用户名: 密码: 验证码:
滑块式六含八大腔体高压装置的温压标定及高压合成金刚石新触媒的发现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压物理学是研究物质在高压作用下物理性质的一门学科,属于极端条件下的凝聚态物理学,其研究内容包括物质在高压下的力学、热学、光学、电学、磁学性质,以及物质的微观结构,状态方程,相变等等,也为发现新现象、新规律、高压下合成新材料提供理论和实验依据。高压研究依赖各种高压设备,在大腔体静态高压设备中,六含八多压砧高压装置能获得的温压条件范围较广,各种原位测量技术的配备,使其在材料学、地球与行星物理学、矿物学、岩石学等研究领域扮演着越来越重要的作用。本论文共分为两个部分,第一部分为滑块式六含八大腔体高压装置的调试和标定工作;第二部分为高压合成金刚石新触媒体系的探索和发现。
     (一)滑块式六含八大腔体高压装置调试和标定。
     以本实验室新建的滑块式六含八大腔体高压装置为对象,介绍了其独特的机体构架和高压模具的设计特点,一级压砧优异的同步性及实验的重复性,以及六含八式二级增压系统的样品组装。根据压砧的定位因素和挤压块受力形变特点,探索出快速校准一级压砧的方法,使得更换和校准压砧快捷而准确。并使用本实验室开发的加工夹具,成功地制作出叶腊石八面体传压介质、密封边等部件,还总结出用于高温高压实验的叶腊石的焙烧工艺条件。在此基础上,成功地利用金属Bi丝和半导体粉末ZnTe材料对12.5/8(八面体边长/二级压砧截角边长)样品组装进行了压力标定,标定点对应压力分别为2.55,7.7,9.6和12.0GPa;进而,在10GPa压力下,利用WRe3-WRe25热电偶将温度标定到1560℃,结合铁碳二元高压相图以及堵头处石墨加热炉转变为金刚石的温度点,验证了标定结果的正确性,给出样品腔内的轴向平均温度梯度约为21℃/mm。这些工作为本实验室六含八高压装置的应用打下了基础,可以对10mm3的样品在12.0GPa,2000℃的条件以内开展高温高压实验。
     (二)高压合成金刚石新触媒体系的探索和发现。
     金刚石具有多种优异的物理和化学特质:最高硬度,最高热导率,最宽的透光波段,禁带宽度宽,介电常数小,抗强碱和强酸腐蚀等等,使它成为不可替代的功能材料,被广泛应用在工业、科技、国防、装饰等许多领域。人工合成金刚石的方法有许多种,目前,高温高压触媒法仍然是主要的合成方法。在过去的几十年里所发现的触媒体系有多种类型,不同体系需要的温度压力条件也不相同,迄今报道的触媒的最高压力为8.5GPa。我们认为在更高压力条件下可能还存在新的触媒体系。于是,使用滑块式六含八大腔体高压装置,在压力9.0-9.6GPa,温度1600-1850℃的条件下,对锡(Sn)铅(Pb)合金、锑(Sb)、铋(Bi)、硒(Se)、碲(Te)等添加物与石墨共存体系展开了金刚石触媒探索实验。发现在9.6GPa,1800-1850℃的高压高温条件下,单质元素硒(Se)和碲(Te)分别对石墨转变成金刚石具有明显的触媒作用。保持条件不变,当合成时间由30min延长到60min时,金刚石成核量有明显增加,粒度平均尺寸提高近一倍,合成晶体形貌多为八面体。而Sn-Pb合金和Sb,Bi在相近实验范围内都没有这种作用。根据这些结果,参考理论计算值和相关参数,提出了关于Ⅵa族元素对石墨转变为金刚石的触媒机理的一种解释:氧族元素(O、S、Se、Te)具有相同的外壳层电子结构,有利于它们在高温高压下和碳原子发生氧化反应,生成碳的化合物(CX或CX2),反应是可逆的,还原分解出的碳原子以金刚石相成核并生长,随着反应的持续,亚稳态石墨相的碳原子可以通过这种氧化-还原过程不断转化为金刚石相碳原子,促进金刚石的晶体生长。
High pressure physics is a special subject to investigate physical behaviors of substance under high pressure, and belongs to the condensed matter physics under extreme condition. It includes mechanics, optics, electricity, magnetism, microstructure, equation of state and phase transformation of materials under high pressure. High pressure researcher can provide a great of theoretical and experimental evidence to discover the new phenomena or new principle, and to synthesize new materials. High pressure research relies on a variety of equipments. In the static high-pressure equipments, the 6/8 mult-anvil large volume apparatus has powerful capability to generate pressure and temperature, combined with synchrotron radiation measurement techniques it plays an important role in Material Science, Earth and Planetary Physics, Mineralogy, Petrology and other fields. This dissertation is divided into two parts, one is about the debugging and calibration of a slide-type 6/8 multianvil large volume high-pressure apparatus, and another is an exploration and discovery of new catalyst system for diamond synthesis under high-pressure and high-temperature.
     In the first part, regarding to the slide-type 6/8 multianvil large volume high-pressure apparatus, we introduce the unique design about main framework and high-pressure mold, excellent synchronicity and reproducibility of the first-stage anvils and assembly of second-stage anvils with sample for HP-HT experiments. The first-stage anvils are linked respectively with slide blocks, they can move and construct a cubic space with the three upper and three down symmetrical distributions. According to positioning factors of the anvils and character of the test block, we found a practical method to calibrate the first-stage anvils, which made the process of replacement and adjustment of anvils quick, easy and exact. By using a series of special holders in lathe we produced pyrophyllite gasket, including octahedral bulk, sealing pieces etc., and also set up the appropriate condition and program for the heat treatment of pyrophyllite pressure medium. The cell pressure was calibrated successfully at room temperature for 12.5/8 (octahedron edge-length/truncation edge-length of two-stage anvil) sample assembly by using known phase transition of bismuth and semiconductor powder of ZnTe at pressure of 2.55,7.7,9.6 and 12.0GPa, respectively. Under the pressure of 10GPa, the cell temperature was calibrated up to 1560℃by a WRe3-WRe25 thermocouple. Combined with the high pressure phase diagram of Fe-C and the observation of diamond formed on the interface between graphite heater and steel plug, we not only reconfirmed the temperature calibration result, but also estimated the axial temperature gradient (~21℃/mm) in cell. This work showed that the apparatus can be applied for high pressure experiments within the range of the sample size of 10mm3, high-pressure and high-temperature conditions of 12.0GPa and 2000℃.
     Second part is the exploration and the discovery of new catalyst system for diamond synthesis under high-pressure and high-temperature. Diamond has unique physical and chemical properties, such as highest hardness and thermal conductivity, wide band gap, high insulativety, resisting to alkali and acid, etc., and so as an irreplaceable functional material it is widely applied in the industry, science and technology, national defense, decoration and others. Many kinds of methods have been used in diamond synthesis, at present the main method is to add catalyst into graphite for converting to diamond at HP-HT. Many catalyst systems have been found in the past several decades, they are active in the different pressure and temperature conditions respectively. Up to now the highest pressure for synthesis diamond by adding catalyst was 8.5GPa. Considering latent catalyst system exists possibly at higher conditions, we investigated five systems:tin (Sn)-lead (Pb) alloy, antimony (Sb), bismuth (Bi), selenium (Se), tellurium (Te) with graphite under high-pressure of 9.0-9.6GPa and high-temperature of 1600-1850℃by using the slide-type 6/8 large volume press. The results showed that elements selenium (Se) and tellurium (Te) have obvious catalytic action for diamond synthesis under pressure at 9.6GPa, and temperature 1800 and 1850℃respectively, but Sn-Pb alloy, Sb and Bi do not. In the new catalyst systems, when reaction time extended from 30 to 60 min at the determinated synthetic conditions, the nucleation of diamond advanced and the average size increased remarkably. The morphology of the euhedral crystals obtained from the new systems was mostly octahedron. According to the experimental results, theoretic calculation and correlative thermodynamic data, the catalytic mechanism of group VI elements for conversion from graphite to diamond is suggested as follows:the group VI elements (O, S, Se, Te) have a similar outer shell electron configuration, which helps them react easily with carbon (graphite) to form some carbides (CX or CX2) under HP-HT conditions. With the reversible reaction, the carbides can also decompose into the thermodynamic stable diamond phase. Therefore, metastable graphite can convert to diamond crystals in the systems, and the diamond grows continuously with the reaction time.
引文
[1]P. W. Bridgman, Theoretically Interesting Aspects of High Pressure Phenomena. Rev. Mod. Phys.1935,7:1-33.
    [2]A. Mujica, A. Rubio, A. Munoz, R. J. Needs, High-pressure phases of group-Ⅳ, Ⅲ-Ⅴ, and Ⅱ-Ⅵ compounds. Rev. Mod. Phys.2003,7:864-907.
    [3]J. C. Jamieson, A. W. Lawson, and N. D. Nachtrieb, New Device for Obtaining X-Ray Diffraction Patterns from Substances Exposed to High Pressure, Rev, Sci. Instrum.1953,24: 400-401.
    [4]P. W. Bridgman, The Use of Electrical Resistance in High Pressure Calibration, Rev, Sci. Instrum.1959,30:1016-1019.
    [5]A. W. Lawson, and T. Y. Tang, A Diamond Bomb for Obtaining Powder Pictures at High Pressures Rev. Sci. Instrum.1950,21:815.
    [6]经福谦等著,实验物态方程导引,科学出版社,1986年,p56
    [7]B. A. Weinstein, G. J. Piermarini, Raman scattering and phonon dispersion in Si and GaP at very high pressure, Phys. Rev. B,1975,12:1172-1186.
    [8]K. R. Hirsch, W. B. Holzapfel, Diamond anvil high-pressure cell for Raman spectroscopy, Rev. Sci. Instrum.1981,52:52-55.
    [9]K. Sassen, R. Sonnenschein, Microoptic double beam system for reflectance and absorption measurements at high pressure, Rev. Sci. Instrum.1982,53: 644-650.
    [10]I. L. Spain, D. R. Black, Energy dispersive x-ray diffraction in the diamond anvil, high-pressure apparatus:Comparison of synchrotron and conventional x-ray sources, Rev. Sci. Instrum.1985,56:1461-1463.
    [11]H. K. Mao, P. M. Bell, High-pressure physics:sustained static generation to 1.36 to 1.72 megabars, Science,1978,200:1145-1147.
    [12]H. T. Hall, Some High-Pressure, High-Temperature Apparatus Design Considerations: Equipment for Use at 100000 Atmospheres and 3000℃, Rev. Sci. Instrum.1958,29: 267-275.
    [13]H. T. Hall, Ultra-High-Pressure, High-Temperature Apparatus:the "Belt", Rev. Sci. Instrum.1960,31:125-131.
    [14]H. T. Hall, Anvil Guide Device for Multiple-Anvil High Pressure Apparatus, Rev. Sci. Instrum.1962,33:1278-1280.
    [15]E. A. Perez-Albuerne, K. F. Forsgren, and H. G. Drichamer, Apparatus for X-Ray Measurements at Very High Pressure, Rev. Sci. Instrum.1964,35: 29-33.
    [16]H. G. Drichamer, Revised Calibration for High Pressure Optical Bomb, Rev. Sci. Instrum.1961:32,212-213.
    [17]R. M. Housley and J. G. Dash, R. H. Nussbaum, Mean-Square Displacement of Dilute Iron Impurity Atoms in High-Purity Beryllium and Copper, Phys. Rev.1964,136:A464-466.
    [18]A. Jayaraman, Ultrahigh pressures, Rev. Sci. Instrum.1986,57:1013-1031.
    [19]M. Ito, J. Hori, H. Kurisaki, H. Okada, A. J. Perez Kuroki, N. Ogita, M. Udagawa, H. Fujii, F. Nakamura, T. Fujita, and T. Suzuki, Pressure-Induced Superconductor-Insulator Transition in the Spinel Compound CuRh2S4, Phys. Rev. Lett.2003,91:077001.
    [20]Murase S, Yanagisawa M, Sasaki S, Development of low-temperature and high-pressure Brillouin scattering spectroscopy and its application to the solid I form of hydrogen sulphide. J. Phys.:Condens Matter,2002,14, 11537-11541.
    [21]Chang-Sheng Zha, William A. Bassett, Internal resistive heating in diamond anvil cell for in situ x-ray diffraction and Raman scattering, Rev. Sci. Instrum.2003,74: 1255-1262.
    [22]H. K. Mao and P. M. Bell, High-pressure physics:the 1-megabar mark on the ruby R1 static pressure scale, Science; 1976,191:851-852.
    [23]G. J. Piermarini, S. Block, and J. S. Barnet, Hydrostatic limits in liquids and solids to 100 kbar, J, Appl. Phys.1973,44:5377-5382.
    [24]D. H. Liebenberg, A new hydrostatic medium for diamond anvil cells to 300 kbar pressure, Phys. Lett. A.1979,73:74-76.
    [25]G. J. Piermarini, S. Block, Ultrahigh pressure diamond-anvil cell and several semiconductor phase transition pressures in relation to the fixed point pressure scale,Rev. Sci. Instrum.1975,46:973-979.
    [26]W. A. Bassett, T. Takahashi, P. W. Stook, X-Ray Diffraction and Optical Observations on Crystalline Solids up to 300 kbar, Rev. Sci. Instrum.1967, 38:37-42.
    [27]L. Merrill, W. A. Bassett, Miniature diamond anvil pressure cell for single crystal x-ray diffraction studies, Rev. Sci. Instrum.1974,45:290-294.
    [28]G. Huber, K. Syassen, W. B. Holzapfel, Pressure dependence of 4f levels in europium pentaphosphate up to 400 kbar, Phys. Rev. B,1977,15:5123-5128.
    [29]H. T. Hall, Retraction system for multi-anvil presses, Rev. Sci. Instrum.,1975,46: 436-438.
    [30]B. C. Von Platen, United States patent,1960 3118177.
    [31]Y. B. Wang, The deformation-DIA:A new apparatus for high temperature triaxial deformation to pressures up to 15GPa, Rev. Sci. Instrum.,2003,74,3002-3011.
    [32]N. Kawai, A Static High Pressure Apparatus with Tapering Multi-Pistons Forming a Sphere. I, Proceedings of the Japan Academy,1966,42:385-388.
    [33]N. Kawai, S. Endo, The Generation of Ultrahigh Hydrostatic Pressures by a Split Sphere Apparatus,1970,41:1178-1181.
    [34]N. Kawai, A New Device for Prssure Vessels, Proc. Japan Acad.,1973,49:623-626.
    [35]E. Ohani, T. Irfune, W. O. Hibberson, A. E. Ringwood, Modified split-sphere guide block for practical operation of a multiple-anvil apparatus, High Temperature-High Pressure,1987,19:523-529.
    [36]D. J. Frost, B. T. Poe, R. G. Tronnes, C. Liebske, A. Duba, D. C. Rubie, A new large-volume multianvil system, Phys. Earth. Planet. Int.,2004,143-144:507-514.
    [37]D. Walker, M. A. Carpenter, C. M. Hrrch, Some simplifications to multianvil devices for high pressure experiments,1990,75:1020-1028.
    [38]D. Walker, Lubrication, gasketing, and precision in multianvil experiments, American Mineralogist,1991,76:1092-1100.
    [39]王雁宾,利用大体积压机与同步辐射进行原位高温高压研究—地球内部物质物性研究的应用, 物理,2006,35(7):570-578.
    [40]王雁宾,地球内部物质物性的原位高温高压研究:大体积压机与同步辐射源的结合,地学前缘,2006,13(2):1-35.
    [41]H.M. Strong, "Early diamond making at General Electric",Am.J. Phys.,1989,57: 794-802
    [42]F. P. Bundy, H. T. Hall, H. M. Strong and R.H. Wentorf, Jr.,"Man-made diamonds", Nature,1955,176:51-52
    [43]H.P. Bovenkerk, F.P. Bundy, H.T. Hall, H.M. Strong, and R.H.Wentorf, Jr., "Preparation of diamond", Nature,1959,184:1094-1098
    [44]R.H.Wentorf Jr.,Synthesis of the cubic form of boron nitride.J. Chem.Phys.1961,34: 809-812
    [45]F.R.Corrigan, F.P.Bundy, Direct transitions among the allotropicforms of boron nitride at high pressures and temperatures. J.Chem.Phys.1975,63:3812-3820.
    [46]F. R. Corrigan, F. P. Bundy, Direct transitions among the allotropic forms of boron nitride at high pressures and temperatures, the Journal of Chemical Physics,1975,63: 3812-3810.
    [47]Shoji Yamanaka and Akira Kubo, High Pressure Synthesis, Structures and Properties of Three Dimensional C6o Polymers, The Review of High Pressure Science and Technology, 2006,16:229-235
    [48]M. L. Cohen, Calculation of bulk moduli of diamond and zinc-blende solids, Phys Rev B,1985,32 (12):7988~7991.
    [49]D.M.Teter and R.J.Hemley, Low-compressibility carbon nitrides. Science,1996,271: 53-55.
    [50]I. Masamitsu, S. Katsuya, A. Kiichi, Measurement of Electrical Resistance of Xe under High Pressure, High pressure conference of Japan,1998,39:42.
    [51]王积方,高压下物质性质的研究,大学物理,2001,20:1-6.
    [52]F. Coppari, J. C. Chervin, A. Congeduti, M. Lazzeri, A. Polian, E. Principi, and A. Di Cicco, Pressure-induced phase transitions in amorphous and metastable crystalline germanium by Raman scattering, x-ray spectroscopy, and ab initio calculations, Physical Review B,2009,80:115213-1-8.
    [53]H. B. Cui, D. Graf, J. S. Brooks, and H. Kobayashi, Pressure-Dependent Metallic and Superconducting Phases in a Germanium Artificial Metal, Physical Review Letters,2009, 102:237001-4.
    [54]H. K. Mao, P. M. Bell and R. J. Hemley, Ultrahigh pressures:Optical observations and Raman measurements of hydrogen and deuterium to 1.47 Mbar,, Phys, Rev, Lett.1985,55:99-102
    [55]H. E. Lorenzana, I. F. Silvera and K. A. Goettel, Evidence for a structural phase transition in solid hydrogen at megabar pressures Phys, Rev. Lett.1989,63:2080-2083
    [56]K. Shimizu, K. Suhara, M. Ikumo, M. I. Eremets and K. Amaya, Superconductivity in oxygen, Nature 1998,393:767-769.
    [51]Mikhail I. Eremets, Viktor V. Struzhkin, Ho-kwang Mao, Russell J. Hemley, Superconductivity in Boron, Science 2001,293:272-274.
    [57]Katsuya Shimizu, Hiroto Ishikawa, Daigoroh Takao, Takehiko Yagi and Kiichi Amaya, Superconductivity in compressed lithium at 20 K, Nature.2002,419: 597-599
    [58]M Takano et al, ACuO.sub.2 (A:Alkaline Earth) Crystallizing In A Layered Structure, Physica C,1989,159:375-378.
    [59]M G Smith et al, Electron-doped superconductivity at 40 K in the infinite-layer compound Sr1-yNdyCu02, Nature,1991,351:549,-551
    [60]C Q Jin et at, Nature(London),1995,375:301-303
    [61]王文魁,何寿安,刘志毅,徐小平,La4Au亚温相超导相的高压合成,物理学报,1983,32,1618-1622.
    [62]P.S. Dicarli and F.C. Jamieson, Formation of an Amorphous Form of Quartz under Shock Conditions,J. Chem. Phys.1959,31:1675-1676
    [63]O.Mishima et al., Melting ice I at 77 K and 10 kbar:a new method of making amorphous solids, Nature 1984,310:393
    [64]Zou G.T., Liu Z.X., Wang L.Z., Pressure-induced amorphization of crystalline Bi4Ge3O12, Phys. Lett., A 1991,156:450-454
    [65]Angell C.A., Formation of glasses from liquids and biopolymers, Science 1995,267: 1924-1935.
    [66]王文魁,亚稳相的高压暴露,高压物理学报,1989,3(4):257-268.
    [67]Xu Y.F., Huang X., Wang W.K., Preparation of bulk metallic glass Pd40Ni40P20 under high pressure, Appl. Phys. Lett.1990,56:1957-1958
    [68]王文魁, 许应凡,黄新明,中国科学A辑,1992,第12期,1305
    [69]R. Jia, C. G. Shao, L. Su, D. H. Huang, X. R. Liu and S. M. Hong, Rapid compression induced solidification of bulk amorphous sulfur, J Phys. D:Appl. Phys.,2007,40: 3763-3766.
    [70]X. R. Liu, S.M. Hong, S.J. Lu and R. Shen, Preparation of La68Al10Cu20Co2 Bulk Metallic Glass by Rapid Compression. Appl. Phys. Lett.,2007,91:081910.
    [71]X. R. Liu, S.M. Hong, Evidence for A Pressure-induced Phase Transition of Amorphous to Amorphous in Two Lanthanide-based Bulk Metallic Glasses, Appl. Phys. Lett.,2007,90: 251903.
    [72]C.Yang, R.P. Liu et al., Formation of ZrTiCuNiBe bulk metallic glass by shock-wave quenching, Appl. Phys. Lett.2005,87:051904.
    [73]T. Seking, HongLiang He, T. Kobayasni, et al., Shock-induced of β-Si3N4 to a high-Pressure cubie-spinel Phase, Appl. Phys. Lett.2000,76:3706.
    [74]G. Philippe, B. James, V. Bernard, M. Paul F, High-pressure behavior in a-AlPO4: Amorphization and the memory-glass effect, Physical Review B,1995,51:11262-11269.
    [75]K. Michael B, M. Charles, High-pressure structural study of GeI4, Physical Review B, 1997,55:1-3.
    [76]A.Ohmura, N. Hamaya, K, Sato, C. Ogawa, M. Isshiki and Y. Ohishi, Structural analysis of a high-pressure amorphous phase of SnI4, J. Phys.:Condens. Matter 2002,14: 10553-10566.
    [77]M. Durandurdu, D. A. Drabold, High-pressure phases of amorphous and crystalline silicon, Physical Review B,2003,67:212101-1-3.
    [78]K. Shimizu, T. Yamauchi, N. Tamitani, N. Takeshita, M. Ishizuka, K. Amaya, and S. Endo, The pressure-induced superconductivity of Iodine, Journal of Superconductivity, 1994,7:921-924.
    [79]谢鸿森,地球深部物质科学导论,科学出版社,1997
    [80]T. Irifune, N.Kubo, M. Isshiki and Y. Yamazaki, Geophys.Res.Lett.,1998,25:203.
    [81]P. Berastegui, S. Hull, F. J. Garcia and J. Grins, J. Solid State Chem.,2002,168: 294-305.
    [82]P. Perlin, I. Gorczyca, N. E. Chritensen, Pressure studies of gallium nitride:Crystal growth and fundamental electronic properties Phy. Rev. B,1992,45:13307-13313
    [83]禹日成,许大鹏,苏文辉,高压截获十次准晶相关晶体相和纳米级超微粒.高压物理学报,1995,9:257-263
    [84]孙樯,郑海飞,金刚石压腔(DAC)实验技术,地学前缘,2005,12(1):131-136.
    [85]R. Liebermann, Y. B. Wang, Characterization of sample environment in a uniaxial split-sphere apparatus, High Pressure Research:Application to Earth and Planetary Science (Washington DC:AGU) 1992, p19.
    [86]T. Trifune, A. Kurio, S. Sakamoto, T. Inoue, H. Sumiya, Ultrahard polycrystalline diamond from graphite, Nature,2003,421:599-600.
    [87]T. Trifune, A. Kurio, S. Sakamoto, T. Inoue, H. Sumiya, K. Funakoshi, Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature, Physics of the Earth and Planetary Interiors,2004,143-144,593-600.
    [88]B. S. Li, G. G. Chen, G. D. Gwanmesia, R. C. Liebermann, in Properties of Earth and Planetary Materials at High Pressure and Temperature (Washington DC:AGU),1998, p41
    [89]R. Knoche, S. L. Webb and D. C. Rubie in Properties of Earth and Planetary Materials at High Pressure and Temperature (Washington DC:AGU),1998, p119.
    [90]M. Wakatsuki, New catalysts for synthesis of diamond, Jpn. J. Appl. Phys.1996,5: 337.
    [91]Yu. N. Pal'yanov, A. G. Sokol, Yu. M. Borzdov, A. F. Khokhryakov, N. V. Sobolev, Diamond formation from mantle carbonate fluids, Nature,1999,400:417-418.
    [92]M. Akaishi, H. Kanda, and S. Yamaoka, Synthesis of diamond from graphite-carbonate systems under very high temperature and pressure, J. Cryst. Growth,1990,104,578-581.
    [93]M. Akaishi, H. Kanda, and S. Yamaoka, High pressure synthesis of diamond in the systems of graphite-sulfate and graphite-hydroxide, Jpn. J. Appl. Phys.,1990,29: 1172-1174.
    [94]M. Akaishi, New non-metallic catalysts for the synthesis of high pressure, high temperature diamond,1993, Diamond Related Mater 2,183:183-189.
    [95]M. Akaishi, H. Kanda, and S. Yamaoka, Phosphorus:An Elemental Catalyst for Diamond Synthesis and Growth, Science,1993,259:1592-1593.
    [96]K. Sato, and T. Katsura, Sulfur:a new solvent-catalyst for diamond synthesis under high-pressure and high-temperature conditions, J. Cryst. Growth,2001,223:189-194.
    [97]M. T. Vaughan, D. J. Weidner and Y. B. Wang, T-CUP:A New High-Pressure Apparatus for X-Ray Studies, Rev. High Press. Sci. Technol.,1998,7:1520.
    [98]M.Wakatsuki, K. Ichinose, T. Aoki,Characteristics of link-type cubic anvil, high pressure-high temperature apparatus, Jpn. J. Appl. Phys.,1971,10:357-366.
    [99]王光祖,纳米金刚石,郑州大学出版社,2009
    [100]徐惠刚,谢鸿森,张月明,静态超高压大腔体实验技术研究简述,地质地球化学,1990,1:62
    [101]单双明,汪日平,郭捷,李和平,YJ-3000t型紧装式六面顶大腔体高温高压实验装置样品室的压力标定,高压物理学报,2007,21(4):367-372.
    [102]E. C. Lloya, Accurate Characterization of the high-presssure environment, NBS Special Publication.,1971,326:1-343.
    [103]A. Onodera, A. Ohtani, Fixed points for pressure calibration above 100Kbars related to semiconductor-metal transitions, J. Appl. Phys.,1980,51:2581-2585.
    [104]J. M. Brown, The NaCl pressure standard, Journal of applied physics,1999,86: 5801-5808.
    [105]郑海飞,孙樯,赵金,段体玉,金刚石压腔高温高压实验的压力标定方法及现状,高压物理学报,2004,18(1):78-82.
    [106]K. Suito, Phase relations of pure Mg2SiO4 up to 200Kilobars, High-pressure Research:Applications in Geophysics. New York, San Francisco, London, pp.256-266.
    [107]洪时明,罗湘捷,王永国,孙珠妹,姜仁柱,600-760℃范围内超高压力的测定—铅熔点法,高压物理学报,1989,2:9
    [108]庞贵彬,苏桂,新型传压介质的研究,金刚石与磨料磨具工程,2001,4(124): 32-33
    [109]陈超,姜伟,冯吉福,林峰,李立维,叶腊石物理性能的研究,超硬材料工程,2009,21(1):16-19
    [110]郭桦,李蘅,韦家新,郭陀珠,徐文炘,何诸林,‘叶腊石传压介质内衬材料的研究,矿产与地质,2003,17:721-722
    [111]张书霞,杨缤维,鲁伟员,姚勇,姜伟,寇自力,复合型传压介质的现状及发展,金刚石与磨料磨具工程,2005,150:77-80
    [112]魏存弟,马鸿文,杨永强,杨殿范,三国彰,叶腊石高温相转变的实验研究,地学前缘,2005,12:214-219
    [113]杨凯锋,硫族元素硒和碲的高压物性研究,吉林大学博士学位论文,2008年,P84-98
    [114]单小君,金属材料与热处理(第四版),中国劳动社会保障出版社,2001
    [115]H. M. Strong and R. M. Chrenko, Further studies on diamond growth rates and physical properties of laboratory made diamond, The Journal of Physical Chemistry,1971, 75:1838-1843.
    [116]张健琼,金属-硼-碳系工业金刚石的高温高压合成,吉林大学博士学位论文,2003年,p34-42
    [117]张志国,人工合成金刚石的历史与现状,吉林大学硕士学位论文,2003年
    [118]S. Matsumoto, Y. Sato, Y. Tsutsumi, Growth of diamond particales from methane-hydrogen gas, J Mater Sci,1982,17:3106-3112.
    [119]苟清泉, 人造金刚石合成机理,成都科技大学出版社,成都,1990
    [120]F. P. Bundy, W. A. Bassett, M. S. Weathers, R. J. Hemley, H. K. Mao, and A. F. Goncharov, The pressure-temperature phase and transformation diagram for carbon; updated through 1994, Carbon,1996,34,141-153.
    [121]H. Kanda, M. Akaishi, and S. Yamaoka, New catalysts for diamond growth under high pressure and high temperature, Appl. Phys. Lett.,1994,65:784-786.
    [122]S. M. Hong, Akaishi, and S. Yamaoka, Nucleation of diamond in the system of carbon and water under very high pressure and temperature, J. Cryst. Grouth,1999,200: 326-328.
    [123]S. Yamaoka, M. D. Shaji Kumar, M. Akaishi, and H. Kanda, Reaction between carbon and water under diamond-stable high pressure and high temperature conditions, Diamond Related Mater.,2009,9:1480-1486.
    [124]A. G. Sokol, Yu. N. Pal'yanov, G. A. Pal'yanova, A. F. Khokhryakov, and Yu. M. Borzdov, Diamond and graphite crystallization from C-O-H fluids under high pressure and high temperature conditions, Diamond Related Mater.,2001,10,2131-2136.
    [125]M. Akaishi, and S. Yamaoka, Crystallization of diamond from C-O-H fluids under high-pressure and high-temperature conditions, J. Cryst. Growth.,2000,209:999-1003.
    [126]M. D. Shaji Kumar, M. Akaishi, and S. Yamaoka, Formation of diamond from supercritical H2O-CO2 fluid at high pressure and high temperature, J. Cryst. Growth,2000, 213:203-206.
    [127]S. Yamaoka, M. D. Shaji Kumar, H. Kanda, and M. Akaishi, Formation of diamond from CaCO3 in a reduced C-O-H fluid at HP-HT, Diamond Related Mater,2002,11: 1496-1504.
    [128]S. Yamaoka, M. D. Shaji Kumar, H. Kanda, and M. Akaishi, Thermal decomposition of glucose and diamond formation under diamond-stable high pressure high-temperature conditions, Diamond and Related Materials,2002,11:118-124.
    [129]Y. Wang, H.Kanda, Growth of HPHT diamonds in alkali halides:possible effects of oxygen contamination, Dimond and Related Materials,1998,7:57-63.
    [130]L. L. Sun, M. Akaishi, S. Yamaoka, Formation of diamond in the system of Ag2CO3 and graphite at high pressure and high temperature, Journal of Crystal Growth,2000,213: 411-414.
    [131]S. Yamaoka, M. D. Shaji Kumar, H. Kanda, and M. Akaishi, Crystallization of diamond from CO2 fluid at high pressure and high temperature, J. Cryst. Grouth.,2002, 234:5-8.
    [132]A. Dewaele, M. Mezouar, N. Guignot, and P. Loubeyre, Melting of lead under high pressure studied using second-scale time-resolved x-ray diffraction, Phys. Rev. B 2007,76: 144106.
    [133]T. Narushima, T. Hattori, T. Kinoshita, A. Hinzmann, and K. Tsuji, Pressure dependence of the structure of liquid Sn up to 19.4 GPa, Phys. Rev. B 2007,76:104204.
    [134]V. V. Brazhkin, S. V. Popova, and R. N. Voloshin, Pressure-temperature phase diagram of molten elements:selenium, sulfur and iodine, Physica B 1999,265:64-71.
    [135]V. V. Brazhkin, R. N. Voloshin, S. V. Popova, and A. G. Umnov, Pressure temperature phase diagram of solid and liquid Te under pressure up to 10GPa, J. Phys. Condens. Malter 1992,4:1419-1425.
    [136]J. F. Cannon, Behavior of the elements at high pressure, J. Phys. Chem. Ref. Data, 1974,3:781-824.
    [137]H. M. Strong, Catalytic effects in the transformation of graphite to diamond, J. Chem. Phys.,1963,39:2057-2062.
    [138]S. A. Solin and A. K. Ramdas, Raman spectrum of diamond, Phys. Rev. B 1,1970, 1687-1689.
    [139]F. P. Bundy and R. H. Wentorf, Jr., Direct transformation of hexagonal boron nitride to denser forms, J. Chem. Phys.1963,38,1144-1149.
    [140]D. R. Lide, ed., CRC Handbook of Chemistry and Physics 88th Edition, (Taylor and Francis, Boca Raton, FL,2007).
    [141]洪时明,溶液中金刚石晶体生长的第三种驱动力,超硬材料工程,2005,17(1):1-5.
    [142]H. M. Strong and R. E. Hanneman, Crystallization of Diamond and Graphite, J. Phys. Chem.,1967,46:3668-3676.
    [143]R.H.Wentorf, Advances in High-Pressure Research(Vol.4.). Academi Press, London, 1974,p249-281
    [144]M.Wakatsuki, Recent Trends in High Pressure Research, Oxford&IBH Publishing Co,1992, p671-675.
    [145]苟清泉,固体物理简明教程,人民教育出版社,1978
    [146]H. Kanda, H. Sumiya, Synthesis and Characteristics of High Pressure Diamonds, The Review of High Pressure Science and Technology(in Japanese),2007,17(3):206-215.
    [147]K. Kusaba, L. Galoisy, Y. B. Wang, M. T. Vaughan and D. J. Weidner, Determination of phase transition pressures of ZnTe under quasihydrostatic conditions, PAGEOPH,1993, 141:643-652.
    [1]邹芹,王明智,王艳辉,纳米金刚石的性能与应用前景,金刚石与磨料模具工程,2003,134(2):54-58
    [2]A. L. Vereschagin, G. V. Sakovich, V. F. Komarov and E. A. Petrov, Properties of ultrafine diamond clusters from detonation synthesis, Diamond Relat. Mater.,1993,3: 160-162.
    [3]王光祖,纳米金刚石,郑州大学出版社,2009
    [4]文潮,刘晓新,周刚,孙德玉,纳米金刚石的熔点和德拜特征温度,西安交通大学学报,2000,34:108-110
    [5]V. V. Danilenko, On the history of the discovery of nanodiamond synthesis, Physics of the Solid State,2004,46:595-599.
    [6]王光祖,田丽,纳米金刚石合成的研发历史,超硬材料工程,2006,18(6)
    [7]文潮,关锦清,刘晓新,李迅,炸药爆轰合成纳米金刚石的研发历史与现状,2009,21(2):46-51
    [8]邵丙璜,张晓堤,爆炸合成纳米聚晶超硬材料及其制品的产业化前景,金刚石与磨料模具工程,2001,126(6):26-27
    [9]徐康,金增寿,魏发学,江天籁,炸药爆炸法制备超细金刚石粉末,含能材料,1993,1(3):19-21.
    [10]王光祖,纳米金刚石的发展及其应用前景,超硬材料与工程,2008,20(5):34-37
    [11]柴津荻,王光祖,PDC的制备技术及其参数对产品特性的影响,超硬材料工程,2007,19(6):37-41
    [12]吕智,唐存印,金刚石聚晶技术与发展,超硬材料与宝石(特辑),2004,16(54):1-6
    [13]邹芹,王明智,栾兴伟,任学军,纳米金刚石无助剂烧结的可行性分析,金刚石与磨料模具工程,2004,139(1):54-57
    [14]李素兰,高温高压下的纳米多晶金刚石的烧结及其特性的研究,金刚石与磨料模具工程,2001,3:39-42
    [15]于鸿昌,李尚劫,烧结型多晶金刚石中晶界物相的类型与数量对其某些物性的影响,高压物理学报,1989,3:221-225.
    [16]T. Trifune, A. Kurio, S. Sakamoto, T. Inoue, H. Sumiya, Ultrahard polycrystalline diamond from graphite, Nature,2003,421:599-600.
    [17]邹文俊,王小品,彭进,位星,韩平,赵盟月,纳米多晶金刚石的制备合成研究,金刚石与磨料磨具工程,2010,30(2):75-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700