用户名: 密码: 验证码:
5-硝基间苯二甲酸稀土配合物的制备、结构和热力学性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于电子结构的规律性,稀土配合物的结构随原子序数的变化呈现相应的规律性;稀土配合物的热力学性质随原子序数的增加同样呈现了规律性的变化。进行物质的热力学性质研究,通过其与结构的有效关联,是实现该类配合物定向调控和制备的基础。本文选择5-硝基间苯二甲酸作为有机配体与稀土金属离子作用,系统地探索了稀土配合物晶体结构和热力学性质的规律性及其关联。主要研究内容及结论如下:
     (1)以5-硝基间苯二甲酸为配体,在水溶液中制备了系列稀土配合物(1)-(15)。通过单晶衍射、化学分析、元素分析、红外等手段对配合物进行了表征。确定了它们的结构并对其结构、配位模式进行了比较。结构分析表明,15个配合物中,配合物[RE4(5-NO2-bdc)6(H2O)10]·7H2O (RE=La, Ce)为同构化合物;配合物[RE3(5-NO2bdc)4(5-NO2-Hbdc)(H2O)7]·nH2O(RE=Pr,Nd,Sm,Eu)为同构化合物;配合物[RE2(5-NO2-bdc)3(H2O)5]·5H20 (RE=Gd,Tb)为同构化合物;配合物[RE2(5-NO2-Hbdc)2(5-NO2bdc)2(H2O)8]·4H2O(RE=Dy,Ho,Y)为同构化合物;配合物[RE2(5-NO2-bdc)4(H2O)6][RE2(5-NO2-bdc)2(H2O)8]·nH2O(RE=Er,Tm,Yb,Lu)为同构化合物,显示“五分组”效应。
     (2)用微量热法测量了稀土硝酸盐的溶解焓,5-硝基间苯二甲酸与稀土离子的液相反应焓变;针对反应过程设计了合理的热化学循环,并根据热化学循环计算了系列配合物固相生成反应焓变及配合物的标准摩尔生成焓。分别以配合物液相、固相反应焓变与镧系元素原子系数作图,配合物的标准摩尔生成焓与镧系元素原子系数作图,呈现“五分组”效应。分组结果与上述配合物晶体结构的分组现象相一致。钇配合物属第四组,与镝配合物和钬配合物同组。
     (3)通过全自动精密自动绝热量热计测得稀土配合物在78~380 K温区的低温摩尔热容,对热容数据进行了处理和归纳。从每种配合物的热容曲线可知,它们在78~380 K温区没有任何熔解、分解、缔合等热异常现象发生,配合物在此温区内稳定。将配合物的低温热容数据对折合温度进行拟合,得到了各配合物摩尔热容对温度的多项式方程。利用此多项式方程进行数值积分,得到了配合物每隔5 K的舒平热容值和各种热力学函数值。以298.15 K温度下的热容、300 K时的两种热力学函数(HT-H298.15 K)和(ST-S298.15 K)对镧系元素原子序数作图,均呈现“五分组”效应。分组结果与上述配合物晶体结构的分组现象相一致。钇配合物属第四组,与镝配合物和钬配合物同组。
The structures of lanthanide carboxylate complexes exhibit good regularity with increasing atomic number based on the electron configuration of lanthanides, while the thermodynamic properties of the complexes also present a regular change with increasing atomic number. It is of signifance for oriental regulating and preparation of the complex to explore the investigation of the thermodynamics and summarize the relationship of the thermodynamics with the structures for the complexes. In this dissertation,5-nitroisophthalic acid was selected as the ligand to interact with lanthanide ions. The regularity of crystal structures and thermodynamics of the lanthanide coordination polymers and their relationship were investigated. The contents and conclusion were described as follows:
     (1) A series of lanthanide coordination polymers (1)~(15) were synthesized by reaction of 5-nitroisophthalic acid with lanthanide ions in aqueous solution and characterized by X-ray single crystal diffraction, chemical analysis, element analysis, and infrared spectrum. Their structures were determined and the coordination modes were compared. The results showed that the complexes could be divided into five groups according to the structure and composition: [RE4(5-N02-bdc)6(H20)10]·7H20 (RE=La, Ce); [RE3(5-NO2bdc)4(5-NO2-Hbdc)(H2O)7]·nH2O (RE=Pr, Nd, Sm, Eu); [RE2(5-NO2-bdc)3(H2O)5]·5H2O (RE=Gd, Tb); [RE2(5-NO2-Hbdc)2 (5-NO2bdc)2(H2O)8]-4H2O (RE=Dy, Ho, Y) and [RE(5-NO2-bdc)4(H2O)6][RE2(5-NO2-bdc)2 (H2O)8]·nH2O (RE=Er, Tm, Yb, Lu). The complexes in the same series are isomorphism with quintuple effect.
     (2) The enthalpy of solution for the lanthanides nitrate hydrate and the enthalpy changes of the liquid phase formation reaction for the complexes were measured by a microcalorimetry. A series of rational thermochemical cycles were designed for the reaction process. The enthalpy changes of formation reactions of the solid complexes, as well as the standard molar enthalpy, were calculated through the thermochemical cycles. The plots of the enthalpy changes, the standard molar enthalpy of the liquid and solid phase for formation complexes against the lanthanide atomic numbers revealed quintuple effect, which was consistent with that of the crystal structure of the series complexes. The yttrium complex was attributed to the fourth group, which is same as dysprosium and holmium complexes.
     (3) Low-temperature heat capacities of the complexes were determined by a precision automated adiabatic calorimeter from 78 to 398 K. The heat capacity curves showed that no any changes, such as phase change, association, and thermal decomposition occurred during measurement. This result revealed that the compound is stable from 78 K to 398 K. Having Fitted the experimental points by means of the least-squares method, a polynomial equation of the experimental molar heat capacities (Cp,m) versus reduced temperature could be obtained. The smoothed molar heat capacities of the complexes and the thermodynamic functions with 5K temperature intervals were calculated by the fitted polynomial equation. The plots of the experimental molar heat capacities (Cp,m) at 298.15 K, the data of thermodynamic functions (HT-H298.15k) and (ST-S398.15k) at 300K, against the lanthanide atom numbers exhibited quintuple effect, which is consistent with that of the crystal structure of the series complexes. The yttrium complex attributed to the forth group, which is same as dysprosium and holmium complexes.
引文
[1]Ye B. H., Tong M. L., Chen X. M. Metal-organic molecular architectures with 2,2-bipyridyl-like and carboxylate ligands[J]. Coord. Chem. Rev.,2005,249:545-565
    [2](a) Zheng X. J., Sun C. Y., Lu S. Z., et al. New porous lanthanide-organic frameworks[J]. Eu. J. Inorg. Chem.,2004:3262-3268 (b) deLill D. T., Gunning N. S., Cahill C. L. Toward templated metal-organic frameworks:synthesis, structures, thermal properties and luminescence of three novel Lanthanide-adipate frameworks[J]. Inorg. Chem.,2005,44:258-266 (c) Hill R. J., Long D. L., Champness N. R. New approaches to the analysis of high connectivity materials:design frameworks based up on 44 and 63 subnet tectons[J]. Acc. Chem. Res.2005,.38:337-350
    [3]Yaghi O. M., Davis C.E., Li Guangming., et al. Selective Guest Binding by Tai lores Channels in a 3-D porous Zine(Ⅱ)-Benzenetricarboxylate Network[J]. J. Am. Chem. Soc.,1997,119:2861-2868
    [4]Zhang L. P., Wan Y. H., Jin L. P.. Hydrothermal synthesis and crystal structure of neodymium(III) coordination polymers with isophthalic acid and 1,10-phenanthroline[J]. Polyhedron,2003,22:981-987
    [5]Kitagawa S., Kitaura R., Noro Shin-ichiro. Functional Porous Coordination Polymers[J]. Angew. Chem. Int. Ed.,2004,43:2334-2375
    [6]Xu H.B, Su Z. M., Shao K Z., et al. A novel strong fluorescent three-dimensional supramolecular coordination polymer based on bridging terephthalate[J]. Inorg. Chem. Commun.,2004,7:260-263
    [7]Shi X., Zhu G. S., Wang X. H., et al. From a 1-D Chain,2-D Layered Network to a 3D Supramolecular Framework Constructed from a Metal-Organic Coordination Compound[J]. Cryst. Growth. Des.,2005, 5(1):207-213
    [8]马建方,倪嘉缵.稀土羧酸配合物的结构[J].化学进展,1996,8(4):259-276
    [9]Yang S. Y., Long L. S., Jiang Y. B., An Exceptionally Stable Metal-Organic Framework Constructed from the Zn8(SiO4) Core [J]. Chem. Mater.,2002,14(8):3229-3231
    [10]张静筠,张思远,苗秀琴,等.三氟醋酸钆的晶体结构[J].应用化学,1988,5(6):30-34
    [11]Bone. S. P., Sowerby. D. B., Verma. R. D. Crystal structure of tetrakis-μ-trifluoroacetato-bis[triaqua-(trifluoroacetato) praseodymium(Ⅲ)][J]. Chem. Soc. Dalton Trans.,1978:1544-1548
    [12]Mao L., Lu W. M., Dong N., et al. Study on the structures of complexes of lanthanide with bidentate heterocyclic amine-the structure of bis[tri(trichloroacetato)-1,10-phenanthrolinebthanol-gadolinium][J].结构化学,1989,8(1):75-77
    [13]Dong N., Wang H., Barton R. J., et al. Synthesis, structure and spectroscopy of the complexes tetrakis (mu.-trichloroacetato) bis (trichloroacetatoethanol-(1,10-phenanthroline-N, N prime)Ln(Ⅲ)) (Ln= Pr, Nd and Er)[J]. J. Coord. Chem.,1990,22:191-204
    [14]Kahwa I.A., Fronczek F. R., Selbin. The Crystal structure and coordination geometry of potassium-catena-μ-oxalato-bis-oxalato aquo lanthanate(Ⅲ) dihydrates, K3[Ln(Ox)3(H2O)]-2H2O, (Ln= Nd, Sm, Eu, Gd, Tb) [J]. J, Inorg. Chim. Acta,1984,82:161-166
    [15]Kim Y. J., Jung D. Y. Conformation change of the cyclohexanedicarboxylate ligand toward 2D and 3D La(III)-organic coordination networks[J]. Chem. Commun.,2002:908-909
    [16]Gao S. L., Li Y. Z., Ren F., et al. Catena-Poly[[[diaqualanthanum(Ⅲ)]-tri-μ-glycinato] trichloride mono-hydrate][J]. Acta. Crystallogr. E.,2002,58:234-238
    [17]Torres J., Kremer C., Kremer E., et al. Sm(Ⅲ) Complexation with amino acids-Crystal structures of [Sm2(Pro)6(H2O)6](ClO4)6 and [Sm(Asp)(H2O)4]Cl2 [J]. J. Chem. Soc., Dalton Trans.2002:4035-4040
    [18]Torres J., Kremer C., Pardo H., et al. Preparation and crystal structure of new samarium complexes with glutamic acid [J]. J.Mol. Struct.,2003,660:99-101
    [19]王君,王钰,张向东,等.稀土-氨基多羧酸配合物的配位结构及变化规律Ⅰ氨基三乙酸、乙二胺四乙酸和反式-1,2-环己二胺四乙酸系列[J].结构化学,2004,23(10):1169-1176
    [20]Martin L., R. Jacbson A., Martin L., et al. Crystal and molecular structure of nitrilotriacetato-diaquopraseodymium(Ⅲ) monohydrate [J]. Inorg. Chem.,1972,11:2785-2792
    [21]Liang Y, Cao R., Su W., et al. Syntheses, Structures, and Magnetic Properties of Two Gadolinium(III)-Copper(Ⅱ) Coordination Polymers by a Hydrothermal Reaction[J]. Angew Chem. Int. Ed,2000,39: 3304-3307
    [22]Liang Y, Hong M., Su W., et al. Preparation, Structures, and Magnetic Properties of a Series of Novel Copper(Ⅱ)-Lanthanide(Ⅲ) Coordination Ploymers via Hydrothermal Reaction[J]. Inorg. Chem.,2001,40: 4574-4582
    [23]马建方,金钟声,倪嘉缵.邻羟基苯甲酸稀土配合物的合成及晶体结构[J].无机化学学报,1993,9(2):160-165
    [24]Roh S. G, Nah M. K, Oh J. B, et al. Synthesis, crystal structure and luminescence properties of a saturated dimeric Er(Ⅲ)-chelated complex based on benzoate and bipyridine ligands[J]. Polyhedron,2005,24: 137-142.
    [25]马建方,金钟声,倪嘉缵.邻氯苯甲酸稀土配合物的合成、表征及结构[J].化学学报,1993,51(8):
    784-790
    [26]李烽格,邓玉恒,张庆娟,等.稀土配合物La2(m-MOBA)6(Phen)2的合成和晶体结构表征[J].首都师范大学学报(自然科学版),2009,30(1):27-30
    [27](a)Yin M. C., Sun J. T. Synthesis and characterization of two one-dimensional lanthanide coordination polymers[J]. J. Alloys Compd.,2004,381:50-57 (b) Ma J. F., Jin Z. S., Ni J. Z. Crystal structure of Ln(o-HOC6H4CO2)3(H2O)2-2H2O(Ln=Tb, Ho)[J]. J. Struct. Chem.,1991,10(2):125-125
    [28]Li H., Eddaoudi M., Keeffe M.O, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature,1999,402:276-279
    [29]Eddaoudi M., Kim J., Rosi N. L., et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science,2002,295:469-472
    [30]Chui S. S., S. Lo M. F., Charmant J. P. H., et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n [J]. Science,1999, 283:1148-1150
    [31]Reineke T. M., Eddaoudi M., Keeffe M. O., et al. Microporous Lanthanide-Organic Framework[J]. Angew. Chem. Int. Ed.1999,38:2590-2596
    [32]Zhang X. M., Tong M. L., Gong M. L., et al. Supramolecular organisa of polymeric coordination chains into a three dimentional network with nanosized channels that clathrate large organic molecules[J]. Eur. J. Inorg. Chem.,2003,138-142
    [33]Yang B., Song Y. S., Chen Z. X. A novel quaternary dinuclear luminescent Terbium complex Tb2(phth)2(Hphth)2(Phen)2(H2O)4:hydrothermal synthesis,crystal structure and photophysics[J]. J. Mol. Struct.,2004,694,115-120
    [34]Song Y. S., Yan. B., Chen Z. X. A novel unexpected two-dimentional layer-like luminescent dysprosium coordination polymers [Dy2(phth)3(H2O)]n [J]. Can. J. Chem.,2004,82:1745-1750
    [35]Wan Y. H., Jin L. P., Wang K. Z., et al. Hydrothermal synthesis and structural studies of novel 2-D lanthanide coordination polymers with phthalate acid[J]. New J. Chem.,2002,26:1590-1593
    [36]Zhang L. P., Wan Y. H., Jin L. P. Hydrothermal synthesis and crystal structural studies of neodymium(Ⅲ) coordination polymers with isophthalic acid and 1,10-phenanthroline[J]. Polyhedron,2003,2:2981-2988
    [37]Qu Y. L., Ke Y. X., Lu S. M., et al. Hydrothermal synthesis structures spectroscopy of 2-D lanthanide coordination polymers built from helical chain:[Ln2(BDC)3(H2O)2]n[J].J.Mol. Struct.,2005,734:7-13
    [38]Zhang Y. F., Jiang F. L., Xu Y., et al. Two dimensional lanthanide- isophthalate coordination polymers containing right- and left-hand helical chain[J]. J. Mol. Struct.,2004,691:191-199
    [39]Liu H. L. Synthesis and structures of [Gd2(BDC)3 (H2O)2] and [Ho2 (BDC)3(H2O)2] [J]. Journal of University of Science. and technology of China,2006,36(4):417-421
    [40]付锋,陈三平,任宜霞,等.镧系间苯二甲酸配位聚合物的晶体结构及铕配合物的荧光特性[J].化学学报,2008,66(14):1663-1668
    [41]Wan Y. H, Zhang L. P, Jin L. P., et al. High-Dimensional Architectures from the Self-Assembly of Lanthanide Ions with Benzenic dicarboxylates and 1,10-Phenanthroline[J]. Inorg. Chem.,2003,42: 4985-4994.
    [42]Thirumurugan A., Natarajan S. Inorganic-Organic Hybrid Compounds[J]. Eur. J. Inorg. Chem.,2004: 762-770
    [43]Thirumurugan A., Natarajan S. Terephthalate bridged frameworks of Nd and Sm Phthalates[J]. Inorg. Chem. Commun.,2004,7:395-399
    [44]Thimuuurrgna A., Natarajan S. Yttrium coordination polymers with layered structures[J]. Solid State Sciences,2004,6:599-604
    [45](a)杨如义,郑能武,许海涛,等.配位聚合物[Nd2(C2H2NO2)3·4H2O]∞的单晶结构[J].科学通报,2002,47(20):1546-1548 (b)杨如义,郑能武,许海涛,.等.Pr(Ⅲ)和5-氨基间苯二甲酸的配位聚合物的水热合成和单晶结构研究[J].化学通报,2003,7:492-495
    [46]Lin J. D., Lin M. Z., Tian C. B., et al. Syntheses, topological structures and physical properties of two 2D lanthanide-organic frameworks constructed from 5-nitroisophthalic acid[J]. J. Mol. Struct.,2009,938: 111-116
    [47]Ye J. W., Zhang J. Y., Ning G. L., et al. Lanthanide Coordination Polymers Constructed from Dinuclear Building Blocks:Novel Structure Evolution from One-Dimensional Chains to Three Dimensional Architectures[J]. Cryst.Growth & Des.,2008,8(8):3098-3106
    [48]Huang Y, Yan B., Shao M. Synthesis, crystal structure and photoluminescent properties of four lanthanide 5-nitroisophthalate coordination polymers[J]. J. Solid State Chem.,2009,182:657-6668
    [49]Ren Y. X., Chen S.P., Gao S. L. Novel lanthanide complexes of 5-nitroisophthalic acid containing.two kinds of p-p stacking interactions[J]. J. Coord. Chem.,2006,59(18):2135-2142
    [50](a) Chen J. X. Liu S. X., Gao E. Q. Syntheses, structures and fluorescence of three novel 3D coordination polymers [Cd3(TMA)2(H-PRZ)(H2O)3(OH)]-H2O, Cd2Na2(TMA)2(H2O)4 and [Cd2Co(TMA)2(H2O)4]-2H2O(TMA=trimesic acid, PRZ=piperazine)[J]. Polyhedron,2004,23(11): 1877-1888 (b) Wang X. L, Qin C., Wang E. B. Polythreading of Infinite 1D Chains into Different
    Structural Motifs:,Two Poly(pseudo-rotaxane) Architectures Constructed by Concomitant Coordinative and Hydrogen Bonds[J]. Cryst. Growth. Des.,2006,6(2):439-443
    [51]Rosi N. L., Kim J., Eddaoudi M., et al. Rod Packings and Metal-Organic Frameworks Constructed from Rod-Shaped Secondary Building Units [J]. J. Am. Chem. Soc.,2005,127 (5):1504-1518
    [52]段治邦,卫革成,金钟声,等.CRYSTAL STRUCTURE OF ERBIUM(Ⅲ) COMPLEX WITH 1,3,5-BENZENETRICARBOXYLIC ACID[J].结构化学,1990,9(1):64-68
    [53]Duan Z. B., Wei G. C., Jin Z. S., et al. The structure of [LuC9H3O6(H2O)5]·4H2O[J]. Less-Commun. Metals,1991,171(1):L1-L3
    [54]Devic T., Serre C., Audebrand N., et al. MIL-103, A 3-D Lanthanide-Based Metal Organic Frame-work with Large One-Dimensional Tunnels and A High Surface Area[J]. J. Am. Chem. Soc.,2005,127: 12788-12789
    [55]Yang J., Yue. Q., Li. G. D. Structures, Photoluminescence, Up-conversion,and Magnetism of 2D and 3D Rare-earth Coordination Polymers with Multicarboxylate Linkages[J]. Inorg. Chem.,2006,45: 2857-2865
    [56]Wu L. P, Munakata M., Kuroda-Sowa T., et al. Synthesis, crystal structures and magnetic behavior of polymeric lanthanide complexes with benzenehexacarboxylic acid (mellitic acid)[J]. Inorg. Chim. Acta, 1996,249:183-189
    [57]高胜利,刘翊纶,杨祖培.稀土硝酸盐的制法、性质及结构[J].稀土,1990,11(4):23-28
    [58]樊学忠,陈三平,谢钢,等.三元配合物RE(Et2dtc)3(phen)热化学性质的规律性[J].化学学报,2006,64(10):1022-1030
    [59](a)帅琪,高胜利,陈三平,等.用微量热法测定稀土含硫有机配合物的比热容[J].化学学报,2005,63(21):1962-1966 (b)范广,任宜霞,陈三平,等.Et2NH2[RE(S2CNEt2)4]的标准摩尔生成焓[J].西北大学学报自然科学版,2006,64(10):1022-1030 (c)朱丽,杨旭武,陈三平,等RE(Et2dtc)3(phen)(RE=La,Pr,Nd,Sm)的恒容燃烧能测定[J].无机化学学报,2004,20(11):1303-1308
    [60]Martin L., Jacbson R. A. Crystal and molecular structure of nitrilotriacetate diaquo praseodymium(III) monohydrate[J]. Inorg. Chem.,1972,11:2785-2792
    [61]Desiraju G. R. The C—H..O Hydrogen Bond:Structural Implications and Supramolecular Design[J]. Acc. Chem. Res.,1996,29:441-449
    [62]Madhavi N. N. L., Katz A. K., Carrell H. L., et al. Evidence for the characterization of the C-H…p interaction as a weak hydrogen bond:toluene and chlorobenzene solvates of 2,3,7,8- tetraphenyl-1,9,10-anthyridine[J]. Chem. Commun.,1997:1953-1954
    [63]Ren Y.X., Chen S. P., Xie G., et al. Two novel erbium (Ⅲ) coordination polymers with 5-nitroisophtha-licacid:Syntheses and crystal structures and thermal stabilities[J]. Inorg. Chim. Acta,2006,359: 2047-2052
    [64]Ye J. W., Wang J., Zhang J. Y. et al. Construction of 2-D lanthanide coordination frameworks:syntheses, structures and luminescent property[J]. Cryst. Eng. Comm.2007(9):515-513
    [1]高胜利,刘翊纶,杨祖培.稀土硝酸盐的制法、性质及结构[J].稀土,1990,11(4):23-28
    [2]Sheldrick G. M. SHELXS-97, Program for X-ray Crystal Structure Solution[M]. Gottingen University, Germany,1997
    [3]Sheldrick G. M. SHELXL-97, Program for X-ray Crystal Structure Refinement[M]. Gottingen University, Germany,1997
    [4]Ye J. W., Zhang J. Y., Ning G. L., et al. Lanthanide Coordination Polymers Constructed from Dinuclear Building Blocks:Novel Structure Evolution from One-Dimensional Chains to Three-Dimensional Architectures[J]. Cryst. Growth & Des.,2008,8(8):3098-3106
    [5]Xu N., Shi W., Liao D. Z., et al. A Novel Bilayer Cobalt(Ⅱ)-Organic Framework with Nanoscale Channels Accommodating Large Organic Molecules[J]. Inorg. Chem.2008,47:8748-8756
    [6]Rosi N. L., Kim J., Eddaoudi M., et al. Rod Packings and Metal-Organic Frameworks Constructed from Rod-Shaped Secondary Building Units[J].. J. Am. Chem. Soc.,2005,127:1504-1518.
    [7]Huang Y., Yan B., Shao M. Synthesis, Crystal structure and photoluminescent properties of four lanthanide 5-nitroisophthalate coordination polymers[J]. J. Solid State Chem.,2009,182:657-668
    [8]Ren Y. X., Chen S. P., Xie.G., et al. Two novel erbium (Ⅲ) coordination polymers with 5-nitro-isophthalic acid:Syntheses and crystal structures and thermal stabilities[J].Inorg. Chim. Acta.,2006, 359:2047-2052.
    [9]Daiguebonne C., Kerbellec N., Bernot K., et al. Synthesis, Crystal Structure, and Porosity Estimation of Hydrated Erbium Terephthalate Coordination Polymers[J]. Inorg., Chem.,2006,45:5399-5406.
    [1]Ji M., Liu M. Y., Gao S. L. et al. A new microcalorimeter for measuring thermal effects[J]. Instrum.. Sci.Technol.,2001,29:53-57
    [2]Kilday M. V. The enthalpy of solution of SRM 1655 (KC1) in H2O [J]. Journal of Research of the National Bureau of Standards,1980,85(6),467-469
    [3]Wang Z. J., Chen S. P., Yang Q., et al. Thermodynamics of Sodium 5-Nitroisophthalic Acid Monohydrate [J]. J. Chem. Eng. Data. DOI:10.1021/je900936t
    [4](a) CODATA recommended key values for thermodynamics,1977 Report of the CODATA Task Group on key values for thermodynamics,1977[J]. J. Chem. Thermodyn.,1978,10:903-906 (b) Donald D. W., William H. E., Vivian B. P., et al. The NBS tables of chemical thermodynamic properties[M]. New york:American Chemical Society and the American Institute of Physics for the National Bureau of Standards,1998:2-46,2-229,2-310 (c) Morss L. R.Thermochemical properties of yttrium, lanthanum, and the lanthanide elements and ions[J]. Chem. Rev.,1976,76(6):827-841
    [5]Gao S. L., Chen S. P., Hu R. Z., et al.化学反应的热动力学方程及其应用[J]. Chin. J. Inorag. Chem., 2002,18:362-366
    [1]Nakazawa Y., Hoffman W., Miller J. S., et al. Low-temperature heat capacity of the Mn(Ⅲ)-porphyfin-TCNE ferrimagnetic complexes, [MnTXPP][TCNE]-2PhMe (x=Cl, Br)[J]. Solid State Commun.,2005,135(1-2):71-76
    [2]Qing W., Chen S. P., Gao S. L., et al. Low-temperature heat-capacity and standard molar enthalpy of formation of copper L-threonate hydrate Cu(C4H6O5)·0.5H2O(s)[J]. Thermochim. Acta,2006,441(2): 132-136
    [3]Yuji Arita, Keisuke Suzuki, Tsuneo Matsui. Development of high temperature calorimeter:heat capacity measurement by direct heating pulse calorimetry[J]. J. Physics Chem. of Solids,2005,66(2-4): 231-234
    [4]Matsuo T., Yamamuro O. Equilibrium and non-equilibritma transitions studied by adiabatic calorimetry[J]. Thermochim. Acta,1999,330(1-2):155-165
    [5]Sempere J., Nomen R., Serra R. et al. Thermal hazard assessment using closed-cell adiabatic calori-metry[J]. Loss Prevention in the Process Industries,1997,10(1):55-62
    [6]J. C. vail Miltenburg, A. C. G. Van Genderen, G. J. K. Van den Berg. Design improvements in adiabatic calorimetry:The heat capacity of cholesterol between 10 and 425K[J]. Thermochim. Acta, 1998,319(1-2):151-162
    [7]王竹溪.热力学[M].北京:高等教育出版社,1955:60
    [8]阎守胜,陆果.低温物理实验的原理与方法[M].北京:科学出版社,1985:391
    [9]#12 1963:365
    [10]谭志诚.热容.中国大百科全书,化学(Ⅱ)[M].中国大百科全书出版社,北京,1989:856
    [11]Gmelin, E. Modern low-temperature calorimetry[J]. Thermochim. Acta,1979,29:1-8
    [12]Cezairliyan A. Specific Heat of Solids, edt. By Ho, C. Y, Purdue Research Foundation[M]. New York, 1988:153,191
    [13]Westrum E. F., Jr. Furukawa G T., McCullough J. P. Experimental Thermodynamics [M]. McCullough, J. P. and Scott, D. W.; Eds. Butterworths, London,1968,1:133
    [14]陈则韶,葛新石,顾毓沁.量热技术和热物性测定[M].合肥:中国科学技术大学出版社,1990年
    [15]Andrews J. T. S., Norton P. A., Westrum E. F. An adiabatic calorimeter for use at superambient temperatures. The heat capacity of synthetic sapphire (a-Al2O3) from 300 to 550 K[J]. J. Chem. Thermodyn.,1978,10:949-958
    [16]Di You-Ying, Tan Zhi-Cheng, Wu Xin-Min, et al. Heat capacity and thermochemical study of trifluoroacetamide (C2H2F3NO)[J]. Thermochim. Acta,2000,356:143-151
    [17]谭志诚,叶锦春,尹安学,等.2-氯-6-(三氯甲基)吡啶的热容及热力学性质[J].科学通报,1986,10:744-747
    [18]Woodfield, Brian F., Juliana Boerio-Goates, et al. Molar heat capacity and thermodynamic functions of zirconolite CaZrTi2O7[J]. J. Chem. Thermodyn.,1999,31:245-253
    [19]K. S. Gavrichev, V. N. Guskov, J. H. Greenberg. et al. Low-temperature heat capacity of ZnTe[J]. J. Chem. Thermodyn.,2002,34:2041-2047
    [20]H. Suga. Perspectives of low temperature calorimetry[J].Thermochim. Acta,2000,355:69-82
    [21]谭志诚,徂徕道夫,菅宏.2-氯-6-(三氯甲基)呲啶的低温热容及热力学函数[J].中国科学(B辑),1989,6:577-585
    [22]Di Y. Y., Chen J. T., Tan Z. C. Low-temperature heat capacities and standard molar enthalpy of formation of the solid-state coordination compound trans-Cu(Ala)2(s) (Ala=1-α-alanine)[J]. Thermochim. Acta,2008,471(1~2):70-73
    [23]Di Y. Y., Cui Y. C., Tan Z. C. Low-Temperature Heat Capacities and Standard Molar Enthalpy of Formation of the Solid-State Coordination Compound trans-Cu(Gly)2-H2O(S) (Gly= 1-α-Glycine)[J]. J. Chem. Eng. Data,2006,51(5):1551-1555
    [24]Ditmars D. A., Ishihara S., Chang S. S., et al. Enthalpy and Heat-Capacity Standard Reference Material:Syn-thetic Sapphire (α-Al2O3) from 10 to 2250K[J]. J. Res. Natl. Bur.Stand.,1982,87: 159-163

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700