination of hydrogen peroxide. Analyst,2006, 131(4):501-508.
    [88].Gundermann KD M. F., Chemiluminescence in Organic Chemistry. Berlin:Springer-Verlag, 1987; p 77-108.
    [89].Nakano M S. K., Ushijima Y, Goto T Chemiluminescence probe with cypridina luciferin analog,2-methyl-6-phenyl-3,7-dihydroimidazo[1,2-a]pyrazin-3-hydrochloride, for estimating the ability of human granulocytes to generate O2. Analytical Biochemistry,1986,159:363-369.
    [90].Lam M.,Oleinick N. L.,Nieminen A. L. Photodynamic therapy-induced apoptosis in epidermoid carcinoma cells-Reactive oxygen species and mitochondrial inner membrane permeabilization. Journal of Biological Chemistry,2001,276(50):47379-47386.
    [91]. Wang J.,Xing D.,He Y. H., et al. Experimental study on photodynamic diagnosis of cancer mediated by chemiluminescence probe. Febs Letters,2002,523(1-3):128-132.
    [92].Adam W.,Kazakov D. V.,Kazakov V. P. Singlet-oxygen chemiluminescence in peroxide reactions. Chemical Reviews,2005,105(9):3371-3387.
    [93].Kanofsky J. R., Assay for singlet-oxygen generation by peroxidases using 1270-nm chemiluminescence. In Singlet Oxygen, Uv-a, and Ozone,2000; Vol.319, pp 59-67.
    [94]. Richardson WH Y. M., Oneal ED Thermal decomposition of substituted 1,2-dioxetanes. Journal of the American Chemical Society,1972,94(5):1619-1623.
    [95].Luo L. R.,Zhang Z. J.,Hou L. Y., et al. The study of a chemiluminescence immunoassay using the peroxyoxalate chemiluminescent reaction and its application. Talanta,2007,72(4):1293-1297.
    [96].Tsunoda M.,Imai K. Analytical applications of peroxyoxalate chemiluminescence. Analytica Chimica Acta,2005,541(1-2):13-23.
    [97].Mahant VK M. J., Thakrar H Flow injection analysis with chemiluminescence detertion in the determination of fluorescein-and fluorescamine-labelled species, analytica Chimica Acta, 1983,145:203-206.
    [98].Kwakman P. J. M.,Brinkman U. A. T. Peroxyoxalate Chemiluminescence Detection in Liquid-Chromatography. Analytica Chimica Acta,1992,266(2):175-192.
    [99].Hindson B. J.,Barnett N. W. Analytical applications of acidic potassium permanganate as a chemiluminescence reagent. Analytica Chimica Acta,2001,445(1):1-19.
    [100]. Barnett N. W.,Hindson B. J.,Jones P., et al. Chemically induced phosphorescence from manganese(Ⅱ) during the oxidation of various compounds by manganese(Ⅲ), (Ⅳ) break and (Ⅶ) in acidic aqueous solutions. Analytica Chimica Acta,2002,451(2):181-188.
    [101]. Adcock J. L.,Francis P. S.,Barnett N. W. Acidic potassium permanganate as a chemiluminescence reagent-A review. Analytica Chimica Acta,2007,601(1):36-67.
    [102]. Fujimori K.,Tanimoto A.,Takada K., et al. Chemiluminescent Emitter Based on the Reactions by Ce(IV). Analytical Letters,2008,41(16):2954-2962.
    [103]. Ye H. Z.,Qiu B.,Chen J., et al. Flow-injection analysis for meloxicam based on tris(2,2 '-bipyridine) ruthenium(Ⅱ)-Ce(Ⅳ) chemiluminescent system. Luminescence,2009, 24(4):260-265.
    [104]. Wan G. H.,Cui H.,Pan Y. L., et al. Determination of quinolones residues in prawn using high-performance liquid chromatography with Ce(Ⅳ)-Ru(bpy)(3)(2+)-HNO3 chemiluminescence detection. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences,2006,843(1):1-9.
    [105]. Juan X.,Shi B.,Ai X. P., et al. Chemiluminescence detection of isoniazid using Ru(phen)(3)(2+)-isoniazid-Ce(Ⅳ) system. Journal of Pharmaceutical and Biomedical Analysis, 2004,36(1):237-241.
    [106]. 张立德,牟季美,纳米材料和纳米结构.北京:科学出版社,2001.
    [107]. 刘吉平,廖莉玲,无机纳米材料.北京:科学出版社,2003.
    [108]. Valden M.,Lai X.,Goodman D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science,1998,281(5383):1647-1650.
    [109]. Jia J. F.,Haraki K.,Kondo J. N., et al. Selective hydrogenation of acetylene over Au/Al2O3 catalyst. Journal of Physical Chemistry B,2000,104(47):11153-11156.
    [110]. Bond G. C. Relativistic effects in coordination, chemisorption and catalysis. Journal of Molecular Catalysis a-Chemical,2000,156(1-2):1-20.
    [111]. Shiraishi Y.,Toshima N. Colloidal silver catalysts for oxidation of ethylene. Journal of Molecular Catalysis a-Chemical,1999,141(1-3):187-192.
    [112]. Campbell F. W.,Compton R. G. The use of nanoparticles in electroanalysis:an updated review. Analytical and Bioanalytical Chemistry,396(1):241-259.
    [113]. Lu J. L.,Lu S. F.,Wang D. L., et al. Nano-structured PdxPtl-x/Ti anodes prepared by electrodeposition for alcohol electrooxidation. ElectrochimicaActa,2009,54(23):5486-5491.
    [114]. Baron R.,Wildgoose G. G.,Compton R. G. Metallic Nanoparticles Deposited on Carbon Microspheres:Novel Materials for Combinatorial Electrochemistry and Electroanalysis. Journal of Nanoscience and Nanotechnology,2009,9(4):2274-2282.
    [115]. Chen J. Y.,Lim B.,Lee E. P., et al. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today,2009,4(1):81-95.
    [116]. Narayanan R.,El-Sayed M. A. Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes:Electron-transfer reaction. Journal of the American Chemical Society,2004,126(23):7194-7195.
    [117]. Narayanan R.,El-Sayed M. A. Effect of catalytic activity on the metallic nanoparticle size distribution:Electron-transfer reaction between Fe(CN)(6) and thiosulfate ions catalyzed by PVP-platinum nanoparticles. Journal of Physical Chemistry B,2003,107(45):12416-12424.
    [118]. Link S.,El-Sayed M. A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry,2000, 19(3):409-453.
    [119]. Hernandez J.,Solla-Gullon J.,Herrero E., et al. In Situ Surface Characterization and Oxygen Reduction Reaction on Shape-Controlled Gold Nanoparticles. Journal of Nanoscience and Nanotechnology,2009,9(4):2256-2273.
    [120]. Grzelczak M.,Perez-Juste J.,Mulvaney P., et al. Shape control in gold nanoparticle synthesis. Chemical Society Reviews,2008,37(9):1783-1791.
    [121]. Sharma V.,Park K.,Srinivasarao M. Colloidal dispersion of gold nanorods:Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Materials Science & Engineering R-Reports,2009,65(1-3):1-38.
    [122]. Skrabalak S. E.,Chen J. Y.,Sun Y. G., et al. Gold Nanocages:Synthesis, Properties, and Applications. Accounts of Chemical Research,2008,41(12):1587-1595.
    [123]. Sun Y. G.,Xia Y. N. Gold and silver nanoparticles:A class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst,2003,128(6):686-691.
    [124]. Prevo B. G.,Esakoff S. A.,Mikhailovsky A., et al. Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation. Small,2008,4(8):1183-1195.
    [125]. Ung T.,Liz-Marzan L. M.,Mulvaney P. Optical properties of thin films of Au@SiO2 particles. Journal of Physical Chemistry B,2001,105(17):3441-3452.
    [126]. Wilson R. The use of gold nanoparticles in diagnostics and detection. Chemical Society Reviews,2008,37(9):2028-2045.
    [127]. Holtzhauer M.,Rudolph M. Application of Colloidal Gold for Characterization of Supports Used in Size-Exclusion Chromatography. Journal of Chromatography,1992, 605(2):193-198.
    [128]. 王中林,纳米材料表征.北京:化学工业出版社,2005.
    [129]. 蓝闽波,纳米材料测试技术.上海:华东理工大学出版社,2009.
    [130]. 蒋治良,冯忠伟,李廷盛,李芳金纳米粒子的共振散射光谱.中国科学(B辑),2001,31(2):183-188.
    [131]. Zhang Z. F.,Cui H.,Lai C. Z., et al. Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Analytical Chemistry,2005,77(10):3324-3329.
    [132]. Xu S. L.,Cui H. Luminol chemiluminescence catalysed by colloidal platinum nanoparticles. Luminescence,2007,22(2):77-87.
    [133]. Gill R.,Polsky R.,Willner I. Pt nanopartictes functionalized with nucleic acid act as catalytic labels for the chemiluminescent detection of DNA and proteins. Small,2006, 2(8-9):1037-1041.
    [134]. Chen H.,Gao F.,He R., et al. Chemiluminescence of luminol catalyzed by silver nanoparticles. Journal of Colloid and Interface Science,2007,315(1):158-163.
    [135]. Guo J. Z.,Cui H.,Zhou W., et al. Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. Journal of Photochemistry and Photobiology a-Chemistry,2008,193(2-3):89-96.
    [136]. Li S. F.,Tao S. J.,Wang F. F., et al. Chemiluminescence reactions of luminol system catalyzed by nanoparticles of a gold/silver alloy. Microchimica Acta,169(1-2):73-78.
    [137]. Cui H.,Wang W.,Duan C. F., et al. Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor. Chemistry-a European Journal,2007,13(24):6975-6984.
    [138]. Lv B. Q.,Su X. D.,Li Y., et al. Fabrication of gold nanoparticles using luminol as a reductive and protective reagent. Inorganic Materials,2008,44(8):813-817.
    [139]. Cui H.,Guo J. Z.,Li N., et al. Gold nanoparticle triggered chemilumineseence between luminol and AgNO3. Journal of Physical Chemistry C,2008,112(30):11319-11323.
    [140]. Safavi A.,Absalan G.,Bamdad F. Effect of gold nanoparticle as a novel nanocatalyst on luminol-hydrazine chemiluminescence system and its analytical application. Analytica Chimica Acta,2008,610(2):243-248.
    [141]. Gorman B. A.,Francis P. S.,Dunstan D. E., et al. Tris(2,2'-bipyridyl)ruthenium(Ⅱ) chemiluminescence enhanced by silver nanoparticles. Chemical Communications,2007, (4):395-397.
    [142]. Li S. F.,Zhang X. M.,Yao Z. J., et al. Enhanced Chemiluminescence of the Rhodamine 6G-Cerium(IV) System by Au-Ag Alloy Nanoparticles. Journal of Physical Chemistry C,2009, 113(35):15586-15592.
    [143]. Lin J. M.,Liu M. L. Chemiluminescence from the decomposition of peroxymonocarbonate catalyzed by gold nanoparticles. Journal of Physical Chemistry B,2008, 112(26):7850-7855.
    [144]. Liang S. X.,Li H. F.,Lin A. M. Reaction mechanism of surfactant-sensitized chemiluminescence of bis(2,4,6-trichlorophyenyl) oxalate and hydrogen peroxide induced by gold nanoparticles. Luminescence,2008,23(6):381-385.
    [145]. Duan C. F.,Cui H.,Zhang Z. F., et al. Size-dependent inhibition and enhancement by gold nanoparticles of luminol-ferricyanide chemiluminescence. Journal of Physical Chemistry C, 2007, 111(12):4561-4566.
    [146]. Duan C. F.,Cui H. Time-tunable autocatalytic lucigenin chemiluminescence initiated by platinum nanoparticles and ethanol. Chemical Communications,2009, (18):2574-2576.
    [147]. Zhang Z. F.,Cui H.,Shi M. J. Chemiluminescence accompanied by the reaction of gold nanoparticles with potassium permanganate:. Physical Chemistry Chemical Physics,2006, 8(8):1017-1021.
    [148]. Baptista P.,Pereira E.,Eaton P., et al. Gold nanoparticles for the development of clinical diagnosis methods. Analytical and Bioanalytical Chemistry,2008,391(3):943-950.
    [149]. Cai S.,Xin L.,Lau C. W., et al. Highly sensitive non-stripping gold nanoparticles-based chemiluminescent detection of DNA hybridization coupled to magnetic beads. Analyst, 135(3):615-620.
    [150]. Wang J.,Cao Y.,Xu Y. Y., et al. Colorimetric multiplexed immunoassay for sequential detection of tumor markers. Biosensors & Bioelectronics,2009,25(2):532-536.
    [151]. Duan C. F.,Yu Y. Q.,Cui H. Gold nanoparticle-based immunoassay by using non-stripping chemiluminescence detection. Analyst,2008,133(9):1250-1255.
    [152]. Fan A. P.,Lau C. W.,Lu J. Z. Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label. Analytical Chemistry,2005,77(10):3238-3242.
    [153]. Li Z. P.,Wang Y. C.,Liu C. H., et al. Development of chemiluminescence detection of gold nanoparticles in biological conjugates for immunoassay. Analytica Chimica Acta,2005, 551(1-2):85-91.
    [154]. Qi Y. Y.,Li B. X.,Zhang Z. J. Label-free and homogeneous DNA hybridization detection using gold nanoparticles-based chemiluiminescence system. Biosensors & Bioelectronics,2009, 24(12):3581-3586.
    [155]. Zisimopoulos E. G.,Tsogas G. Z.,Giokas D. L., et al. Indirect chemiluminescence-based detection of mefenamic acid in pharmaceutical formulations by flow injection analysis and effect of gold nanocatalysts. Talanta,2009,79(3):893-899.
    [156]. Chen X. L.,Yang J.,Xu S.J., et al. Determination of Terbutaline Sulfate Based on the Enhancement Chemiluminescence of Ag Nanoparticles in Luminol-Potassium Ferricyanide Chemiluminescence System. Chinese Journal of Analytical Chemistry,2009,37(11):1662-1666.
    [157]. Li S. F.,Li X. Z.,Xu J., et al. Flow-injection chemiluminescence determination of polyphenols using luminol-NaIO4-gold nanoparticles system. Talanta,2008,75(1):32-37.
    [158], Yang P.,Chen Y. H.,Zhu Q. Y, et al. Sensitive chemiluminescence method for the determination of glutathione, L-cysteine and 6-mercaptopurine. Microchimica Acta,2008, 163(3-4):263-269.
    [159]. Zhao S. L.,Niu T. X.,Song Y, et al. Gold nanoparticle-enhanced chemiluminescence detection for CE. Electrophoresis,2009,30(6):1059-1065.
    [160]. Zhao S. L.,Lan X. H.,Liu Y. M. Gold nanoparticle-enhanced capillary electrophoresis-chemiluminescence assay of trace uric acid. Electrophoresis,2009, 30(15):2676-2680.
    [1]. Biju V.,Itoh T.,Anas A., et al. Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Analytical and Bioanalytical Chemistry, 2008,391(7):2469-2495.
    [2]. Scholes G. D. Controlling the optical properties of inorganic nanoparticles. Advanced Functional Materials,2008,18(8):1157-1172.
    [3]. Shan J.,Tenhu H. Recent advances in polymer protected gold nanoparticles:synthesis, properties and applications. Chemical Communications,2007:4580-4598.
    [4]. Schmid G.,Baumle M.,Geerkens M., et al. Current and future applications of nanoclusters. Chemical Society Reviews,1999,28(3):179-185.
    [5]. Shipway A. N.,Katz E.,Willner I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chemphyschem,2000, 1(1):18-52.
    [6]. Medintz I. L.,Uyeda H. T.,Goldman E. R., et al. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials,2005,4(6):435-446.
    [7]. Kamat P. V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. Journal of Physical Chemistry B,2002,106(32):7729-7744.
    [8]. Pankhurst Q. A.,Connolly J.Jones S. K., et al. Applications of magnetic nanoparticles in biomedicine. Journal of Physics D-Applied Physics,2003,36(13):R167-R181.
    [9]. Shen Y.,Kuang M.,Shen Z., et al. Gold nanoparticles coated with a thermosensitive hyperbranched polyelectrolyte:Towards smart temperature and pH nanosensors. Angewandte Chemie-International Edition,2008,47(12):2227-2230.
    [10].Cortie M. B.,Barnett M.,Ford M. J. Active control of the optical properties of nanoscale coatings using'smart'nanoparticles-art. no.664704. Nanocoatings,2007,6647:64704-64704.
    [11].Ballauff M.,Lu Y. "Smart" nanoparticles:Preparation, characterization and applications. Polymer,2007,48(7):1815-1823.
    [12].Pelton R. Temperature-sensitive aqueous microgels. Advances in Colloid and Interface Science,2000,85(1):1-33.
    [13].Dupin D.,Fujii S.,Armes S. P., et al. Efficient synthesis of sterically stabilized pH-responsive microgels of controllable particle diameter by emulsion polymerization. Langmuir,2006, 22(7):3381-3387.
    [14].Nayak S.,Lyon L. A. Photoinduced phase transitions in poly(N-isopropylacrylamide) microgels. Chemistry of Materials,2004,16(13):2623-2627.
    [15].McPhee W.,Tam K. C.,Pelton R. Poly(N-Isopropylacrylamide) Latices Prepared with Sodium Dodecyl-Sulfate. Journal of Colloid and Interface Science,1993,156(l):24-30.
    [16].Zrinyi M. Intelligent polymer gels controlled by magnetic fields. Colloid and Polymer Science,2000,278(2):98-103.
    [17].Sardar R.,Bjorge N. S.,Shumaker-Parry J. S. pH-controlled assemblies of polymeric amine-stabilized gold nanoparticles. Macromolecules,2008,41(12):4347-4352.
    [18].Si S.,Mandal T. K. pH-controlled reversible assembly of peptide-functionalized gold nanoparticles. Langmuir,2007,23(1):190-195.
    [19]. Sun Z. H.,Ni W. H.,Yang Z., et al. pH-controlled reversible assembly and disassembly of gold nanorods. Small,2008,4(9):1287-1292.
    [20].Zhang M. C.,Zhang W. Q. Pd nanoparticles immobilized on pH-responsive and chelating nanospheres as an efficient and recyclable catalyst for Suzuki reaction in water. Journal of Physical Chemistry C,2008,112(16):6245-6252.
    [21].Palioura D.,Armes S. P.,Anastasiadis S. H., et al. Metal nanocrystals incorporated within pH-responsive microgel particles. Langmuir,2007,23(10):5761-5768.
    [22].Oishi M.,Miyagawa N.,Sakura T., et al. pH-responsive PEGylated nanogel containing platinum nanoparticles:Application to on-off regulation of catalytic activity for reactive oxygen species. Reactive & Functional Polymers,2007,67(7):662-668.
    [23].Zhao D. Y.,Chen X.,Liu Y., et al. Thermosensitive and pH-sensitive Au-Pd bimetallic nanocomposites. Journal of Colloid and Interface Science,2009,331(1):104-112.
    [24].Li D. X.,He Q.,Cui Y., et al. Fabrication of pH-responsive nanocomposites of gold nanoparticles/poly(4-vinylpyridine). Chemistry of Materials,2007,19(3):412-417.
    [25].Lu G. W.,Cheng B. L.,Shen H., et al. Influence of the nanoscale structure of gold thin films upon peroxidase-induced chemiluminescence. Applied Physics Letters,2006,88(2).
    [26].Zhang Z. F.,Cui H.,Lai C. Z., et al. Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Analytical Chemistry,2005,77(10):3324-3329.
    [27].J. Z. Guo H. C., W. Zhou and W. Wang Ag nanoparticle-catalyzed chemiluminescent reation between luminol and hydrogen peroxide. J. Photochem. Photobiol. A-Chem.,2008, 193(2-3):89-96.
    [28].Chen H.,Gao F.,He R., et al. Chemiluminescence of luminol catalyzed by silver nanoparticles. Journal of Colloid and Interface Science,2007,315(1):158-163.
    [29]. Xu S. L.,Cui H. Luminol chemilumiriescence catalysed by colloidal platinum nanoparticles. Luminescence,2007,22(2):77-87.
    [30].Gorman B. A.,Francis P. S.,Dunstan D. E., et al. Tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence enhanced by silver nanoparticles. Chemical Communications,2007, (4):395-397.
    [31].Chowdhury M. H.,Aslan K.,Malyn S. N., et al.24.Metal-enhanced chemiluminescence. Journal of Fluorescence,2006,16(3):295-299.
    [32].Aslan K.,Malyn S. N.,Geddes C. D. Multicolor microwave-triggered metal-enhanced chemiluminescence. Journal of the American Chemical Society,2006,128(41):13372-13373.
    [33].Chowdhury M. H.,Aslan K.,Malyn S. N., et al. Metal-enhanced chemiluminescence: Radiating plasmons generated from chemically induced electronic excited states. Applied Physics Letters,2006,88(17).
    [34].Cui H.,Guo J. Z.,Li N., et al. Gold nanoparticle triggered chemilumineseence between luminol and AgNO3. Journal of Physical Chemistry C,2008,112(30):11319-11323.
    [35].Lin J. M.,Liu M. L. Chemiluminescence from the decomposition of peroxymonocarbonate catalyzed by gold nanoparticles. Journal of Physical Chemistry B,2008,112(26):7850-7855.
    [36]. Safavi A.,Absalan G.,Bamdad F. Effect of gold nanoparticle as a novel nanocatalyst on luminol-hydrazine chemiluminescence system and its analytical application. Analytica Chimica Acta,2008,610(2):243-248.
    [37].Zhang Z. F.,Cui H.,Shi M. J. Chemiluminescence accompanied by the reaction of gold nanoparticles with potassium permanganate. Physical Chemistry Chemical Physics,2006, 8(8):1017-1021.
    [38].Goia D. V. Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions. Journal of Materials Chemistry,2004,14(4):451-458.
    [39].Silvert P. Y.,Vijayakrishnan V.,Vibert P., et al. Synthesis and characterization of nanoscale Ag-Pd alloy particles. Nanostructured Materials,1996,7(6):611-618.
    [40]. Rose A. L.,Waite T. D. Chemiluminescence of luminol in the presence of iron(II) and oxygen: Oxidation mechanism and implications for its analytical use. Analytical Chemistry,2001, 73(24):5909-5920.
    [41].Niki E. Action of Ascorbic-Acid as a Scavenger of Active and Stable Oxygen Radicals. American Journal of Clinical Nutrition,1991,54(6):S1119-S1124.
    [42].Dave R. I.,Shah N. P. Effectiveness of ascorbic acid as an oxygen scavenger in improving viability of probiotic bacteria in yoghurts made with commercial starter cultures. International Dairy Journal,1997,7(6-7):435-443.
    [43]. Xiao C. B.,Palmer D. A.,Wesolowski D. J., et al. Carbon dioxide effects on luminol and 1,10-phenanthroline chemiluminescence. Analytical Chemistry,2002,74(9):2210-2216.
    [44].Merenyi G,Lind J.,Eriksen T. E. Luminol Chemi-Luminescence-Chemistry, Excitation, Emitter. Journal of Bioluminescence and Chemiluminescence,1990,5(1):53-56.
    [45].Marquette C. A.,Blum L. J. Applications of the luminol chemiluminescent reaction in analytical chemistry. Analytical and Bioanalytical Chemistry,2006,385(3):546-554.
    [46].Francis P. S.,Barnett N. W.,Lewis S. W., et al. Hypohalites and related oxidants as chemiluminescence reagents:a review. Luminescence,2004,19(2):94-115.
    [47].Wang Z. P.,Zhang Z. J.,Fu Z. F., et al. Sensitive flow-injection chemiluminescence determination of terbutaline sulfate based on enhancement of the luminol-permanganate reaction. Analytical and Bioanalytical Chemistry,2004,378(3):834-840.
    [48].Chowdhury S.,Rivalta I.,Russo N., et al. Theoretical investigation of the mechanism of acid-catalyzed oxygenation of a Pd(Ⅱ)-hydride to produce a Pd(Ⅱ)-hydroperoxide. Journal of Chemical Theory and Computation,2008,4(8):1283-1292.
    [49].Konnick M. M.,Gandhi B. A.,Guzei I. A., et al. Reaction of molecular oxygen with a Pd-Ⅱ-hydride to produce a Pd-Ⅱ-hydroperoxide:Acid catalysis and implications for Pd-catalyzed aerobic oxidation reactions. Angewandte Chemie-International Edition,2006,45(18):2904-2907.
    [50].Mueller J. A.,Goller C. P.,Sigman M. S. Elucidating the significance of beta-hydride elimination and the dynamic role of acid/base chemistry in a palladium-catalyzed aerobic oxidation of alcohols. Journal of the American Chemical Society,2004,126(31):9724-9734.
    [51].Colarieti M. L.,Toscano G,Ardi M. R., et al. Abiotic oxidation of catechol by soil metal oxides. Journal of Hazardous Materials,2006,134(1-3):161-168.
    [52].Kadnikova E. N.,Kostic N. M. Oxidation of ABTS by hydrogen peroxide catalyzed by horseradish peroxidase encapsulated into sol-gel glass. Effects of glass matrix on reactivity. Journal of Molecular Catalysis B-Enzymatic,2002,18(1-3):39-48.
    [1]. Biju V.Itoh T.,Anas A., et al. Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Analytical and Bioanalytical Chemistry, 2008,391(7):2469-2495.
    [2]. Scholes G. D. Controlling the optical properties of inorganic nanoparticles. Advanced Functional Materials,2008,18(8):1157-1172.
    [3]. Shan J.,Tenhu H. Recent advances in polymer protected gold nanoparticles:synthesis, properties and applications. Chemical Communications,2007:4580-4598.
    [4]. Schmid G.,Baumle M.,Geerkens M., et al. Current and future applications of nanoclusters. Chemical Society Reviews,1999,28(3):179-185.
    [5]. Shipway A. N.,Katz E.,Willner I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chemphyschem,2000, 1(1):18-52.
    [6]. Medintz I. L.,Uyeda H. T.,Goldman E. R., et al. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials,2005,4(6):435-446.
    [7]. Kamat P. V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. Journal of Physical Chemistry B,2002,106(32):7729-7744.
    [8]. Pankhurst Q. A.,Connolly J.,Jones S. K., et al. Applications of magnetic nanoparticles in biomedicine. Journal of Physics D-Applied Physics,2003,36(13):R167-R181.
    [9]. Henglein A. Physicochemical Properties of Small Metal Particles in Solution Microelectrode Reactions, Chemisorption, Composite Metal Particles, and the Atom-to-Metal Transition. Journal of Physical Chemistry,1993,97(21):5457-5471.
    [10].McMahon J. J.,Barry M.,Breen K. J., et al. Photocatalysis of the oxygen reduction reaction at adsorbate-covered silver. Journal of Physical Chemistry C,2008,112(4):1158-1166.
    [11]. Bonifacio A.,Keizers P. H. J.,Vermeulen N. P. E., et al. Surface-enhanced resonance Raman scattering of cytochrome P450-2D6 on coated silver hydrosols. Langmuir,2007,23(4):1860-1866.
    [12]. Vukovic V. V.,Nedeljkovic J. M. Surface Modification of Nanometer-Scale Silver Particles by Imidazole. Langmuir,1993,9(4):980-983.
    [13].Mulvaney P.,Linnert T.,Henglein A. Surface-Chemistry of Colloidal Silver in Aqueous-Solution-Observations on Chemisorption and Reactivity. Journal of Physical Chemistry, 1991,95(20):7843-7846.
    [14].Sibbald M. S.,Chumanov G.,Cotton T. M. Reduction of cytochrome c by halide-modified, laser-ablated silver colloids. Journal of Physical Chemistry,1996,100(11):4672-4678.
    [15].Cui H.,Guo J. Z.,Li N., et al. Gold nanoparticle triggered chemilumineseence between luminol and AgNO3. Journal of Physical Chemistry C,2008,112(30):11319-11323.
    [16].Gill R.,Polsky R.,Willner I. Pt nanopartictes functionalized with nucleic acid act as catalytic labels for the chemiluminescent detection of DNA and proteins. Small,2006,2(8-9):1037-1041.
    [17].Zhang Z. F.,Cui H.,Lai C. Z., et al. Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Analytical Chemistry,2005,77(10):3324-3329.
    [18].Guo J. Z.,Cui H. Lucigenin chemiluminescence induced by noble metal nanoparticles in the presence of adsorbates. Journal of Physical Chemistry C,2007,111(33):12254-12259.
    [19]. Liu L. C.,Wei T.,Guan X., et al. Size and Morphology Adjustment of PVP-Stabilized Silver and Gold Nanocrystals Synthesized by Hydrodynamic Assisted Self-Assembly. Journal of Physical Chemistry C,2009,113(20):8595-8600.
    [20].Xiao C. B.,Palmer D. A.,Wesolowski D. J., et al. Carbon dioxide effects on luminol and 1,10-phenanthroline chemiluminescence. Analytical Chemistry,2002,74(9):2210-2216.
    [21]. Rose A. L.,Waite T. D. Chemiluminescence of luminol in the presence of iron(Ⅱ) and oxygen: Oxidation mechanism and implications for its analytical use. Analytical Chemistry,2001, 73(24):5909-5920.
    [22]. Fujimori K.,Tanimoto A.,Takada K., et al. Chemiluminescent Emitter Based on the Reactions by Ce(Ⅳ). Analytical Letters,2008,41(16):2954-2962.
    [23].Yang M.,Zhu J. J. Synthesis and characterizations of nanoribbons and monodispersed nanocrystals of CuBr. Materials Research Bulletin,2005,40(2):265-270.
    [24].Bai J.,Li Y. X.,Zhang C. Q., et al. Preparing AgBr nanoparticles in poly(vinyl pyrrolidone) (PVP) nanofibers. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2008, 329(3):165-168.
    [25].Richard P. Vasquez M. C. F., and B. D. Hunt Reaction of nonaqueous halogen solutions with Yba2Cu3O7-x. J. Appl. Phys.,1989,66:4866.
    [26].Kobayashi T.,Tsukada M.,Ikehara E., et al. Copper Halide Chemiluminescence in O-2 Discharge Flows Containing Cl-2. Journal of Photochemistry and Photobiology a-Chemistry,1995, 89(1):1-5.
    [27].Gabor Merenyi J. S. L. Role of a peroxide intermediate in the chemiluminescence of luminol. A mechanistic study. J. Am. Chem. Soc,1980,102:5830-5835.
    [28].Johan S. Lind G. M., T. E. Eriksen Chemiluminescence mechanism of cyclic hydrazides such as luminol in aqueous solutions. J. Am. Chem. Soc,1983,105:7655-7661.
    [1]. Xu F.,Gao M. N.,Shi G. Y., et al. Simultaneous detection of monoamines in rat striatal microdialysate at poly(para-aminobenzoic acid) modified electrode by high-performance liquid chromatography. Analytica Chimica Acta,2001,439(2):239-246.
    [2]. Cheng F. C.,Kuo J. S. High-Performance Liquid-Chromatographic Analysis with Electrochemical Detection of Biogenic-Amines Using Microbore Columns. Journal of Chromatography B-Biomedical Applications,1995,665(1):1-13.
    [3]. Zhang W.,Cao X. N.,Wan F. L., et al. In vivo determination of the monoamine neurotransmitters in rat brain by liquid chromatography with a thioctic acid/iridium oxide-palladium modified electrode. Analytica Chimica Acta,2002,472(1-2):27-35.
    [4]. Tsunoda M. Recent advances in methods for the analysis of catecholamines and their metabolites. Analytical and Bioanalytical Chemistry,2006,386(3):506-514.
    [5]. He C. X.,Cui H.,Zhao G. W. The determination of chlorogenic acid in cigarettes by inhibited chemiluminescence analysis. Analytica Chimica Acta,1997,351(1-3):241-246.
    [6]. Weng Q. F.,Xu G. W.,Yuan K. L., et al. Determination of monoamines in urine by capillary electrophoresis with field-amplified sample stacking and amperometric detection. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences,2006, 835(1-2):55-61.
    [7]. Jung M. C.Shi G Y.,Borland L., et al. Simultaneous determination of biogenic monoamines in rat brain dialysates using capillary high-performance liquid chromatography with photoluminescence following electron transfer. Analytical Chemistry,2006,78(6):1755-1760.
    [8]. Zhang S.,Xu Q.,Zhang W., et al. In vivo monitoring of the monoamine neurotransmitters in rat brain using microdialysis sampling with liquid chromatography electrochemical detection. Analytica Chimica Acta,2001,427(1):45-53.
    [9]. Lu J. X.,Zhang S.,Wang A. B., et al. In vivo monitoring of the monoamine neurotransmitters in the rat brain by microdialysis coupled with the liquid chromatography dual electrochemical detector. Talanta,2000,52(5):807-815.
    [10]. Vicente-Torres M. A.,Gil-Loyzaga P.,Carricondo F., et al. Simultaneous HPLC quantification of monoamines and metabolites in the blood-free rat cochlea. Journal of Neuroscience Methods, 2002,119(1):31-36.
    [11].Wood A. T.,Hall M. R. Reversed-phase high-performance liquid chromatography of catecholamines and indoleamines using a simple gradient solvent system and native fluorescence detection. Journal of Chromatography B,2000,744(1):221-225.
    [12].Hows M. E. P.,Lacroix L.,Heidbreder C, et al. High-performance liquid chromatography/tandem mass spectrometric assay for the simultaneous measurement of dopamine, norepinephrine,5-hydroxytryptamine and cocaine in biological samples. Journal of Neuroscience Methods,2004,138(1-2):123-132.
    [13].Tornkvist A.,Sjoberg P. J. R.,Markides K. E., et al. Analysis of catecholamines and related substances using porous graphitic carbon as separation media in liquid chromatography-tandem mass spectrometry. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences,2004,801(2):323-329.
    [14].Adcock J. L.,Barnett N. W.,Costin J. W., et al. Determination of selected neurotransmitter metabolites using monolithic column chromatography coupled with chemiluminescence detection. Talanta,2005,67(3):585-589.
    [15].Nalewajko E.,Wiszowata A.,Kojlo A. Determination of catecholamines by flow-injection analysis and high-performance liquid chromatography with chemiluminescence detection. Journal of Pharmaceutical and Biomedical Analysis,2007,43(5):1673-1681.
    [16].Takezawa K.,Tsunoda M.,Murayama K., et al. Automatic semi-microcolumn liquid chromatographic determination of catecholamines in rat plasma utilizing peroxyoxalate chemiluminescence reaction. Analyst,2000,125(2):293-296.
    [17].Ishida J.,Takada M.,Hitoshi N., et al.4-dimethylaminobenzylamine as a sensitive chemiluminescence derivatization reagent for 5-hydroxyindoles and its application to their quantification in human platelet-poor plasma. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences,2000,738(2):199-206.
    [18].Takezawa K.,Tsunoda M.,Watanabe N., et al. An automatic analyzer for catecholamines and their 3-O-methyl metabolites using a micro coulometric flow cell as a postcolumn reactor for fluorogenic reaction. Analytical Chemistry,2000,72(17):4009-4014.
    [19].Ragab G. H.,Nohta H.,Zaitsu K. Chemiluminescence determination of catecholamines in human blood plasma using 1,2-bis(3-chlorophenyl)ethylenediamine as pre-column derivatizing reagent for liquid chromatography. Analytica Chimica Acta,2000,403(1-2):155-160.
    [20].Yakabe T.Yoshida H.,Nohta H., et al. HPLC determination of catecholamines based on precolumn derivatization with 6-aminomethylphthalhydrazide followed by chemiluminescence detection. Analytical Sciences,2002,18(12):1375-1378.
    [21].Ishida J.,Yakabe T.,Nohta H., et al.6-Aminomethylphthalhydrazide as a highly sensitive chemiluminescence derivatization reagent for 5-hydroxyindoles in liquid chromatography. Analytica Chimica Acta,1997,346(2):175-181.
    [22].Yakabe T.Ishida J.,Yoshida H., et al. Determination of 5-hydroxyindole-3-acetic acid in human urine by high-performance liquid chromatography with chemiluminescence detection. Analytical Sciences,2000,16(5):545-547.
    [23].Cui H.,Guo J. Z.,Li N., et al. Gold nanoparticle triggered chemilumineseence between luminol and AgNO3. Journal of Physical Chemistry C,2008,112(30):11319-11323.
    [24]. Kim C. K.,Kalluru R. R.,Singh J. P., et al. Gold-nanoparticle-based miniaturized laser-induced fluorescence probe for specific DNA hybridization detection:studies on size-dependent optical properties. Nanotechnology,2006,17(13):3085-3093.
    [25].Zhang M. N.,Liu K.,Xiang L., et al. Carbon nanotube-modified carbon fiber microelectrodes for in vivo voltammetric measurement of ascorbic acid in rat brain. Analytical Chemistry,2007, 79(17):6559-6565.
    [26].Hodak J. H.,Henglein A.,Giersig M., et al. Laser-induced inter-diffusion in AuAg core-shell nanoparticles. Journal of Physical Chemistry B,2000,104(49):11708-11718.
    [27].Leung P. Y.,Tsao C. S. Preparation of an Optimum Mobile Phase for the Simultaneous Determination of Neurochemicals in Mouse-Brain Tissues by High-Performance Liquid-Chromatography with Electrochemical Detection. Journal of Chromatography-Biomedical Applications,1992,576(2):245-254.
    [28].Mills M. H.,Finlay D. C.,Haddad P. R. Determination of Melatonin and Monoamines in Rat Pineal Using Reversed-Phase Ion-Interaction Chromatography with Fluorescence Detection. Journal of Chromatography-Biomedical Applications,1991,564(1):93-102.
    [29].Tsunoda M., Takezawa T, Yanagisawa., et al. Determination of catecholamines and their 3-O-methyl metabolites in mouse plasma. Biomedical Chromatography,2001,15(1):41-44.
    [1]. Iijima S. Helical Microtubules of Graphitic Carbon. Nature,1991,354(6348):56-58.
    [2]. Baughman R. H.,Zakhidov A. A.,de Heer W. A. Carbon nanotubes-the route toward applications. Science,2002,297(5582):787-792.
    [3]. Merkoci A.,Pumera M.,Llopis X., et al. New materials for electrochemical sensing VI:Carbon nanotubes. Trac-Trends in Analytical Chemistry,2005,24(9):826-838.
    [4]. Wang J. Carbon-nanotube based electrochemical biosensors:A review. Electroanalysis,2005, 17(1):7-14.
    [5]. Zhao G. C.,Zhang L.,Wei X. W., et al. Myoglobin on multi-walled carbon nanotubes modified electrode:direct electrochemistry and electrocatalysis. Electrochemistry Communications,2003, 5(9):825-829.
    [6]. Li Y.,Qi H. L.,Fang F., et al. Ultrasensitive electrogenerated chemiluminescence detection of DNA hybridization using carbon-nanotubes loaded with tris(2,2'-bipyridyl) ruthenium derivative tags. Talanta,2007,72(5):1704-1709.
    [7]. Huang R.,Zheng X.,Qu Y. J. Highly selective electrogenerated chemiluminescence (ECL) for sulfide ion determination at multi-wall carbon nanotubes-modified graphite electrode. Analytica Chimica Acta,2007,582(2):267-274.
    [8]. Shaojun D.,Lihua Z.,Zhihui G, et al. Highly sensitive electrogenerated chemiluminescence produced at Ru(bpy)/sub 3//sup 2+/ in Eastman-AQ55D-carbon nanotube composite film electrode. Journal of Electroanalytical Chemistry,2006,592(1):63-7.
    [9]. Guo Z. H.,Dong S. J. Electrogenerated chemiluminescence determination of dopamine and epinephrine in the presence of ascorbic acid al carbon nanotube/nafion-Ru(bpy)(2+)(3) composite film modified glassy carbon electrode. Electroanalysis,2005,17(7):607-612.
    [10]. Guo Z. H.,Dong S. J. Electrogenerated chemi luminescence from Ru(BPY)(3)(2+) ion-exchanged in carbon nanotube/perfluorosulfonated ionomer composite films. Analytical Chemistry,2004, 76(10):2683-2688.
    [11]. Qiu B.,Zhu X.,Liu Y, et al. Anodic:electrochemiluminescent behavior of lucigenin on MWNT/GCE. Electrochemistry Communications,2009,11(2):254-257.
    [12]. Lin Z. Y.,Huang L. Z.,Liu Y, et al.13.Electrochemiluminescent biosensor based on multi-wall carbon nanotube/nano-Au modified electrode. Electrochemistry Communications,2008, 10(11):1708-1711.
    [13]. Chen J. H.,Lin Z. Y.,Chen G N. Enhancement of electrochemiluminesence of lucigenin by ascorbic acid at single-wall carbon nanotube film-modified glassy carbon electrode. Electrochimica Acta,2007,52(13):4457-4462.
    [14].Qiu B.,Lin Z.,Wang J., et al. An electrochemiluminescent biosensor for glucose based on the electrochemiluminescence of luminol on the nafion/glucose oxidase/poly(nickel(II)tetrasulfophthalocyanine)/multi-walled carbon nanotubes modified electrode. Talanta,2009,78(1):76-80.
    [15]. Lin Z. Y.,Chen J. H.,Chi Y. W., et al. Electrochemiluminescent behavior of luminol on the glassy carbon electrode modified with CoTPP/MWNT composite film. Electrochimica Acta,2008, 53(22):6464-6468.
    [16]. Lin Z. Y.,Chen J. H.,Chen G. N. An ECL biosensor for glucose based on carbon-nanotube/Nafion film modified glass carbon electrode. Electrochimica Acta,2008,53(5):2396-2401.
    [17]. Chen J. H.,Lin Z. Y.,Chen G. N. An electrochemiluminescent sensor for glucose employing a modified carbon nanotube paste electrode. Analytical and Bioanalytical Chemistry,2007, 388(2):399-407.
    [18]. Lin X. Q.,Sun Y. G.,Cui H. Potential-resolved electrochemiluminescence of luminol in alkaline solutions at glassy carbon and platinum electrodes. Chinese Journal of Analytical Chemistry,1999, 27(5):497-503.
    [19].Cui H.,Zou G Z.,Lin X. Q. Electrochemiluminescence of luminol in alkaline solution at a paraffin-impregnated graphite electrode. Analytical Chemistry,2003,75(2):324-331.
    [20].Hua C.,Zhi-Feng Z.,Gui-Zheng Z., et al. Potential-dependent electrochemiluminescence of luminol in alkaline solution at a gold electrode. Journal of Electroanalytical Chemistry,2004, 566(2):305-13.
    [21]. Xiao C. B.,Palmer D. A.,Wesolowski D. J., et al. Carbon dioxide effects on luminol and 1,10-phenanthroline chemiluminescence. Analytical Chemistry,2002,74(9):2210-2216.
    [22]. Rose A. L.,Waite T. D. Chemiluminescence of luminol in the presence of iron(Ⅱ) and oxygen: Oxidation mechanism and implications for its analytical use. Analytical Chemistry,2001, 73(24):5909-5920.
    [23].Britto P. J.,Santhanam K. S. V.,Rubio A., et al. Improved charge transfer at carbon nanotube electrodes. Advanced Materials,1999,11(2):154-157.
    [24]. Chu Y. Q.,Ma C. A.,Zhao F. M., et al. Electrochemical reduction of oxygen on multi-walled carbon nanotubes electrode in alkaline solution. Chinese Chemical Letters,2004,15(7):805-807.
    [25]. Alexeyeva N.,Tammeveski K. Electrochemical reduction of oxygen on multiwalled carbon nanotube modified glassy carbon electrodes in acid media. Electrochemical and Solid State Letters, 2007,10(5):F18-F21.
    [26]. Qu J. Y.,Shen Y.,Qu X. H., et al. Preparation of hybrid thin film modified carbon nanotubes on glassy carbon electrode and its electrocatalysis for oxygen reduction. Chemical Communications,2004, (1):34-35.
    [27]. Zhang M. N.,Yan Y. M.Gong K. P., et al. Electrostatic layer-by-layer assembled carbon nanotube multilayer film and its electrocatalytic activity for O'2 reduction. Langmuir,2004,20(20):8781-8785.
    [28]. P. David Josephy T. E., and Ronald P. Mason The Horseradish Peroxidase-catalyzed oxidation of 3,5,3',5'-tetramethylbenzidine. The Journal of Biological Chemistry,1982,257(7):3669-3675.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700