用户名: 密码: 验证码:
神东煤镜质组结构模型的构建及其热解甲烷生成机理的分子模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国可持续发展进程的加速,西部作为我国战略纵深的地位日益受到重视。西部煤炭资源占我国煤炭储量的40%,所以以西部煤炭资源为原料,生产多元化、科技含量高和附加值高的产品将是西部煤炭利用的合理方式。因此有针对性的对具有弱还原性质的西部煤进行煤化学基础研究和热转化技术基础研究,将对目前和今后西部煤炭资源的高效和洁净化利用都有重要的意义。
     本文以西部神东煤作为研究对象,利用浮沉离心法得到了其镜质组显微组分(SV),利用固体~(13)C CP/MAS NMR、计算机辅助分子设计(CAMD)、热重质谱(TG-MS)和分子模拟技术对SV结构特征和热解产物甲烷的生成机理进行了系统的研究,主要内容如下:
     1、采用固体~(13)C CP/MAS NMR测试技术对SV的结构特征进行了分析,结果表明,SV的芳香结构单元主要是以缩合程度为2的萘的结构为主,其余芳香结构单元则主要是苯环和含有杂原子的芳香杂环。
     2、基于~(13)C CP/MAS NMR测试结果并结合SV的元素分析和XPS分析结果,构建了SV的初始化学结构模型,利用ACD/CNMR preditor软件对SV的初始化学结构模型~(13)C NMR谱进行了模拟,根据模拟谱和实验谱的对比结果,对SV的初始化学结构模型进行了修正,得到了和实验结果拟合较好的SV化学结构模型。
     3、采用分子模拟(MM和MD)对SV模型能量最小化几何构型、弛豫过程和热处理下模型结构变化的可逆性进行了模拟,结果表明:由SV结构模型测得的微晶结构参数(d002,La,Lc) 3.83 (?), 12.6 (?)和8.09 (?)和由XRD测得的实验值3.85 (?), 12.3 (?)和8.52 (?)基本一致;在煤的大分子结构中起到稳定的凝聚整个大分子骨架的力主要来自于结构中的非成键能,而非成键能主要以范德华能为主;非成键能中的氢键能则主要来自于分子间的相互作用;结构模型中芳香层片之间以近似平行的方式排列,SV模型的密度模拟值为1.13g·cm~(-3)。弛豫过程模拟结果显示,温度升高到623 K时其结构发生了显著的变化;由温度引起的SV模型在结构上的变化是不可逆的。
     4、利用量子化学半经验方法(AM1)对SV结构模型的研究结果表明:醚键中和脂肪碳原子相连的C-O键、交联程度比较高的C-C以及和羰基碳原子相连的C-C键的活性比较高,在热解过程中容易发生断裂;SV结构模型中N、O及边缘甲基C原子都有较多的负电荷,而结构中的芳香碳原子所带电荷较少。
     5、在利用量子化学半经验方法(AM1)对SV和SI结构和反应活性分析基础上,对SV和SI的热解反应过程进行了描述。对于SV来说,初次裂解主要发生在煤结构中交联程度比较高的位置以及和羰基碳原子相连的C-C键;对于SI来说初次裂解主要发生在煤结构中和芳碳相连的β位C-C键及和羰基碳原子相连的C-C键。
     6、通过量子化学计算和TG-MS实验相结合的方法对SV热解产物甲烷的生成机理进行了系统分析,结果表明:甲烷的生成包含8种反应类型。(1)处于200℃左右的反应,主是煤中吸附甲烷的物理脱附;(2)处于300℃左右的反应,主要是甲氧基和部分β位脂甲基的脱除反应;(3)处于400℃左右的反应,主要是煤的大分子结构在解聚和分解反应中生成的自由基中间体通过β位裂解反应脱除脂甲基的反应;(4)处于460℃左右的反应,主要是煤结构中β位脂甲基的脱除反应;(5)和(6)是处于500℃-700℃之间的反应,该温度区间的前半段是煤结构本身自有的芳甲基和在400℃左右生成的芳甲基在氢自由基作用下的脱除及类似于1-甲基茚满结构的β位脂甲基的脱除反应,后半段则主要是煤结构在芳构化作用中生成的芳甲基在氢自由作用下的脱除反应;(7)处于800℃左右的反应是煤在经过前期热解后残留的芳甲基的直接脱除反应;(8)处于900℃-1000℃之间的反应,是煤热解过程中生成的H2和煤缩聚反应生成的类石墨结构活性位的反应。
With the development of sustainable development strategy in China, west China playing a role of the strategic depth has been increasingly concerned. Coal reserve of the west China accounts for 40% of it in China. As a result, taking the Western coal as material, the product with diversification, high technological content and high added value will be a reasonable way to make use of the Western coal. Basic research on coal chemistry and thermal conversion technology of Western coal with weak reduction properties have important significance for high efficient and clean burning at present and in the future.
     Taking Shendong coal from west China as the research object, sink-float centrifugation was used to get the vitrinite. ~(13)C CP/MAS NMR, computer assistant molecular design (CAMD), thermal gravimetry–mass spectrum (TG-MS) and molecular simulation were used to study the structural characteristics of SV and formation mechanism of methane in the pyrolysis products, main content as follow:
     1. ~(13)C CP/MAS NMR was used to study the structural characteristics of SV. The result showed that aromatic structure units were dominated by naphthalene including two rings. Furthermore, benzene rings and heterocyclic aromatic containing heteroatom were the predominant in the other aromatic structure units.
     2. Based on the test results of ~(13)C CP/MAS NMR and ultimate analysis of SV combined with XPS analysis results, initial chemical structure model of SV was constructed. ACD/CNMR preditor software was used to simulate the ~(13)C NMR spectra of initial chemical structure model. According to the comparison results of simulation spectrum with experimental spectra, initial chemical structure model of SV was modified. Furthermore, chemical structure model of SV was in good agreement with the results of experiments.
     3. Molecular Simulation (MM and MD) was adopted to simulate the minimization geometry of SV model, relaxation process and reversibility of model structure changing after heat- treatment. It is showed that structural parameters (d002= 3.83 (?), La=12.6 (?) and Lc =8.09 (?)) of SV structural model was basically identical with experimental data (d002=3.85 (?), La=12.3 (?) and Lc = 8.52) of XRD. Force condensing the whole macromolecule framework in the coal macromolecule is mainly from non-bonding energy, while the non-bonding energy is dominated by van der Waals energy. Hydrogen bond in the non-bonding energy was mainly caused by molecular interaction. Aromatic lamella of structure model were almost in parallel permutation, and simulation value of SV model density was 1.13 g·cm-3. In the simulation results of relaxation process, the structure changed distinctly when the temperature reached 623 K. SV model structure caused from temperature changing is irreversible.
     4. The model structure for SV calculated by semi empirical method(AM1) suggested that C-O bond between ether bond and aromatic carbon, C-C with highcrosslinking degree and C-C bond linked with carbonyl carbon are highly active, which break easily in the pyrolysis process. In SV structure model, there were more negative charge in the N, O and edge C, while there were less charge in structural aromatic carbon.
     5. Based on the semi empirical method and reactivity analysis for SV and SI , in the SV pyrolysis process, primary cracking located in high crosslinking degree of coal structure and C-C bond linked with carbonyl carbon; in the SI pyrolysis process, primary cracking located inβsite C-C bond linked with aromatic carbon and C-C bond linked with carbonyl carbon.
     6. By means of quantum chemistry calculation combined with TG-MS, systematical analysis on formation mechanism of methane in the SV pyrolysis products indicate that there are 8 reaction types during methane generation. (1) At about 200℃. Physical desorption of adsorptive methane in coal; (2) At about 300℃. Deprotective reactions for methoxy and partial adeps- methyl ofβsite; (3) At about 400℃. Removal adeps- methyl for free radical intermediates which formed during depolymerization and decomposition of coal macromolecular structure byβsite cracking; (4) At about 460℃. Removal from methyl ofβsite in coal structure; (5) and (6) Between 500-700℃, on hydrogen free-radical. In front half part, removal for aryl-methyl in the coal structure of their own and formed at 400℃, and removal ofβsite adeps- methyl similar with 1-hexamethylindane structure; in bottom half, removal of aryl-methyl formed in the aromatization; (7) At 800℃. Direct removal of residual aryl-methyl after previous coal pyrolysis; (8) Between 900-1000℃. Reactions between H2 from pyrolysis and active sites of graphite-like structure from coal condensation reaction.
引文
[1]张永发.神府煤的结构及其在甲醇碱催化剂(BCII)体系中的解聚反应性[D].太原:太原理工大学, 1999.
    [2]杨小震.分子模拟与高分子材料[M].北京:科学出版社, 2002: 1-10.
    [3] Parr, R. G. Density Functional Theory [J]. Ann. Rev. Phys. Chem., 1983, 34: 631-656.
    [4]王宝俊.煤结构与反应性的量子化学研究[D].太原:太原理工大学, 2006.
    [5]王三跃.金属-有机骨架材料中流体吸附性质的量化计算与分子模拟研究[D].北京:北京化工大学, 2007.
    [6]王志中.半经验分子轨道理论与实践[M].北京:科学出版社,1981:26.
    [7] Stephen, L. M.; Barry, D. O.; William, A. G. DREIDING: a generic force field for molecular simulations [J]. J. Phys. Chem., 1990, 94: 8897-8909.
    [8] Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations [J]. J. Am. Chem. Soc., 1992, 114: 10024-10035.
    [9] Sun, H. COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds [J]. J. Phys. Chem. B, 1998, 102: 7338-7364.
    [10] Alder, B. J.; Wainwright, T. E. Studies in molecular dynamics. I: General met hoed [J]. J. Chem. Phys., 1959, 31: 459-466.
    [11]朱宇;陆小华;丁皓;等.分子模拟在化工应用中的若干问题及思考[J].化工学报, 2004, 55(8): 1213-1223.
    [12]陈昌国;鲜学福.煤结构的研究及其发展[J].煤炭转化, 1998, 21(2): 7-13. [13]谢克昌.煤的结构与反应性[M].北京:科学出版社, 2002: 115.
    [14]王丽;张蓬洲.煤的XRD的结构分析[J].煤炭转化, 1997, 20(1): 50-53.
    [15]马志茹;张蓬洲;李丽云;等.核磁共振技术在煤化学研究中的应用[J].煤炭转化, 1996, 19(1): 33-39.
    [16]马志茹;张蓬洲;赵秀荣;等.峰峰肥煤的固体高分辨核磁共振研究[J].燃料化学学报, 1996, 24(3): 251-255.
    [17]王丽;张蓬洲;郑敏.用固体核磁共振和电子能谱研究我国高硫煤的结构[J].燃料化学学报, 1996, 24(6): 539-543.
    [18]冯保联;冯继文;周建威;等.煤的固体高分辨核磁共振研究[J].中国科学(A辑, 1998, 28(11): 1009-1012.
    [19] Nomura, M.; Artok, L.; Murata, S.; et al. Structural Evaluation of Zao Zhuang coal [J]. Energy & Fuels, 1998, 12: 512-523.
    [20] Yoshida, T.; Sasaki, M.; Ikeda, K.; et al. Prediction of coal liquefaction reactivity by solid state 13C NMR spectral data [J]. Fuel, 2002, 81: 1533-1539.
    [21]罗陨飞;李文华;陈亚飞.中低变质程度煤显微组分结构的13C-NMR研究[J]. 2005, 33(5): 540-543.
    [22] Frost, D. C.; Leeder, W. R.; Tappling R. L. X-ray photoelectron spectroscopic investigation of coal [J]. Fuel, 1974, 53(3): 206-211.
    [23]常海洲;王传格;曾凡桂;等.不同还原程度煤显微组分组表面结构XPS对比分析[J].燃料化学学报, 2006, 34(4): 389-394.
    [24]陈鹏.用XPS研究兖州煤各显微组分中有机硫存在形态[J].燃料化学学报, 1997, 25(3) 238-241.
    [25]姚明宇;刘艳华;车得福.宜宾煤中氮的形态及其变迁规律研究[J].西安交通大学学报, 2003, 37(7): 759-763.
    [26]代世锋;任德贻;宋建芳;等.应用XPS研究镜煤中有机硫的存在形态[J].中国矿业大学学报, 2002, 31(3): 225-118.
    [27] Van Krevelen, D. W.; Chermin, H. A. Chemical structure and properties of coal [J]. Fuel, 1960, 33: 79-87.
    [28] Given, P.H. The distribution of hydroxyl in coal and its relation to coal structure [J]. Fuel, 1960, 39: 147-158.
    [29] Wiser; W. H. Proceedings of the conference-scientific problems relevant to coal utilization[c]. Conference Proceedings D.O.E. Symposium Series, W. Virginia University, 1997.
    [30] Shinn, J. H. Towards an understanding of the coal structure [J]. Fuel, 1984, 63: 483-497.
    [31] Hirsch, P. B. X-ray scattering from coals [J]. Proceedings of the Royal Society (London), 1954, A226: 143-169.
    [32] Meyers, R. A. Coal Structure [M]. New York: Academic press, 1982: 199.
    [33] Given, P. H.; Marzec, A.; Barton, W. A.; et al. The concept of a mobile or molecular phase within the macromolecular network of coal: A debate [J]. Fuel, 1986, 65: 155-163.
    [34] Nishioka, M. The associated molecular nature of bituminous coal [J]. Fuel, 1992, 71: 941-948.
    [35] Ohkawa, T.; Sasai, T.; Komoda, N.; et al. Computer-aided construction of coal molecular structure using construction knowledge and partial structure evaluation[J]. Energy & Fuels, 1997, 11(5): 937-944.
    [36] Nakamura, K.; Takanohashi, T.; Iino, M.; et al. A model structure of ZaoZhuang bituminous coal [J]. Energy & Fuels, 1995, 9: 1003-1010.
    [37] Hatcher, P.; Faulon, J. L.; Wenzel, K. A.; et al. A structural model for lignin-derived vitrinite from high-volatile bituminous coal (coalfield wood)[J]. Energy & Fuels, 1992, 6: 813-820.
    [38] Takanohashi, T.; Kawashima, H. Construction of a model structure for Upper Freeport coal using 13C NMR chemical shift calculations [J]. Energy & Fuels, 2002, 16: 379-387.
    [39] Mathews, J. P.; Hatcher, P. G.; Scaroni, A. W. Proposed model structure for Upper Freeport and Lewiston-Stockton vitrinites [J]. Energy & Fuels, 2001, 15: 863-873.
    [40] Faulon, J. L.; Carlson, G. A.; Hatcher, P. G. Statistical models for bituminous coal: a three-dimensional evaluation of structural and physical properties based on computer-generated structures [J]. Energy & Fuels, 1993, 7: 1062-1072.
    [41] Spiro, C. Space-filling models for coal: a molecular description of coal plasticity [J]. Fuel, 1981, 60(12): 1121-1126.
    [42] Carlson, G. A. Computer simulation of the molecular structure of bituminous coal [J]. Energy & Fuels, 1993, 7: 347-350.
    [43] Takanohashi, T.; Iino, M.; Nakamura, K. Simulation of interaction of coal associates with solvents using the molecular dynamics calculation [J]. Energy & Fuels, 1998, 12: 1168-1173.
    [44] Nakamura, K.; Murata, S.; Nomura, M. CAMD study of coal model molecules. 1. Estimation of Physical density of coal model molecules [J]. Energy & Fuels, 1993, 7: 347-350.
    [45] Murata, S.; Nomura, M.; Nakamura, K. CAMD study of coal model molecules. 2. Density simulation for four Japanese coals[J]. Energy & Fuels, 1993, 7: 469-472.
    [46] Dong, T. L.; Murata, S.; Miura, M.; et al. Computer-aided molecular design study of coal model molecules. 3. Density simulation for model structures of bituminous Akabira coal [J]. Energy & Fuels, 1993, 7: 1123-1127.
    [47] Jones, J. M.; Pourkashanian, M.; Rena, C. D.; et al. Modeling the relationship of coal structure to char porosity [J]. Fuel, 1999, 78: 1737-1744.
    [48]侯新娟;杨建丽;李永旺.煤大分子结构的量子化学研究[J].燃料化学学报, 1999, 27(增刊): 142-148.
    [49]陈皓侃;李保庆;李文.分子力学和分子动力学方法研究不同变质程度烟煤的分子结构[J].燃料化学学报, 2000, 28(5): 459-462.
    [50] Takanohashi, T.; Kawashima, H.; Yoshida, T.; et al. The nature of the aggregated structure of Upper Freeport coal [J]. Energy & Fuels, 2002, 16: 6-11.
    [51] Takanohashi, T.; Sato, S.; Saito, I.; et al. Molecular dynamics simulation of the heat-induced relaxation of asphaltene aggregates [J], Energy & Fuels, 2002, 17: 135-139.
    [52]孙庆雷;李文;陈皓侃;等.煤显微组分分子结构模型的量子化学研究[J].燃料化学学报, 2004, 32(3): 282-286.
    [53]姚晓倩;徐元源;相宏伟;等.从头算法对C-C键裂解能的研究[J].计算机与应用化学, 2002, 19(3): 354-357.
    [54] Barckholtz, C.; Barckholtz, T. A.; Hadad, C. M. C-H and N-H bond dissociation energies of small aromatic hydrocarbons[J]. Journal of the American chemical society, 1999, 121(3): 491-500.
    [55]凌开成;申峻.模型化合物在煤液化研究中的应用[J].煤炭转化, 1997, 20(1): 27-31.
    [56] Murata, S.; Mori, T.; Murakami, A.; et al. Studies on curie-point pyrolysis of coal model compounds [J]. Energy & Fuels, 1995, 9: 119-125.
    [57] Murata, S.; Nakamura, M.; Miura, M.; et al. Pyrolysis of coal model compounds. Thermal behavior of benzyl-substituted polyaromatic compounds [J]. Energy & Fuels, 1995, 9: 849-854.
    [58] Eskay, T. P.; Britt, P. F.; Buchanan, A. C. Pyrolysis of simple coal model compounds containing aromatic carboxylic acids: does decarboxylation lead to cross-linking?[J]. Prep. pap. Am. Chem. Soc. Div. Fuel Chem. 1996, 41(2): 739-743.
    [59] Jess, A. Mechanisms and kinetics of thermal reactions of aromatic hydrocarbons from pyrolysis of solid fuels [J]. Fuel, 1996, 75(12): 1441-1448.
    [60] Smith, C. M.; Savage, P. E. Reactions of Polycyclic Alkylaromatics. 7. Hydrogenolysis in binary mixtures [J]. Energy & Fuels, 1994, 8: 545-551.
    [61]王宝俊;张玉贵;谢克昌.量子化学计算在煤的结构与反应性研究中的应用[J].化工学报, 2003, 54(4): 477-488.
    [62]朱学栋;朱子彬;韩崇家;等.煤的热解研究Ⅲ煤中能团与热解生成物[J].华东理工大学学报, 2002, 26(1): 14-17.
    [63]凌丽霞;赵俐娟;章日光;等.苯甲酸和苯甲醛热解机理的量子化学研究[J]. 2009, 60(5): 1224-1230.
    [64]赵俐娟;凌丽霞;章日光;等.煤相关含氧模型化合物苯甲醚热解机理的量子化学研究[J].化工学报, 2008, 59(8): 2095-2102.
    [65]洪三国.苯并二氢吡喃热分解反应的量子化学研究[J].物理化学学报, 1995, 11(4): 297-301.
    [66]刘海明;张军营;郑楚光;等.煤中吡啶型氮热解机理的量子化学研究[J].煤炭转化, 2004, 27(2): 19-22.
    [67]刘海明;张军营;郑楚光;等.煤中吡咯型和吡啶型氮热解稳定性研究[J].华中科技大学学报, 2004, 32(11): 13-15.
    [68] Zhou, X. F.; Liu, R. F. A density functional theory study of the pyrolysis mechanisms of indole [J]. Journal of molecular structure (Theochem). 1999, 461-462: 569-579.
    [69]黄充;张军营;陈俊;等.煤中噻吩型有机硫热解机理的量子化学研究[J].煤炭转化, 2005, 28(2): 33-35.
    [70]王惠;翟高红;冉新权;等.碳材料用碳源化合物热解机理的理论研究[J].无机化学学报, 2000, 16(6): 879-887.
    [71]王惠;杨海峰;翟高红;等.碳源甲基苯热解机理的密度泛凼动力学研究[J].化学学报, 2001, 59(1): 17-21.
    [72]王惠;罗瑞盈;杨延清;等.一种碳前驱物热解反应的热力学动力学研究[J].材料研究学报, 2001, 15(2): 159-165.
    [73]王惠;翟高红;冉新权;等.碳前驱体热解机理的理论研究-反应能量、自由基的轨道能级及相对稳定性[J].无机材料学报. 2001, 16(2):230-236.
    [74]翟高红;朱卡克;王惠;等.碳前驱体热解机理的量子化学理论研究-几何结构、反应焓变、化学键和热反应活性[J].材料科学与工程, 2000, 18(4):10-15.
    [75]崔彦斌;王惠;冉新权;等.碳/碳复合材料碳源化合物乙苯热裂解机理的热力学研究[J].有机化学, 2004, 24(9): 1075-1081.
    [76]翟高红;王惠;杨海峰;等.环己烷的热裂解机理[J].物理化学学报, 2001, 17(4): 348-355.
    [77] Chae, K.; Violi, A. Thermal decomposition of decalin: an ab initio study[J]. J. Org. Chem. 2007, 72: 3179-3185.
    [78]朱素渝;李凡;李香兰;等.用核磁共振和红外光谱构造煤抽提物的结构模型[J].燃料化学学报, 1994, 22(4): 427-433.
    [1]马志茹,张蓬洲,李丽云,叶朝辉.核磁共振技术在煤化学研究中的应用[J].煤炭转化, 1996, 19(1): 33-39.
    [2]傅家谟,刘德汉,盛国英.煤成烃地球化学[M].北京:科学出版社,1990: 198.
    [3]彭立才,韩德馨,邵文斌,刘青文.柴达木盆地北缘侏罗系烃源岩干酪根13C核磁共振研究[J].石油学报, 2002, 23(2): 34-37.
    [4]郑昀辉,戴中蜀.用NMR研究低温热处理对低煤化度煤化学组成结构的影响[J].煤炭转化, 1997, 20(4): 54-59.
    [5] Trewhella, M. T., Poplett, L. J. F., Grint, A. structure of Green River oil shale kerogen determination using solid state 13C-NMR spectroscopy[J]. 1986, 65(4): 541-546.
    [7]王三跃.褐煤结构的分子动力学模拟及量子化学研究[D].太原:太原理工大学,2004.
    [8]徐秀峰,张蓬洲.高分辨固体13C NMR和XPS技术表征碳的骨架结构[J].煤炭转化, 1995, 18(4): 57-62.
    [9]傅家谟,刘德汉,盛国英.煤成烃地球化学[M].北京:科学出版社,1990, 202-246.
    [10]罗陨飞,李文华,陈亚飞.中低变质程度煤显微组分结构的13C-NMR研究[J].燃料化学学报, 2005, 33(5): 540-543.
    [11] Kidena, K., Tani, Y., Murata, S., Nomura, M. Quantitative elucidation of bridge bonds and side chains in brown coals[J]. Fuel, 2004, 83(11-12): 1697-1702.
    [12]王丽,张蓬洲,郑敏.用固体核磁共振和电子能谱研究我国高硫煤的结构[J].燃料化学学报, 1996, 24(6): 539-543.
    [13]陶著.煤化学[M].北京:冶金工业出版社, 1984: 153.
    [14] Vandenbroucke, M., Largeau, C. Kerogen origin, evolution and structure[J]. Organic Geochemistry, 2007, 38(5): 719-833.
    [15] Fuchs, W., Sandhoff, A. G.. Theory of coal pyrolysis[J]. Industrial and Engineering Chemistry, 1942, 34(5): 567-571.
    [16]常海洲,王传格,曾凡桂,李军,李文英,谢克昌.不同还原程度煤显微组分组表面结构XPS对比分析[J].燃料化学学报, 2006, 36(4): 389-394.
    [17] Thomas, S., Brühl, I., Heilmann, D., Kleinpeter, E. 13C NMR chemical shift calculations for some substituted pyridines: a comparative consideration[J]. J. Chem. Inf. Comput. Sci., 1997, 37(4): 726-730.
    [18] Kawashima, H., Takanohashi, T. Modification of model structures of upper freeport coal extracts using 13C NMR chemical shift calculations[J]. Energy&Fuels, 2001, 15(3): 591-598.
    [19] Takanohashi, T., Iino, M., Nakamura, K. Simulation of interaction of coal associates with solvents using the molecular dynamics calculation[J]. Energy&Fuels, 1998, 12(6): 1168-1173
    [1]杨小震.分子模拟与高分子材料[M].北京:科学出版社,2002: 1-10.
    [2] Takanohashi, T., Iino, M., Nakamura, K. Simulation of interation of coal associates with solvents using the molecular dynamics calculation [J]. Energy & Fuels, 1998, 12: 1168-1173.
    [3] Takanohashi, T., Kawashima, H. Construction of a model structure for Upper Freeport coal using 13C NMR chemical shift calculations [J]. Energy & Fuels, 2002, 16: 379-387.
    [4] Nosé, S. A unified formulation of the constant temperature molecular dynamics methods [J]. J. Chem. Phys., 1984, 81: 511-519.
    [5]常海洲;蔡雪梅;李改仙;等.不同还原程度煤显微组分堆垛结构表征[J].山西大学学报(自然科学版), 2008, 31(2): 223-227.
    [6] Marzec, A. Intermolecular interactions of aromatic hydrocarbons in carbonaceous materials a molecular and quantum mechanics [J]. Carbon, 2000, 38: 1863-1871.
    [7] Carlson, G. A. Computer simulation of the molecular structure of bituminous coal [J]. Energy&Fuels, 1992, 6: 771-778.
    [8] Nakamura, K., Murata, S., Nomura, M. CAMD study of coal model molecules. 1. Estimation of physical density of coal model molecules [J]. Energy & Fuels,1993,7: 347-350.
    [9] Murata, S., Nomura, M., Nakamura, K., Kumagai, H., Sanada, Y. CAMD study of coal model molecules. 2. density simulation for Four Japanese coals[J]. Energy & Fuels,1993,7: 469-472.
    [10] Dong, T. L., Murata, S., Miura, M., Nomura, M., Nakamura, K. Computer-aided molecular design study of coal model molecules. 3. density simulation for model structure of bituminous Akabira coal[J]. Energy & Fuels, 1993, 7: 1123-1127.
    [11]王三跃.金属-有机骨架材料中流体吸附性质的量化计算与分子模拟研究[D].北京:北京化工大学, 2007.
    [12] Takanohashi, T., Yoshida, T., Kawashima, H. Molecular simulation of relaxation behaviors of coal-aggregated structures [J]. Fuel Processing Technology, 2002, 77-78: 53-60.
    [13]倪献智,王力,陈丽慧,马小隆.超声波辐射下溶胀改善煤液化性能的研究[J].煤炭转化, 2003, 26(4): 37-41.
    [14]王知彩,水恒福,张德祥,高晋生.水热处理对神华煤质的影响[J].燃料化学学报,2006, 34(5): 524-529.
    [15] Yun, Y., Suuberg, E. M. New applications of differential scanning calorimetry and solvent swelling for studies of coal structure: Prepyrolysis structural relaxation [J]. Fuel, 1993, 72(8): 1245-1254.
    [1]侯新娟,杨建丽,李永旺.煤大分子结构的量子化学研究[J].燃料化学学报, 1999, 27(增刊): 142-148.
    [2]孙庆雷,李文,陈皓侃,李保庆.煤显微组分分子结构模型的量子化学研究[J].燃料化学学报,2004, 32(3): 282-286.
    [3]钟蕴英,关梦嫔,崔开仁,王蕙中.煤化学[M].北京:中国矿业大学出版社,1988: 151.
    [4]徐寿昌.有机化学[M].北京:高等教育出版社(第二版),2000: 123.
    [5]徐寿昌.有机化学[M].北京:高等教育出版社(第二版),2000: 253.
    [6]徐寿昌.有机化学[M].北京:高等教育出版社(第二版),2000: 279.
    [7]徐寿昌.有机化学[M].北京:高等教育出版社(第二版),2000: 242.
    [8]李军,冯杰,李文英.神府东胜煤镜质组和惰质组的热化学反应差异[J].物理化学学报, 2009, 25(27): 1311-1319.
    [1] Hohenberg, P.; Kohn, W. Inhomogeneous electron [J]. Gas. Phys. Rev., 1964, 136: B864-B871.
    [2] Mclean, A. D.; Chandler, G. S. Contracted gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18[J]. J. Chem. Phys., 1980, 72: 5639-5648.
    [3]贾建波;曾凡桂;李美芬;等.煤中芳核侧链模型化合物丁基蒽的初次热解[J].化工学报, 2009, 60(12): 3082-3087.
    [4] Willems, P. A., Froment, G. F. Kinetic modeling of the thermal cracking of hydrocarbons. 1. Calculation of frequency factors [J]. Ind. Eng. Chem. Res., 1988, 27(11): 1959-1966.
    [5]傅献彩;沈文霞;姚天扬.物理化学[M].北京:高等教育出版社, 1993: 806-811.
    [6]王惠;杨海峰;翟高红;等.碳源甲基苯热裂解机理的密度泛函动力学研究[J].化学学报, 2001, 59(1): 17-21.
    [7] Phillip, E.; Savage, D. J. K. Pyrolysis Kinetics for Long-Chain n-Alkyl benzenes: Experimental and Mechanistic Modeling Results [J]. Ind. Eng. Chem. Res., 1990, 29: 499-502.
    [8] Szwarc, M. The C H Bond Energy in Toluene and Xylenes [J]. J. Chem. Phys., 1948, 16(2): 128-136.
    [9] Blades, B. H.; Blades, A. T.; Steacie, E.W. R. The kinetics of the pyrolysis of toluene[J].Canadian Journal of chemistry, 1954, 32: 298-311.
    [10] Price, S. J. The pyrolysis of toluene [J]. Canadian Journal of chemistry, 1962, 40: 1310-1317.
    [11] Deutsch, B. S.; Krieger, K.A. Free radicals from the decomposition of toluene and butane-1[J]. The journal of physical chemistry, 1962, 66(9): 1569-1573.
    [12]王兰英;李贺军;卢锦花;等.以甲苯为前驱体化学液气相沉积法制备碳/碳复合材料[J].高等学校化学学报, 2005, 26(6): 1002-1005.
    [13]王惠;杨海峰;冉新权;等.甲苯热裂解机理的AM1研究(Ⅱ)动力学分析[J].无机化学学报, 2001, 17(4): 545-550.
    [14]王惠;翟高红;冉新权;等.碳前驱体热解机理的理论研究-反应能量、自由基轨道能级及相对稳定性[J].无机材料学报, 2001, 16(2): 230-236.
    [15] Blades, A.T.; Steacie, E. W. R. Some aspects of the toluene pyrolysis [J]. Canadian Journal of Chemistry, 1954, 32: 1142-1145.
    [18]王宝俊.煤结构与反应性的量子化学研究[D].太原:太原理工大学, 2006.
    [19]王宝俊;张玉贵;谢克昌.量子化学计算在煤的结构与反应性研究中的应用[J].化工学报, 2003, 54(4): 477-488.
    [20]朱学栋;朱子彬;张成芳;等.煤的热解研究IV.官能团热解模型[J].华东理工大学学报, 2001, 27(2): 113-116
    [21] Dobis, O.; Benson, S. W. Analysis of flow dynamics in a new, very low pressure reactor. Application to the reaction: Cl + CH4 HCl + CH3 [J]. Int. J. Chem. Kinet., 1987, 19: 691-708.
    [22] Dobis, O.; Benson, S. W. Temperature Coefficients of Rates of Ethyl Radical Reactions with HBr and Br in the 228?368 K Temperature Range at Millitorr Pressures[J]. J. Phys. Chem. A, 1997, 101(34): 6030-6042.
    [23]罗渝然.化学键能数据手册[M].北京:科学出版社. 2005: 100. 106.
    [24]崔彦斌;王惠;冉新权;等.碳/碳复合材料碳源化合物乙苯热裂解机理的热力学研究[J].有机化学, 2004, 24(9): 1075-1081.
    [25]高鸿宾.有机化学(第三版)[M].北京:高等教育出版社, 1999: 275.
    [26] Hehre, W. J. Practical strategies for electronic structure calculations [cp]. Wave function, Inc. Irvine, CA. 1995.
    [27]谢有畅;邵美成.结构化学(上册)[M].北京:人民教育出版社, 1979: 140-142.
    [28] Kidena, K.,Bandoh, N.; Murata, S.; et al. Studies on the bond cleavage reactionsof coal molecules and coal model compounds [J]. Fuel Processing Technology, 2001,74: 93-105.
    [29] Curran, G. P.; Struck, R. T.; Gorin, E. Mechanism of hydrogen-transfer process to coal and coal extract [J]. Ind. Eng.Chem.Process. Design. Dev., 1967, 6(2): 166-173.
    [30] Hooper, J. R.; Hendrik, A. J.; Battaerd, J.; et al. Thermal dissociation of tetralin between 300 and 450℃[J]. Fuel, 1979, 58(2): 132-138.
    [31] Yen, Y. K.; Furlani, D. E.; Weller, S. W. Batch autoclave studies of catalytic hydrodesulfurization of coal [J]. Ind. Eng. Chem. Prod. Dev., 1976, 15(1): 24-28.
    [32] Benjamin, B. M.; Hagaman, E. W.; Raaen, V. F.; et al. Pyrolysis of tetralin [J]. Fuel, 1979, 58(5): 386-390.
    [33] Penninger, J. M. L. New aspects of the mechanism for the thermal hydrocracking of indane and tetralin [J]. Inter. J. Chem. Kinet., 1982, 14(7): 761-780.
    [34]杨晓林;杨惠星;韩德刚.四氢萘(C10H12)热解反应动力学研究[J].物理化学学报, 1985, 1(3): 249-257.
    [35]杨晓林;杨惠星;韩德刚.四氢萘热解中间产物及其反应机理的进一步研究[J].物理化学学报, 1985, 1(6): 571-574.
    [36] Poutsma, M. L. Free-radical thermolysis and hydrogenolysis of model hydrocarbons relevant to processing of coal [J]. Energy& Fuels, 1990, 4: 113-131.
    [37] Bounaceur, R.; Scacchi, G.; Marquaire, P. M.; et al. Mechanistic modeling of the thermal cracking of tetralin [J]. Ind. Eng. Chem. Res., 2000, 39(11): 4152-4165.
    [38] Poutsma, M. L. Progress toward the mechanistic description and simulation of the pyrolysis of tetralin [J]. Energy & Fuels, 2002, 16: 964-996.
    [39] Chae, K.; Violi, A. Thermal decomposition of decalin: An ab initio study [J]. J.Org. Chem. 2007, 72: 3179-3185.
    [40]杨惠星;应立明;覃志伟.四氢萘热解反应机理研究[J].化学学报, 1990, 48: 441-446.
    [41]申峻;凌开成;邹纲明;等.煤油共处理过程中的反应机理[J].煤炭转化, 1999, 22(4): 5-9.
    [42]谢克昌.煤的结构与反应性[M].北京:科学出版社, 2002: 215-216.
    [43]张妮.不同变质程度煤热解甲烷生成特征及反应机制[D].太原:太原理工大学, 2005.
    [44] Cramer, B. Methane generation from coal during open system pyrolysis investigated by isotope specific, Gaussian distributed reaction kinetics [J]. Organic Geochemistry, 2004, 35: 379-392.
    [45] Porada, S. The reactions of formation of selected gas products during coal pyrolysis [J].Fuel, 2004, 83(9):1191-1196.
    [46]黄第藩;秦匡宗;王铁冠;等.煤成油的形成和成烃机理[M].北京:石油工业出版社, 1995: 61-62.
    [47] Smith, C. M.; Savage, P. E. Pyrolysis of polycyclicα,ω-diarylpropanes pathwys, kinetics, and mechanisms [C]. Division of fuel chemistry symposium on model compounds in coal liquefaction. Boston, 1990: 394-403.
    [48] Espinal J. F., Mondragon F., Truong T. N. Mechanisms for methane and ethane formation in the reaction of hydrogen with carbonaceous materials [J]. Carbon, 2005, 43: 1820-1827.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700