用户名: 密码: 验证码:
Bridgman对顶砧的加压性能及快压制备高密度纳米硒块体材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压物理学是研究物质在高压下的电学、光学、磁学、力学特性,以及高压下物质的微观结构、状态方程及相变等的学科。由于高压研究可以发现常压下物质所不具备的新结构、新性能、新现象及新规律,因此,它为新材料合成、制备及改性提供了重要的实验依据和理论基础。本论文共分为三个部分,第一部分为对Bridgman压砧加压性能的研究,属于高压技术研究;第二部分为快速增压法制备高密度纳米硒块体材料;第三部分为快速增压制备不同结构比例的大块非晶硫的探索,第二和第三部分属于高压下新材料的制备。分别摘要如下:
     (1) Bridgman对顶砧加压性能的研究
     在本实验室过去使用的端面直径为26mm的Bridgman对顶砧高压模具的基础上,进一步研究了直径为20mm的对顶砧模具的性能。并使用新的高压模具对叶腊石封垫的力学行为进行了一系列研究。通过改变施加压力研究了叶蜡石的剪切强度及弹性模量随压力的变化规律等力学行为,证实了封垫材料的弹性模量随压力增大而增大;得到了塑性区剪切强度随压力的变化规律(即在塑性区封垫材料的剪切强度随压力的增大而增大,且增大的趋势逐渐减小)。另外,将实验结果和理论分析相结合,证实了圆片的弹性区存在不可忽略的剪切强度,并进一步证明了圆片的中部存在一个准静水压区,为高压实验中样品腔尺寸的选择提供了更为科学的依据。这些实验结果完善了高压下圆片封垫内压力实际分布的模型。
     利用Bi丝已知的压致相变点对Bridgman压砧的压力进行了标定,结合上述测量结果的推算,得出了Bridgman式压砧中心实际压力随油压的升高而升高得更快的特性,这种特征不同于多压砧装置和年轮式模具。
     利用这套新的对顶砧高压模具配合快速增压压机测量了常温下绝热压缩过程中,硒的温度随压力的变化,从而为进一步测量硒的格林爱森参数和吴经参数打下基础,并为快速增压法制备纳米硒过冷度的估算提供了参考依据。
     (2)快速增压方法制备高密度纳米硒多晶块体材料
     纳米材料作为新型功能材料或结构材料的研究备受关注。制备纳米块体材料的方法已有多种,但与高压相关的并不多。我们考虑到在热力学上压力和温度的对等关系,提出对熔融液体快速改变压力导致凝固应与快速改变温度一样可以获得亚稳态结构的块体材料,同时因在这种过程中温度均匀,分子的凝聚行为将不受热传导率的限制,有利于一次性获得大块纳米晶体材料。本研究共设计了四组对比实验:(a)熔融硒快速增压到2.8GPa; (b)熔融硒快速增压到3.5GPa; (c)熔融硒慢速增压到2.8GPa;(d)熔融硒在常压下自然冷却。对四组实验所回收的固态硒分别进行SEM、TEM、XRD分析,发现(a)和(b)回收的样品均为纳米块体材料,平均晶粒尺寸分别为18.73nm和19.04nm, (a)回收样品的相对密度高达98.17%。其它两种实验获得的则是微米级多晶体。说明快速增压方法能够使熔体大量成核的同时又有效地抑制晶粒的生长,从而一次性获得均质的纳米晶体硒。这是首次通过快速增压法成功地制备出纳米多晶块体材料。获得的纳米晶硒块体材料的最大直径为16mm,厚度为3.2mm。研究结果显示,快速增压法是一种有效制备大块纳米晶材料的新途径。本文还对其形成机理进行了分析。
     (3)快速增压法制备不同结构比例的大块非晶硫的探索
     从Mishima发现冰有两种不同的非晶态以来,同种物质是否存在不同非晶相成为凝聚态物理中一个新的热点问题。相关研究结果启示我们:能否利用快速加压的方法使不同温度的熔体快速凝固,在不同的过冷度下“冻结”成不同的高压相,从而制备出不同结构的非晶相。前人报道熔融硫在432K时会由硫八环结构开始断裂转变为链状结构,因此我们设计了两组对比实验,旨在通过快速增压的方法“冻结”熔融硫在432K以上和以下的不同结构,从而制备出不同结构的非晶硫。回收样品经X射线衍射、差热分析、傅里叶红外光谱和拉曼光谱分析后,确定制备出来的非晶硫均为硫八环和链状硫的混合结构,只是它们的含量比例不同。我们对实验结果的原因进行了讨论分析,初步给出了制备不同结构非晶硫的可能性。
High pressure physics is a subject to study the optics, electrics, magnetism, mechanics, microstructure, equation of state and phase transformation of materials under high pressure. High pressure research can bring discovery of the new structures and novel properties of materials, which have not appeared in the ambient pressure, As experimental evidence and theoretical base, the research is very significant for synthesizing new materials and improving properties of condensed matter. This dissertation includes three parts. First is the investigation of mechanical features of Bridgman anvil, especially, that with 20mm top diameter, this part belongs to high pressure technology. Second is the praperation of high-density nanocrystalline bulk senenium by rapid compression method, and last part is an attempt to make the bulk amorphous sulfur with structurally different content.
     (1) The features of Bridgman anvil in application of high pressure
     By using the Bridgman anvil with 20mm top diameter, we research mechanical behavior of pyrophyllite gasket. Through changing the pressure, measuring the related size and analyzing the picture of recovered discs, the relationship between elastic module and pressure, and distribution of shear strength in the pyrophyllite gasket is studied in details. Results show that the elastic module of gasket rises with increasing pressure, and the shear strength of plastic zone distributes with a variation rule (i.e. the shear strength of plastic zone is risen but its increment rate is relatively reduced as increasing pressure).
     In addition, combining with the experimental results and theoretical analysis, it is confirmed that the shear strength within elastic zone can not be ignored, but a small quasi-hydrostatic pressure area exists in the middle of the gasket disk, which brings a practical evidence for the choice of sample size in high-pressure experiments. The investigation perfects the model of real pressure distribution in the disc gasket under high pressure.
     The pressure on the Bridgman anvils was calibrated by using the known phase transitions of bismuth. Compared with the measurement results on the different size and different type molds, it is made clear that the actual pressure increases on the center of Bridgman anvils and the increased rate also rises with the oil pressure increasing. The latter character is quite different from that of multi-anvil apparatus and belt apparatus.
     The method of larger pressure-jump was used to measure the change of temperature with pressure of selenium in adiabatic compression process. The results not only could induce the measurement of Wu-Jing parameters and Gruneisen parameters under high pressure, but also are helpful for estimation of the supercooling of selenium in next experiments.
     (2) Preparation of high-density nanocrystalline bulk selenium by rapid compressing of melt.
     Nanocrystalline (NC) materials have been attracted tremendous attention due to their unique physical and mechanical properties. Up to now there are many kinds of techniques synthesizing nanocrystalline bulk materials, however, few relatively with the high-pressure. In view of the relation of equivalence of pressure and temperature in thermodynamics, the viewpoint is proposed that changing the pressure rapidly has the same thermodynamic effect as changing the temperature abruptly at producing metastable structure bulk. Furthermore, in the rapid compressing process the whole sample, whether surface or interior is held in a synchronously thermal environment, where the thermal conduction is not working, and the bulk NC is beneficial to be prepared directly with large size.
     Four separate experiments have been conducted in this study, (a) Rapid compression to 2.8GPa for liquid selenium; (b) Rapid compression to 3.5GPa for liquid selenium; (c) Slow compression to 2.8GPa for liquid selenium; (d) Natural cooling at ambient pressure. Based on the XRD, SEM and TEM results of the recovered samples, it is clearly shown that homogenous nanostructures were formed only by the rapid compression processes, and the average crystal sizes were about 18.7 and 19.0nm in the samples recovered (a) and (b), respectively. The relative density of the nanocrystalline bulk is up to 98.17% of the theoretical value. It is suggested that rapid compression could induce pervasive nucleation and restrain grain growth during the solidification. Obtained bulk NC selenium is large with 16mm in diameter and 3.2mm in thickness. The research results show that the rapid compression of melt is an effective way for preparing high-density bulk nanocrystalline materials. The mechanism is related to fast supercooling, higher viscosity of the melt and lower diffusivity of atoms under high pressure.
     (3) Rapid compression induced solidification of structurally different content of amorphous sulfur.
     Since Mishima had found two kinds of amorphous ice, it becomes a new hot topic in the condensed matter physics that whether the same matter has different amorphous phases. Based on the related research we imagine that if the melt rapidly solidified at different temperatures by rapid compression, the different high-pressure phase would be "frozen" at different supercooling, and so the amorphous phase with different structure could be prepared. It has been reported that S8 rings of sulfur begin transition to the mixture of S8 rings and long polymer [S]n chains at 432K, indicated there are different structures in the melt sulfur at different temperature. Therefore, we present two comparative experiments to "freeze" the different structure by using rapid compressing melt sulfur at separated temperature above or under 432K. Recovered solid sulfur samples were analyzed by XRD, DSC, FT-IR and Raman spectrum. Characterization showed that all the recovered samples are mixture of S8 rings and long polymer [S]n chains, but their content is different each other. The experimental results supported the possibility to prepare different amorphous sulfur. More feasible scheme of experiment is further discussed in this part.
引文
[1]R Boehler. Adiabats ((?)T/(?)P) s and Gruneisen parameter of NaCl up to 50 kilobars and 800℃. J Geophysics Res.198186:7159-7162
    [2]R Boehler I.C. Getting and G.C. Kennedy Gruneisen parameter of NaCl at high compressions. JPhys Chem Solids.1976 38:233-236
    [3]王筑明,谢鸿森,郭捷,徐济安 高压下铝的Gruneisen参数的实验测量.高压物理学报.1998 12:54-59
    [4]J Quednau, G. M.Schneider A New High-pressure-cell for differential pressure-jump experiments using optical-detection. Rev Sci Intrum.1989 60:3685-3687
    [5]S Sinanis, G.M. Schneider, Pressure-jump investigations on the kinetics of the isotropic-nematic phase transition of a liquid crystal:Time behavior of the scattered and transmitted light intensities for PCH5. Ber Bunsen Phys Chem.1998 102:745-750
    [6]M. Steinhart, M.Kriechbaum, K Press, et al. High-pressure instrument for small-and wide-angle x-ray scattering. Ⅱ. Time-resolved experiments. Rev Sci Intrum.1999 70:1540-1545
    [7]D.W.He,Zhang F.X., M.Zhang, R.P.Liu, Y.F.Xu,W.K.Wang, Quenching with rapid decompression-a new method for rapid solidification Appl. Phys. Lett.1997 71:3811-3813
    [8]J. Woenckhaus, R. Kohling, R.Winter et al. High pressure-jump apparatus for kinetic studies of protein folding reactions using the small-angle synchrotron x-ray scattering technique. Rev Sci Intrum.2000 71:3895-3899
    [9]J Woenckhaus, R Kohling, P.Thiyagarajan et al. Pressure-jump small-angle x-ray scattering detected kinetics of staphylococcal nuclease folding. Biophys J.2001 80: 1518-1523
    [10]H. Herberhold and R.Winter Temperature-and pressure-induced unfolding and refolding of ubiquitin:A static and kinetic Fourier transform infrared spectroscopy study. Biochem.200241:2396-2401
    [11]H. Herberhold, S. Marchal, R. Lange et al. Characterization of the pressure-induced intermediate and unfolded state of red-shifted green fluorescent protein-A Static and Kinetic FTIR, UV/VIS and Fluorescence Spectroscopy Study. JMol Biol.2003 330:1153-1164
    [12]W.Lu, L.Yang, B.Yan, B.Lu, W.H.Huang, Bulk amorphous and nanocrystalline Fe86Zr5:5Nb5:5B3 alloy by rapid consolidation at super-high pressure J.Magn.Magn. Mater. 2005292:299-303
    [13]S. M. Hong, L. Y. Chen et al. High pressure jump apparatus for measuring Gruneisen parameter of NaCl and studying metastable amorphous phase of poly.ethylene terephthalate. Rev. Sci. Instrum.200576:053905(1-6)
    [14]A.E Ringwood, A.Major High pressure transformations in pyroxenes. Earth planet Sci. Letters 1966 1:351-357
    [15]A.E Ringwood, A. Major Apparatus for phase transformation studies at high pressures and temperatures. Phys. Earth Planet. Interiors.1968 1:164-168
    [16]王霖,刘冰冰,王卉等,纳米硫化锌球壳的高压相变研究 高压物理学报200519:357-360
    [17]L. Ming and W. A. Bassett, Laser heating in the diamond anvil press up to 2000℃ sustained and 3000℃ pulsed at pressures up to 260 kilobars, Rev. Sci. Instrum.1974 45: 1115-1118
    [18]G. Shen, M. L. Rivers, Y.Wang and S. R. Sutton, Laser heated diamond cell system at the advanced photon source for in situ Xray measurements at high pressure and temperature. Rev. Sci. Instrum.200172:1273-1282
    [19]C.S. Zha,W.A.Bassett, Internal resistive heating in diamond anvil cell for in situ x-ray diffraction and Raman scattering Rev. Sci. Instrum.2003 74:1255-1262
    [20]陈丽英,刘秀茹,吴学华,苏磊,洪时明用Bridgman压砧研究我国几种叶蜡石的剪切强度.珠宝科技 2004 4:6-10
    [21]刘秀茹,快速增压法制备大块金属玻璃及金属玻璃的高压相变研究,西南交通大学博士学位论文 2007 p1-6
    [22]L.Su, L.B.Li, Y.Hu, S.M.Hong et al. Phase transition of [Cn-mim][PF6]under high pressure up to 1.0 GPa J. Chem. Phys.2009130:184503 (1-4)
    [23]R. Jia, C.G. Shao and S.M. Hong, Rapid compression induced solidification of bulk amorphous sulfur. JPhys. D.Appl. Phys.2007 40:3763-3766
    [24]H.M. Strong, Early diamond making at General Electric Am. J. Phys.198957:794-802
    [25]F. P. Bundy, H. T. Hall, H. M. Strong and R.H. Wentorf, Man-made diamonds Nature
    1955 176:51-55
    [26]H. P. Bovenkerk, F.P. Bundy, H.T. Hall, H.M. Strong, and R.H.Wentorf, Jr., Preparation of diamond Nature 1959 184:1094-1098
    [27]R.H.Wentorf Jr, Synthesis of the cubic form of boron nitride. J. Chem.Phys.1961 34: 809-812
    [28]F.R.Corrigan,,F.P.Bundy, Direct transitions among the allotropicforms of boron nitride at high pressures and temperatures J.Chem.Phys.1975 63:3812-3820.
    [29]Shoji Yamanaka and Akira Kubo, High Pressure Synthesis, Structures and Properties of Three Dimensional C6o Polymers The Review of High Pressure Science and Technology 200616:229-235
    [30]D.M.Teter and R.J.Hemley Low- compressibility carbon nitrides. Science 1996 271: 53-55
    [31]K. Shimizu, K. Suhara, M. Ikumo, M. I. Eremets and K. Amaya, Superconductivity in oxygen Nature 1998 393:767-769
    [32]M. I. Eremets, V. V. Struzhkin, H.K.Mao, R. J. Hemley, Superconductivity in Boron Science 2001293:272-274
    [33]Katsuya Shimizu, Hiroto Ishikawa, Daigoroh Takao, Takehiko Yagi and Kiichi Amaya, Superconductivity in compressed lithium at 20 K Nature 2002419:597-599
    [34]H. K. Mao, P. M. Bell and R. J. Hemley, Ultrahigh pressures:Optical observations and Raman measurements of hydrogen and deuterium to 1.47 Mbar, Phys. Rev. Lett.1985 55: 99-102
    [35]H. E. Lorenzana, I. F. Silvera and K. A. Goettel, Evidence for a structural phase transition in solid hydrogen at megabar pressures Phys. Rev. Lett.1989 63:2080-2083
    [36]M. Takano et al, ACuO.sub.2 (A:Alkaline Earth) Crystallizing In A Layered Structure Physica C 1989159:375-378.
    [37]M.G. Smith et al. Electron-doped superconductivity at 40 K in the infinite-layer compound Sri_yNdyCu02, Nature 1991351:549-551
    [38]C. Q. Jin, X. J. Wu et at., Superconductivity at 80 K in (Sr, Ca)3Cu2O4+δCl2-y induced by apical oxygen doping Nature 1995 375:301-303
    [39]Y.F.Xu, X.Huang, W.K.Wang, Preparation of bulk metallic glass,Pd40Ni40P20 under high pressure Appl. Phys. Lett.1990 56:1957-1958
    [40]王文魁,亚稳相的高压暴露 高压物理学报 1989 3:257-268.
    [41]王文魁,许应凡,黄新明,高压下Pd40Ni40P20过冷熔体的成核及大块金属玻璃形成中国科学A辑 1992 12:1305-1310
    [42]P.S. Dicarli and F.C. Jamieson, Formation of an Amorphous Form of Quartz under Shock Conditions J. Chem. Phys.195931:1675-1676
    [43]C.Yang, R.P. Liu et al., Formation of ZrTiCuNiBe bulk metallic glass by shock-wave quenching Appl. Phys. Lett.2005 87:051904
    [44]T. Seking, H.L.He, T. Kobayasi, M.Zhang, F.F.Xu,Shock-induced transformation of β-Si3N4 to a high-Pressure cubic-spinel Phase Appl. Phys. Lett.2000 76:3706-3708.
    [45]P. Perlin, I. Gorczyca, N. E. Chritensen, Pressure studies of gallium nitride:Crystal growth and fundamental electronic properties Phy. Rev. B.199245:13307-13313
    [46]禹日成,许大鹏,苏文辉高压截获十次准晶相关晶体相和纳米级超微粒.高压物理学报 1995 9:257-263
    [47]D.H. Huang, S.M. Hong et al. Measuring Gruneisen parameter of iron and copper by an improved high pressure-jump method J. Phys. D:Appl Phys,2007 40:5327-5330
    [48]D.H. Huang, S.M. Hong et al. Measuring Gruneisen parameter of lead by high pressure-jump method Chin. Phys. Lett.2007 24:2441-2443
    [49]T.Mutschele, R.Kirchheim, Segregation and diffusion of hydrogen in grain boundaries of palladium Scripta. Metall.1987 21:135-140
    [50]S.Iijima, Helical microtubules of graphitic carbon Nature 1991354:56-58
    [51]C. A. Melendres, A. Narayanasamy, V. A. Maroni, R. W. Siegel, Raman Spectroscopy of Nanophase TiO2 J Mater.Res.1989 4:1246-1250
    [52]G.W.Nieman, J. R.Weertman, R. W. Siegel,Mechanical behavior of nanocrystalline Cu and Pd J Mater Res 19916:1012-1027
    [53]G. E.Fougere, J. R.Weertman and R.W.Siegel, Processing and mechanical behavior of nano crystalline Fe NanaSuuaurcd Matmak 1995 5:127-134
    [54]H. Konrad, T.Haubold, R.Birringer and H.Gleiter.Nanostructured Cu-Bi alloys prepared by co-evaporation in a continuous gas flow NanoStructured Materials 1996 7:605-610
    [55]H.Hahn., Gas phase synthesis of nanocrystalline materials Nanostructured Materials 19979:3-12
    [56]D.L.Zhang, C.C.Koch, R.O.Scattergood,The role of new particle surfaces in synthesizing bulk nanostructured metallic materials by powder metallurgy Materials Science and Engineering A 2009 516:270-275
    [57]S.Cheng, E.Ma, Y.M.Wang, L.J. Kecskes, K.M.Youssef, C.C.Koch, U. P. Trociewitz and K.Han, Tensile properties of in situ consolidated nanocrystalline Cu Acta. Materialia 200553:1521-1533
    [58]R.Z.Valiev, R.K. Islamgaliev, I.V.Alexandrov, Bulk nanostructured materials from severe plastic deformation Progress in Materials Science 2000 45:103-187
    [59]T.G Langdona, Research on bulk nanostructured materials in Ufa:Twenty years of scientific Achievements Materials Science and Engineering A 2009 503:6-9
    [60]K. Lu, Synthesis of Nanocrystalline Materials from Amorphous Solids. Adv. Mater. 199911:1127-1128
    [61]张皓月,卢柯,胡壮麒 非晶Se向纳米晶Se的转变物理学报1995 44:109-114
    [62]B. Yao, D.J. Li, A.M. Wang, B.Z. Ding, S.L. Li, Z.Q. Hu, Preparation of Cu-Si bulk nanometre alloy under high pressure Physica B 1995 212:61-66
    [63]秦志成,张云,张富样,刘维,王文魁,高压淬火直接形成Pd-Si块状纳米晶合金,Acta Physica Sinica 1995 44:105-108
    [64]周宇松,吴希俊,李冰寒,许国良采用真空热压技术制备纳米金属钨块体材料 高压物理学报 2000 14:219-223
    [65]X.L.Shi, M.S.Cao, X.Y.Fang, J.Yuan, Y.Q.Kang, W.L.Song,High-temperature dielectric properties and enhanced temperature-response attenuation of b-MnO2 nanorods Appl. Phys. Lett.2008 93:223112(1-3)
    [66]J. F. Cannon, Behavior of the elements at high pressure J. Phys. Chem.Ref. Data 1974 3 801-803; 804-805
    [67]O. Mishima et al., Nature1984 310:393-395, Nature1985 314:76-78, Science1991 254: 406-408, Nature 1996 384:546-549, Nature 1998 392:164-168,Nature1998 396:329-335
    [68]R.J.Hemley, A.P.Jephcoat, H.K.Mao et al., Pressure-induced amorphization of crystalline silica, Nature 1988 334:52-54.
    [69]K. H. Smith, E. Shero, A. Chizmeshya and G. H. Wolf, The equation of state of polyamorphic germania glass:A two-domain description of the viscoelastic response J. Chem. Phys.,1995 102:6851-6857
    [70]M. B.Kruger, R.Jeanloz, Memory glass:A new amorphous material formed from AIPO4 Science 1990 249:647-649.
    [71]B.Meyer, Element sulfur, Chem. Rev.1976 76:367-388
    [72]R. Steudel, Top. Curr. Chem.1982 102:149-
    [73]P.W.Bridgman. Collected Experimental Papers.1964
    [74]R.H. Wentorf, Jr. Modern very high pressure techniques Burrer worth Ltd 1962 229
    [75]H. T. Hall, Ultra-high pressure apparatus Rev. Sci. Instr.1960 31:125
    [76]E.N.Kashigin, Gasket for sealing high-pressure equipment,Chemical and Petroleum 'Engineering 1993 29:122-124
    [77]R.J.Hemley, H.K.Mao, G.Y.Shen et al. X-ray Imaging of Stress and Strain of Diamond, Iron and Tungsten at Megabar Pressures. Science 1997 276:1242-1245
    [78]M.I.Erements,High pressure.experimental methods Oxford University Press, USA,1996 18
    [79]A.B.William,Diamond anvil cell,50th birthday, High Pressure Research:An International Journal 2009 29:1477-2299
    [80]G. Zou,Y. Z.Ma,H. K. Mao, J. Z. Hu, M. S. Somayazulu and R. J. Hemley, Application of diamond gasket on the XRD study at high pressure and high temperature, in Science and Technology of High Pressure:Proceedings of AIRAPT-17 Universities Press, Hyderabad, India 2000:1107-1108
    [81]J.F.Lin, J.F.Shu, H. K. Mao,R. J. Hemley,G.Y.Shen,Amorphous boron gasket in diamond anvil cell research,Rev. Sci. Instrum.2003 74:4732-4735
    [82]D.W.He,Y.S.Zhao,T.D.Sheng,R.B.Schwarz,J.Qian,K.A.Lokshin, S.Bobev,L.L.Daemen, H.K.Mao, J.Z.Hu, J.Shu,J.Xu, Bulk metallic glass gasket for high pressure in situ x-ray diffraction, Rev. Sci. Instrum.2003 74:3012-3016
    [83]G.T.Zou, Y.Z.Ma, H.K.Mao, R.J.Hemley and S.A.Gramsch, A diamond gasket for the laser-heated diamond anvil cell Rev. Sci. Instrum 200172:1298-1301
    [84]R.J.Vaisnys, P.W.Montgomery, Materials for ultrahigh pressure sealing in Bridgman anvil devices, Rev. Sci. Instrum.1964 35:985-989
    [85]K.S.Chan,T.L.Huang,T.A.Grzybowski,T.J.Whetten,A.L.Ruoff, Pressure concentrations due to plastic deformation of thin films or gaskets between anvils, J. Appl. Phys.1982 53:6607-6612
    [86]Y.A.Timofeev,A. N. Utyuzh, Measuring the Thickness of a Metal Gasket Squeezed between the Anvils of a High-Pressure Cell while PreparingIt for an Experiment, Instruments and Experimental Techniques,,200346:721-723.
    [87]M.Wakatsuki, K.Ichinose and T.Aoki Jpn. J. Appl. Phys.1972 11:578-
    [88]陈丽英,快速大幅度增压法测量NaCl的Gruneisen参数。西南交通大学研究生士学位论文2005 p22-69
    [89]周开勇,俞新陆超高压封垫材料力学性能的测试技术 高压物理学报 1990 4:7-16
    [90]L.C. Getting, G.C.Kennedy Effect of Pressure on the emf of Chromel-Alumel and Platinum-Platinum 10% Rhodium Thermocouples. J Appl Phys.1970 41:4552-4562
    [91]H.V.Gleiter, Nanocrystalline Materials-a first report Trans Japan Inst Metal suppl 1986 27:43-52
    [92]G.W. Nieman, J. R. Weertman, R.W. Siegel Mechanical behavior of nanocrystalline Cu and Pd J Mater Res 19916:1012-1027
    [93]卢柯 纳米晶体材料研究进展 中国科学基金 1994 4:245-251
    [94]C. C. Koch, The synthesis and structure of nanocrystalline materials produced by mechanical attrition:A review, Nanostru.Mater.1993 2:109-129
    [95]S Cheng, E.Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz and K. Han, Tensile properties of in situ consolidated nanocrystalline Cu, Acta Materialia 200553:1521-1533
    [96]K Lu, J.T.Wang and W.D.Wei, A new method for synthesizing nanocrystalline alloys, J. Appl. Phys.199169:522-524
    [97]T.H. Noh et al., JMagn Mater 1992 128:129
    [98]张振忠,宋广生,杨根仓,周尧和,块状金属纳米材料的制备技术进展及展望兵器材料科学与工程 1999 3:46-51
    [99]R Z Valiev, N A Korasilkov,et al. Plastic Deformation of Alloys with Submicro-Grained Structure. Mater Sci. Eng.,1991 A 137:35-40
    [100]R.Z. Valiev, A.V. Korznikov, R.R.Mulyukov, Structure and Properties of Ultrafine-Grained Materials Produced by Severe Plastic Deformation. Mater. Sci. Eng.1993 A168:141-148
    [101]R.Z.Abdulov, R.Z.Valiev, N.A.Korasilkov, Formation of Submicrometre-Grained Strucure in Magnesium Alloy Due to High Plastic Strains. Mater Sci. Lett,1990 9:1445-1447
    [102]R Z Valiev, A V Koznikov, R R Mulyukov, Structure and Properties of Ultrafine-Grained Materials Produced by Severe Plastic Deformation. Mater Sci. Eng.A 1993 168: 141-148
    [103]周果君,甘卫平,块体纳米材料的制备及性能研究,安徽化工 2002 3:19-22
    [104]李冬剑,丁炳哲,胡壮麒等,块状Cu-Ti纳米晶合金的直接形成——高压下从高温固相淬火 科学通报 1994 19:19-21
    [105]C.L.Wang, S.Z. Lin, Y. Niu, W.T. Wu, Z.L. Zhao, Microstructural properties of bulk nanocrystalline Ag-Ni alloy prepared by hot pressing of mechanically pre-alloyed powders Applied Physics A 2003 76:157-163
    [106]A.Umehara, S.Nitta, H.Furukawa, Nonomura, Preparation and properties of nanocrystalline semiconductor selenium films S Appl.Surf. Sci.1997 119:176-180
    [107]G.Belev, S.O.Kasap, Amorphous selenium as an x-ray photoconductor, J. Non-Cryst. Solids 2004 345/346:484-488
    [108]L.I. Berger, L I. Berger, Semiconductor Materials, CRC Press, Boca Raton, FL 1997 86-88
    [109]B. H. Xu, K.Y. Huang, Chemistry, Biochemistry of Selenium and its Application in Life Science, Hua East University of Science & Technology Press (Ch).1994.
    [110]高学云,张劲松,张立德,、朱茂祥,纳米红色元素硒对小鼠的免疫功能的调节作用.中国公共卫生 2000 16:421-422.
    [111]B.Gates, B.Mayers, Y.Wu, Y.Sun, B.Cattle, P. Yang, Y.Xia, Synthesis and Characterization of Crystalline Ag2Se Nanowires Through a Template-Engaged Reaction at Room Temperature Adv. Funct. Mater 2002 12:679-686
    [112]V. V. Kopeikin, S.V. Valueva, A. I. Kipper, L. N. Borovikova, A. P. Filippov, Synthesis of selenium nanoparticles in aqueous solutions of poly(vinylpyrrolidone) and morphological characteristics of the related nanocomposites Polymer Science, Series A 200345:374-379
    [113]X. Zhang, Y. Xie, F. Xu, X. H. Liu, Chin. J. of lnorg Chem,2003 19:77-81
    [114]B. Gates, B. Mayers, A. Grossman, Y. N. Xia A sonochemical approach to the synthesis of crystalline selenium nanowires in solutions and on solid supports Adv. Mater 200214:1749-1752
    [115]M.Z.Liu, S.Y.Zhang, Y.H.Shen, M.L.Zhang, Selenium Nanoparticles Prepared from Reverse Microemulsion Process Chinese Chemical Letters 2004 15:1249-1252
    [116]P. Ungar and P. Cherin., The Physics of Selenium and Tellurium, Pergamon, Oxford 1969223.
    [117]G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R. C. Keezer, Identification of the fundamental vibrational modes of trigonal, α-monoclinic and amorphous selenium Solid State Commun.1967 5:113-117
    [118]A. Eisenberg and A.V. Tobolsky. J. Polym. Sci.1962 61:483
    [119]G. Faivre and J.L. Gardissat, Macromolecules 19,1988 (1986)
    [120]D. X. Pang, J. T. Wang and B. Z. Ding, Amorphous-crystalline transformation and structure in selenium J. Non-Cryst. Solids 1989 107:239-243
    [121]R. Zallen, The Physics of Amorphous Solids, Wiley, New York,1983 M.
    [122]M. Shiojiri, Y. Hirota, and T. Issiki, J. Electron Microsc.1989 38:332
    [123]C. Simon, G. Faivre, R. Zorn, F. Batallan and J. F. Legrand, J. Phys. I (France) 1992 2: 307
    [124]R. B. Stephens, Relaxation effects in glassy selenium Journal of Non-Crystalline Solids,1975 20:75-81
    [125]W.B. Payne, J.K. Olson, A.Allen, V.F.Kozhevnikov and P.C.Taylor, Sound velocity in liquid and glassy selenium Journal of Non-Crystalline Solids 2007 353:3254-3259
    [126]张皓月,卢柯,胡壮麒,纳米晶体Se的微观结构特征 金属学报 1995 31:123-128
    [127]刘秀茹,吕世杰,苏磊,邵春光,胡云,黄代绘,洪时明,Bridgman压砧几种内加热方式及其温度测量 高压物理学报 2007 4:444-448
    [128]马礼敦编著《近代X射线多晶体衍射》——实验技术与数据分析 化学工业出版社2004 P490
    [129]张立德 牟季美《纳米材料和纳米结构》科学出版社第一版2001 P148
    [130]G.E.Fougere, J.R.Weertman and R.W.Siegel Processing and mechanical behavior of nanocrystalline Fe Nanostruct.Mater.1995 5:127-134
    [131]Tong X S, Jin D, Bai H Y, Luo J L and Wang W K, Influence of relative density and particle size on the specific heat of nanocrystalline iron Acta Phys.Sin. (Oversea Edition) 19976:752-757
    [132]G.W.Nieman, J. R. Weertman and R.W. Siege, Mechanical behavior of nanocrystalline Cu and Pd J. Mater.Res.19916:1012-1027
    [133]X.J. Wu, L.G. Du, H.F. Zhang, J.F. Liu, Y.S. Zhou, Z.Q. Li, L.Y. Xiong and Y.L. Bai, Synthesis and tensile property of nanocrystalline metal copper Nanostruct. Mater.1999 12:221-224
    [134]Liu W, Yang T Z, Chu G, Luo J S and Tang Y J, Synthesis and properties of nanocrystalline nonferrous metals prepared by flow-levitation-molding method Trans. Nonferrous. Metals Soc. Chin.2007 17:1347-1351
    [135]Qin X Y, Wu X J and Zhang L D The microhardness of nanocrystalline silver Nanostruct.Mater.1995 5:101-111
    [136]J. Donohue, The Structures of the Elements, Wiley, New York 1974
    [138]A.Von Hippel, J. Chem. Phys.1948 16:372-
    [139]H.Y.Zhang, Z.Q.Hu, K.Lu, Transformation from the amorphous to the nanocrystalline state in pure selenium. NanoStructured Materials 1995 5:41-52
    [140]T.Loerting, C.Salzmann, I.Kohl, E.Mayer, A. Hallbrucker,A second distinct structural "state" of high-density amorphous ice at 77 K and 1 bar Phys. Chem. Chem. Phys.2001 3:5355-5357
    [141]J.C.Li and P. Jenniskens, Inelastic neutron scattering study of high density amorphous water ice Planet. Space Sci.1997 45:469-473
    [142]O. Degtyareva, E.R.Hernandez,J,Serrano,M. Somayazulu, H. K. Mao Mao HK E. Gregoryanz,R.J. Hemley,Vibrational dynamics and stability of the high-pressure chain and ring phases in S and Se. J. Chem. Phys.2007 126:084503(1-11)
    [143]R. Steudel, Y. Steudel, M. W. Wong Specification and Thermodynamics of Sulfur Vapor Top. Curr. Chem.2003 230:117-134.
    [144]B. Meyer, Solid Allotropes of Sulfur Chem. Rev.1964 4:429-451
    [145]G.C.Vezzoli, F.Dachille, R.Roy, Sulfur melting and Polymorphism under Pressure: Outlines of Fields for 12 Crystalline Phases, Science 1969 166:218-221.
    [146]C. Pastorino, Z.Gamba, Toward an anisotropic atom-atom model for the crystalline phases of the molecular S8 compound The Journal of Chemical Physics 2001 115:9421-9426.
    [147]周强 激光加热原位高温高压拉曼、布里渊散射研究吉林大学博士学位论文200653
    [148]F.A.Cotton, G. Wilkinson, Advanced Inorganic Chemistry,4'hed, Wiley-Interscience, New York 1964 409-
    [149]MacKnight M. J., Tobolsky A. V., Elemental Sulfur, Chemistry and Physics edited by B. Meyer (Wiley, New York) 1965 95-
    [150]张惠民,汪树军,刘红研,熔融法生产聚合硫的研究 辽宁化工 2004 33:16-19
    [151]Franco Cataldo, A study on the structure and properties of polymeric sulfur Die Angewandte Makromolekulare Chemie 1997 249:137-149
    [152]姚凤仪,郭德威,桂明德,《无机化学丛书》第五卷:氧、硫、硒分族 科学出版社 1998 153-166
    [153]Stolz M, Winter R, Howells W S, Mcgreevy R L and Egelstaff P A, The structural properties of liquid and quenched sulphur II J. Phys.:Condens. Matter 1994 6 3619-3628.
    [154]Lundegaard L F, Falconi S and McMahon M I, Incommensurate sulfur above 100 GPa, Phys. Rev. B 2005 71:020101 (1-4)
    [155]C. Pastorino and Z. Gamba, Toward an anisotropic atom-atom model for the crystalline phases of the molecular S8 compound The Journal of Chemical Physics 2001 115:9421-9426
    [156]S.Geller, Pressure-Induced Phases of Sulfur, Science 1966 152:644-646.
    [157]T.Baak, Sulfur:A New High-Pressure Form, Science 1965 148:1220-1221.
    [158]G.C.Vezzoli, F.Dachille, R.Roy,Sulfur Melting and Polymorphism under Pressure: Outlines of Fields for 12 Crystalline Phases, Science 1969 166:218-221.
    [159]H.Luo, A.L.Ruoff, X-ray-diffraction study of sulfur to 32GPa:Amorphization at 25 GPa, Phys. Rev. B 1993 48:569-572.
    [160]A.G.Kalampounias, D.Th.Kastrissios, S.N.Yannopoulos, Structure and vibrational modes of sulfur around the 1-transition and the glass-transition Journal of Non-Crystalline Solids 2003 326&327:115-119
    [161]P. Yu, W. H. Wang, H. Y. Bai. et al. Understanding exceptional thermodynamic and kinetic stability of amorphous sulfur obtained by rapid compression. Appl. Phys. Lett.2009 94:011910(1-3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700