用户名: 密码: 验证码:
混场源电磁探测关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混场源电磁法利用大地电磁法理论对数据进行解释处理,应用的频率范围在0.1Hz—75KHz之间,以人工发射的电磁场弥补天然电磁场在高频段信号微弱的不足,可以探测地下几米到一千米深度左右的电阻率信息。在理论仿真的基础上,本文根据系统要求特点,设计了以谐振方式发射的磁性场源并研究设计了以多频信号发射的电性源,以实现不同工作条件下的人工电磁场发射。为满足对电磁信号的有效接收,详细研究了接收系统的几个关键技术问题。针对弱磁信号的检测,设计了宽频磁感应式传感器,通过研究磁传感器的校准技术,给出了传感器灵敏度及相位偏移的测试校准方法。对于电场信号检测,研究了电场信号的本地放大问题,以提高有用信号的信噪比。针对电场和磁场的弱信号采集,设计实现了具有自校准功能的多通道同步24位数据采集系统。各种实验证明,通过几个关键技术的研究,混场源电磁系统在人工场源发射上更具有灵活性;自主设计的磁传感器在灵敏度、带宽等方面能够满足实际测试需要,打破了对国外进口传感器的依赖;由于系统能够随时进行磁传感器和通道的校准,减小了因时间及温度漂移对测量精度的影响;系统内部采用的高性能DSP芯片和PC104处理器也都为整体性能提升提供了可靠保障。
Based on the magnetotelluric theory, HSMT takes the manual electromagnetic field source to complement the weak signal of natural electro-magnetic field source, which can be used to detect resistivity information of underground from several meters to about one kilometer depth applying frequency range 0.1-75kHz. This method only needs one or several receiving system working synchronization to obtain deep resistivity structure utilizing low frequency natural electromagnetic field, while being used shallow exploration for engineering it can utilize low power manual field source to enhance high frequency signal quality so that the detection reliability is improved. The HSMT has excellent character of portability application high reliability and good stabilization etc. As one of the geophysical exploration method, HSMT has important application value in metal mine exploration, underground water exploration and so on. In this paper, it expatiated on magnetotelluric exploration theory by natural electromagnetic field origin from electromagnetic wave theory and researched transmission principle of manual magnetic and electric field source. Based on the researching instrument system key technology, HSMT system was designed. The main research working and achieved working fruits are as following:
     1、Based on approximate equivalent of electromagnetic wave transmission principle between manual magnetic and electric field source and natural field source. The form of the manual field source can be ignored comparing with transmission-receiving distance so that manual magnetic and electric field source can be approximately considered magnetic and electric dipolar to the receiving system. Based on the electromagnetic field expression in the arbitrariness space, it mostly researched how to get the relationship between electromagnetic field expression and medium resistivity in uniformity medium by argument approach expression of Besell function with the condition of approximately quiescence, which was the foundation theory of HSMT.
     2、Combined manual field source. Based on the geologic conditions difference and the requirement of availability in application of HSMT, it was put forward and designed a kind of combined manual field source system which could transmit magnetic field source and electric field source. According to the theory of electromagnetic wave skinned depth and field intensity attenuation rule, it was researched to select the appropriate transmitting frequency point of magnetic source and transmitting magnetic moment, and then designed the structure of the magnetic transmitting system. Based on the multi-frequency wave produced principle, realized method of multi-frequency electric field source transmitting was researched utilizing the transmitting system controlling part. It was designed the software and hardware structure of manual field source transmitting controlling part and the method of optimization transmitting frequency obtained.
     3、Multi-channel synchronization receiving system and data pretreatment. Based on the represent form of electromagnetic field information at the receiving point, it was designed the working layout in the field of multi-channel electromagnetic receiving system. After researched the receiving system precision demand to suffice the weak signal produced by natural field acquisition, multi-channel data acquisition system was designed utilizing the technology of 24-bit A/D converting, precision amplifier and synchronization based on the GPS. For the LabView development platform has the characters of abundance function and interface amity, it was used to design processing software. To the data acquired by HSMT, One of the most factors of influence data quality was the industry frequency. The basic frequency of industry power has character of most stable so that industry signal deduction technology based on iterative method was researched. Power estimate to the acquired signal was realized by utilizing the method of flatness periodic figure average method.
     4、Research and design of magnetic induction sensor. Based on the model of hollow induction coil, the character of sensor frequency response and the method to enhance the ratio of signal and noise of senor were researched. The distribution capacitance of the intertwist coil itself affected the coil's frequency response directly, so it was particularly researched calculating method of the capacitance among circles of the induction coils, the capacitance among winding slots, the capacitance between coil and magnetic core and the capacitance between coil and electromagnetic shield layer and then the method to reduce the most parameter among the several kinds of capacitances. Another important part of the magnetic induction sensor was magnetic core, which could increase two order of the sensor induction voltage. In the condition of similar circles of coils, appropriate magnetic core could make the senor output maximum voltage. In this paper, the influence of the assumed length magnetic core shape to the induction sensitivity and the change of relatively magnetic permeability in the magnetic core with the position variety were emphasized researched and selected appropriate parameters. At last, preamplifier circuit structure with frequency character compensation of the induction coil was researched and designed.
     5、Calibration to system channels and magnetic induction sensor. System channel calibration could gain the frequency characters of the channels to avoid signal aberration caused by system channels. Besides getting sensor frequency characters, magnetic induction sensor calibration could also obtain the voltage value corresponding to magnetic field intensity in a frequency point and the phase shift degree of the magnetic field intensity caused by sensor. Based on the calibration theory of deconvolution in frequency domain, the calibration system structure was researched and designed. After confirming square wave as exciting signal by analysis characters of different exciting signal, it confirmed frequency selection method of square wave to obtain enough calibration precision based on researching the harmonic frequency characters of the square wave after Fourier transform and the frequency band of the system. After analysis magnetic field character produced by different coils, it confirmed the solenoid coil as the exciting coil and according to different calibration circumstance outside, electromagnetic wave shield was researched when the sensor was calibrating. Because of the two channel serial A/D convertor and high magnetic permeability material, influence of sample point to phase shift and influence of shield barrel to the calibration sensitivity of sensor.
     Real data of testing parameters and experiments in the field in fact has good coherence with the researching results, which shows that the researching fruits are availability and dependability.
     The main innovation works are as followings:
     1. Hybrid-source Magnetotelluric exploration method based on combined manual field source was put forward. By utilizing the method, it can improve the system application ability to the complex landform by selecting different manual field source, which makes the theory system be more multiform.
     2. Based on high permeability nanocrystalline alloy, induction weak magnetic sensor was developed. The frequency band was broadened to about six orders. The detection sensitivity of the sensor was improved and then the weak magnetic detection level was enhanced.
     3. The self-calculation system of HSMT instrument was constructed. Utilizing digital deconvolution principle, it provided new method and structure of self-calculation for induction magnetic sensor based on the research of induction magnetic sensor dynamic sensitivity test and calculation by the exiting magnetic field produced by solenoid. The self-calculation system of the sensor's dynamic sensitivity and instrument channel's frequency response characters can be referenced by other electro-magnetic method instruments.
     The work of this thesis will have following function:
     1. The researched fruits will play important roles to the underground resource exploration and will be much application value to the oil and gas resource, oil sand and oil shale, coal, metal mine resource, relay resource of the crisis mine and etc. prospecting for celerity continuable development of our country.
     2. The succeed development and design of the HSMT system can break the few developed country monopolization in the electromagnetic field so that the situation of importation many electromagnetic instrumentation by costliness price in many associations of our country such as oil, metallurgy, geologic, traffic and so on can be changed. It is important for the improving the international rivalrousness of our country in the electromagnetic field, enhancing furnishment researching ability and saving foreign exchange.
     3. The research method and strategy can be used to researching and design of other electromagnetic instruments directly such as magnetotelluric, IP, electromagnetic in time domain and so on.
引文
[1]赵洁心,冯波等.我国矿产资源开发利用现状与可持续发展探讨[J].黄金,2006,27(2): 1-4.
    [2]张立公.新一轮金属矿的勘查与开发[J].资源调查与环境,2002,23(3):196-199.
    [3]滕吉文,刘建明等.第二深度空间金属矿产探查与东北战略后备基地的建立和可持续发展[J].吉林大学学报(地球科学版),2007,37(4):633-651.
    [4]滕吉文.强化开展地壳内部第二深度空间金属矿产资源地球物理找矿、勘探和开发[J].地质通报,2006,25(7):767-771.
    [5]严加永,滕吉文等.深部金属矿产资源地球物理勘查与应用[J].地球物理学进展,2008,23(3):871-891.
    [6]张利平,夏军.中国水资源状况与水资源安全问题分析[J].长江流域资源与环境,2009,18(2):116-120.
    [7]孟贵祥,兰险.EH-4电导率成像系统的特点及其在金属矿勘探中的应用[J].矿床地质,2006,25(1):36-42.
    [8]于爱军,黄辉等.EH-4电磁系统用于金矿找矿的效果——以山东山后和甘肃阳山矿区为例[J].黄金地质,2002,8(1):51-55.
    [9]王卫江,兰险等.电磁法在新疆干旱区找水效果及适应性探讨[J].新疆地质,2004,22(3):265-270.
    [10]兰险,王卫江.电磁法在新疆干旱区找水中的应用及效果[J].新疆地质,2004,22(3):271-274.
    [1l]刘江.陕西复杂地形条件下的找水方法[J].地质与勘探,2003,39(增):48-50.
    [12]刘江,万兆昌.EH4型电导率成像系统在黄土残塬区找水中的应用[C].煤田地质与可持续发展研究论文集,2003.
    [13]Vozoff, K. The magnetotelluric method[C]. Electromagnetic methods in applied geophysics, Tulsa:SEG,1987.
    [14]Smith, A.J. and Jenkins, P.J. A survey of natural electromagnetic noise in the frequency range f=1-10KHz at Halley station, Antarctica:1. Radio atmospherics from lightning[J]. Journal of atmospheric and solar-terrestrial physics,1998,60:263-277.
    [15]Szarka L. Geophysical aspects of manmade electromagnetic noise in the earth-A review[J]. Surveys in Geophysics,1987,9:287-318.
    [16]Goldstein, M.A. and Strangway, D.W. Audio-frequency magnetotellurics with a grounded electric dipole source[J]. Geophysics,1975,40:669-683.
    [17]Shi Xianxin, Yan Shu, Chen Mingsheng and Fu Junmei. Study on application of EH-4 system in water inflow risk survey of mines[C]. Beijing:19th IAGA WG1.2 on Electromagnetic Induction in the Earth,2008.
    [18]Louis Cagniard. Basic theory of the magneto-telluric method of geophysical prospecting[J]. Geophysics,1953,18 (3):605-635.
    [19]A.T Price. The theory of magnetotelluric methods when the source field is considered[J]. Journal of Geophysical Research,1962,67 (5):1907-1918.
    [20]Sims, W.E, Bostick, F.X., Jr. and Smith, H.W. The estimation of magnetotelluric impedance tencer elements from measured data[J]. Geophysics,1971,36 (5):938-942.
    [21]F.X. Bostick and H.W. Smith. Investigation of large-scale inhomogeneities in the earth by the magnetotelluric method[C]. IRE,1962.
    [22]J. Clarke, T.D. Gamble, W.M. Goubau, R.H. Koch and R.F. Miracky. Remote-reference magnetotellurics:equipment and procedures[J]. Geophysical Prospecting,1983,31: 149-170.
    [23]T.D. Gamble, W.M. Goubau and J. Clarke. Magnetotellurics with a remote magnetic reference[J]. Geophysics,1979,44 (1):53-68.
    [24]T.D. Gamble, W.M. Goubau and J. Clarke. Error analysis for remote reference magnetotellurics[J]. Geophysics,1979,44 (5):959-968.
    [25]M. Charles and J. Swift. Theoretical magnetotelluric and turam response from two-dimensional inhomogeneities[J]. Geophysics,1971,36(1):38-52.
    [26]W.E. Sims and F.X. Bostick. Method of magnetotelluric analysis technical report[R]. No.58, Electrical Geophysics Research Laboratory, The Univ. of Texas at Austin,1969.
    [27]M.N. Berdichevsky and V.L. Dmitriev. Basic principles of interpretation of magnetotelluric sounding curves[C]. Adam, Geoelectric and Geothermal Studies,1976.
    [28]G Kunesz. Proceeding and interpretation of magnetotelluric soundings[J]. Geophysics, 1972,37 (6):1005-1021.
    [29]Chave A D, Thomson D J and Ander M E. On the robust estimation of power spectru, coherence and transfer function[J]. Journal of Geophysics Research,1987,92 (B1): 633-648.
    [30]Egbert, G.D. and Booker, J.R. Robust estimation of geomagnetic functions[J]. Geophysical Journal of the Royal Astronomical Society,1986,87 (2):175-194.
    [31]Sutarno, D and Vozoff, K. Robust M-estimation of Magnetotelluric impedance tensors[J]. Exploration Geophysics,1989,20 (3):383-398.
    [32]The International Association of Geomagnetism and Aeronomy. Proceedings of the 19th International Workshop on Electromagnetic Induction in the Earth[C]. Beijing,2008.
    [33]Goldstein, M. A. and Strangway, D. W., Audio-frequency magnetotellurics with a grounded electric dipole source[J]. Geophysics,1975,40 (4):669-683.
    [34]何继善.可控源音频大地电磁法[M].长沙:中南工业大学出版社,1990.
    [35]汤井田,何继善.可控源音频大地电磁法及其应用[M].北京:地质出版社,2005.
    [36]石昆法.可控源音频大地电磁法理论与应用[M].北京:科学出版社,1999.
    [37]Pedersen, L. B., Bastani, M., and Dynesius, L.. Groundwater exploration using combined Controlled Source and Radio Magnetotelluric Techniques[J]. Geophysics, 2005,70 (1):G8-G15.
    [38]Pedersen, L. B., Bastani, M., and Dynesius, L.. Some characteristics of the electromagnetic field from radio transmitters in europe[J]. Geophysics,2006,71 (6): G279-G284.
    [39]Turberg, P., I. Muller and F. Flury. Hydrogeological investigation of porous environments by radio magnetotelluric resistivity[J]. Journal of Applied Geophysics, 1994,31 (1-4):133-143.
    [40]Stiefelhagen, W. and Muller, L. Radio frequency electromagnetics(RF-EM)-extended VLF applied to hydrogeology[C].59th European Association of Exploration Geophysicists Conference and Technical Exhibition,1997.
    [41]Bosch, F. P., S. Szalai, P. Turberg and I. Muller. Continuously recording radio-frequency electromagnetic(RM-EM) method(15-300KHz) without ground contact:A powerful tool for groundwater vulnerability mapping in fissured rocks [C]. Proceedings from the 5th Meeting of the Environmental and Engineering Geophysical Society, European Section, 1999.
    [42]Tezkan, B.. A review of environmental applications of quasistationary electromagnetic techniques survey[J]. Geophysics,1999,20 (3-4):279-308.
    [43]Tezkan, B., A. Hordt and M. Gobashy. Two-dimension radiomagnetotelluric investigation of industrial and domestic waste sites in germany[J]. Journal of Applied Geophysics,2000,44 (2):237-256.
    [44]Bastani, M.. EnviroMT-a new controlled source/radio magnetotelluric system[D]. Uppsala University,2001.
    [45]Mehrdad Bastani, Alexandros Sawaidis and Laust B Pedersen. CSRMT measurements in the frequency of 1-250KHz to map a normal fault in the volvi basin, greece[C]. Proceedings of the 19th International Workshop on Electromagnetic Induction in the Earth, Beijing,2008.
    [46]刘国栋.电磁法勘探仪器[M].北京:欧华联公司,2008.
    [47]A.Jander, C.A.Nordman, A.V.Pohm etc. Chopping techniques for low-frequency nanotesla spin-dependent tunneling field sensors[J]. Journal of applied physics,2003, 93 (10):8382.
    [48]刘红涛,杨秀瑛等.用VLF、EH4和CSAMT方法寻找隐伏矿——以赤峰柴胡栏子金矿床为例[J].地球物理学进展,2004,19(2):276-285.
    [49]申萍,沈远超.EH4连续电导率成像仪在隐伏矿体定位预测中的应用研究[J].矿床地质,2007,26(1):70-78.
    [50]沈远超,申萍等.EH4在危机矿山隐伏金矿体定位预测中的应用研究[J].地球物理学进展,2008,23(2):559-567.
    [51]狄利娟,张国信等.南屯煤矿九采区覆岩采动破坏特征EH4探测研究[J].山东煤炭科技,2005,1:44-45.
    [52]倪芬明,刘志田等.应用EH-4电磁仪寻找地下水[J].石油仪器,2001,15(1):37-38.
    [53]张刚艳,张华兴等.EH4电导率成像系统在煤矿采空区探测中的应用研究[C].第六届全国矿山测量学术讨论会,2002.
    [54]张金明.EH-4电磁法在福州市温泉构造带勘查中的应用[C].勘探地球物理学术交流会,2005.
    [55]谭天元.EH-4电导率成像技术在深埋隧道工程地质探测中的应用[J].贵州水力发电,2006,20(1):19-21.
    [56]傅文杰,刘伟等.EH-4电导率成像系统在探测构造深部延伸中的应用[J].甘肃冶金,2008,30(1):22-24.
    [57]林君,王君等.发展地学仪器、探索地球奥秘[M].长春:吉林大学出版社,2005.
    [58]魏文博.我国大地电磁测深新进展及瞻望[J].地球物理学进展,2002,17(2):245-254.
    [59]Best M.E. and Shammas B.R. A general solution for a spherical conductor in a magnetic dipole field[J]. Geophysics,1979,44 (4):781-800.
    [60]Kauahikaua J. Electromagnetic fields about a horizontal electric wire source of arbitrary length[J]. Geophysics,1978,43 (5):1019-1022.
    [61]Lee T. and Lewis R. Transient EM response of a large loop on a layered ground[J]. Geophysics Prospect,1974,22 (3):430-444.
    [62]March H. W. The field of a magnetic dipole in the presence of a conducting Sphere[J]. Geophysics,1953,18 (3):671-684
    [63]Abhijit Dey and Stanley H. Ward. Inductive sounding of a layered earth with a horizontal magnetic dipole[J]. Geophysics,1970,35 (4):660-703.
    [64]Chave A.D. Numerical integration of related hankel transforms by quadrature and continued fraction expansion[J]. Geophysics,1983,48 (12):1671-1686.
    [65]F.N. Kong. Hankel transform filters for dipole antenna radiation in a conductive medium[J]. Geophysical Prospecting,2007,55 (1):83-89.
    [66]William H. Hayt and Jr. John A. Buck. Engineering electromagnetics (Sixth Edition)[M]. McGraw-Hill,2001.
    [67]David J. Griffiths. Introduction to electrodynamics (Third Edition)[M]. Pearson Education,2005.
    [68]Alexander A. Kaufman and George V. Keller. The magnetotelluric sounding method[M]. Elsevier Scientific Publishing Company,1981.
    [69]Misac N. Nabighian. Electromagnetic methods in applied geophysics [M]. Volume 1, Theory,1991.
    [70]A. Banos. Dipole radiation in the presence of a conducting half-Space[M]. Oxford: Pergamon Press,1966.
    [71]Kaufman A.A. and Keller G.V. Frequency and transient soundings[M].Elsevier Science Publish,1983.
    [72]Erdelyi. Tables of integral transforms[M]. New York-London:McGraw Hill,1954.
    [73]Watson. A treatise on the theory of Bessel functions[M]. London:Cambridge University Press,1944.
    [74]刘长胜.浅海海底CSEM勘探建模仿真及实验研究[D].长春:吉林大学,2009.
    [75]崔燕丽.伪随机多功能多频观测系统的数据处理研究[D].长沙:中南大学,2002.
    [76]刘春明.伪随机激电多参数谱法研究[D].长沙:中南大学,2006.
    [77]何继善.频率域电法的新进展[J].地球物理学进展,2007,22(4):1250-1254·
    [78]陈儒军.伪随机多频电磁法观测系统研究[D].长沙:中南大学,2003.
    [79]耿书宇.EM-Ⅱ型混场源电磁法发射机的研制[D].长春:吉林大学,2008.
    [80]刘国栋,陈乐寿.大地电磁测深研究[M].北京:地震出版社,1984.
    [81]Specifications sheet of magnetic sensors[R/OL].http://www.phoenix-geophysics.com.
    [82]严家斌.大地电磁信号处理理论及方法研究[D].长沙:中南大学,2003.
    [83]王言章,程德福,万云霞,林君.混场源电磁接收与校准系统的设计[J].仪器仪表学报,2008,29(2):304-308.
    [84]地磁脉动[R/OL].http://wiki.skylook.org/doc-view-4024.html.
    [85]S. Matsushita and W.H. Campbell. Physics of geomagnetic phenomena (International geophysics series, Vol. 11)[M].Academic Press, New York and London,1967.
    [86]The International Association of Geomagnetism and Aeronomy. Program and abstracts for the second general scientific assembly[C]. Kyoto, Japan,1973.
    [87]张霆.基于PC/104总线的多DSP并行处理系统及其应用[D].南京:东南大学,2006.
    [88]吴健.基于PC/104平台嵌入式Linux研制[D].天津:天津大学,2006.
    [89]房纪涛.基于PC104总线的数据采集仪与数据分析系统的研究开发[D].淄博:山东理工大学,2006.
    [90]Texas Instruments. TMS320VC5509 fixed-point digital signal processor data manual [R].2003.
    [91]黄霞,鲍慧等.基于TMS320VC5509A的多路同步数据采集与存储系统[J].继电器,2007,35(23):24-27.
    [92]黄珍元.TMS320VC5509 HPI引导过程的实现[J].科技信息(科学教研),2008,21:413-414.
    [93]宋华山,胡建学,丁德胜.TMS320VC5509的片外扩展存储系统设计[M].电子器件,2007,30(2):725-728.
    [94]AD8221 data sheet[R/OL]. www.analog.com.
    [95]LTC6242 data sheet[R/OL]. www.linear.com.
    [96]CS5381 data sheet[R/OL]. www.cirrus.com.
    [97]万云霞,程德福,王言章等.混场源电磁接收系统同步数据采集技术[J].吉林大学学报(信息科学版),2009,27(2):162-166.
    [98]万云霞.四通道电磁接收机软件系统设计[D].长春:吉林大学,2007.
    [99]张丙才,刘琳,高广峰等.基于LabVIEW的数据采集与信号处理[J].仪表技术与传感器,2007,12:74-75.
    [100]陈真,王延江,王钊.基于LabVIEW的远程数据采集系统开发[J].仪表技术与传感器,2006,6:27-29.
    [101]陈乐寿,王光锷.大地电磁测深法[M].北京:地质出版社,1990.
    [102]CHEN Xiaoming, BECKEN Michael, WECKMANN Ute, etc. Fractional delay filtering of time series to remove "pipeline noise" [C]. Proceeding of the 19th International Workshop on Electromagnetic Induction in the Earth, Beijing,2008, p845.
    [103]Butler, K. E., and R. D. Russell. Subtraction of powerline harmonics from geophysical records[J]. Geophysics,1993,58 (6):898-903.
    [104]Butler, K. E., Russell, R. D., etc. Measurement of the seismoelectric response from a shallow boundary[J]. Geophysics,1996,61 (6):1769-1778.
    [105]Nyman, D. C., and J. E. Gaiser. Adaptive rejection of highline contamination[C]. Proceeding of 53rd Annual International Meeting, SEG,1983.
    [106]Adam, E., and P. Langlois. Elimination of monofrequency noise from seismic records[J]. Lithoprobe Seismic Processing Facility Newsletter,1995,8(1):59-65.
    [107]Beaty, K. S., G. Perron, I. Kay and etc. DSIsoft-A Matlab VSP data processing package[J]. Computers & Geosciences,2002,28 (4):501-511.
    [108]Butler, K. E., and R. D. Russell. Cancellation of multiple harmonic noise series in geophysical records[J]. Geophysics,2003,68 (3):1083-1090.
    [109]Antoine Saucier, Matthew Marchant, and Michel Chouteau. A fast and accurate frequency estimation method for canceling harmonic noise in geophysical records[J]. Geophysics,2006,71(1):v7-v18.
    [110]Salton G and Mcgim J. An introduction to modern information retrieva[M]. New York: McGraw-Hill,1983.
    [111]王晓峰,王炳和.周期图及其改进方法中谱分辨率的MATLAB分析[J].武警工程学院学报,2003,19(6):75-77.
    [112]姚文俊.自相关法和Burg法在AR模型功率谱估计中的仿真研究[J].计算机与数字工程,2007,35(10):32-34.
    [113]冯磊.经典功率谱估计与现代功率谱估计的对比[J].商业文化,2009,5:239.
    [114]S. M. Kay and S. L. Marple. Spectrum Analysis-A Modern Perspective[C]. Proceedings of the IEEE,1981.
    [115]支东栋,卫红凯,杜斌.现代谱估计法中集中不同模型参数估计法的比较[J].舰船电子对抗,2009,32(1):100-102.
    [116]Petian, G, Second generation of lead-lead chloride electrodes for geophysical applications[J]. Pure and Appl. Geophysics,2000,157(3):351-382.
    [1.17]Korepanov, V.E. and Svenson, A.N., High precision non-polarized electrodes for field geophysical prospecting. NAUKOVA DUMKA, Kiev, Ukraine(in Russion).
    [118]KOREPANOV Valery, GLEMBA Volodymyr, OLSHEVSKY Viktor and SVENSON Oleksiy, Super-low noise non-polarized electrodes[C]. Proceedings of the 19th International Workshop on Electromagnetic Induction in the Earth, Beijing,2008.
    [119]张秀成.大地电磁测深测量及仪器北京:地质出版社,1989.
    [120]A.Jander, C.A.Nordman, A.V.Pohm etc. Chopping techniques for low-frequency nanotesla spin-dependent tunneling field sensors[J]. Journal of applied physics,2003, 93 (10):8382.
    [121]耿胜利,赵庆安.MC-01超低铁芯磁探头的研制[J].传感器世界,2002,8(4):13-15.
    [122]H. C. Seran and P. Fergeau. An Optimized Low-frequency Three-axis Search Coil Magnetometer for Space Research[J]. Review of scientific instruments,2005,76 (4): 044502-1-044502-10.
    [123]郭玉,鲁永康,陈波.高性能低频交变磁场传感器的研究与制作[J].传感技术学报,2005,18(3):493-495.
    [124]F. Beauclair, J. P. Delvinquier, and J. P. Gros. Transformateurs et inductances. Techniques de 1'ingenieur, France,2004, E 2-130:22-23.
    [125]高金梁.感应式磁传感器及其补偿电路的设计[D].长春:吉林大学,2006.
    [126]张甫非.非晶纳米晶合金材料的工艺技术、产业化和应用[J].磁性材料及器件,2004,35(5):13-16.
    [127]Y. Yoshizawa, S. Oguma and K. Yamauchi. New Fe-based soft magnetic alloys composed of ultrafine grain structure[J]. Journal of Applied Physics,1998,64 (10): 6044.
    [128]A.Makino, T.Hatanal, A.Inoue, etal. Nanocrys-talline soft magnetic Fe-M-B (M= Zr, Hf, Nb) alloys and their applications [J]. Materials Science and Engineering,1997, 226-28:594-602.
    [129]林继鹏,王君,凌振宝等.基于非晶态合金的感应式磁敏传感器的研究[J].仪器仪表学报,2004,25(2):195-197.
    [130]R. M. Bozorth. Ferromagnetism[M]. IEEE,1993.
    [131]Claude Cavoit. Closed loop applied to magnetic measurements in the range of 0.1-50MHz[J]. Review of scientific instruments,2006,77(6):064703-1-064703-7.
    [132]王言章,程德福,王君等.基于纳米晶合金的宽频差分式磁场传感器的研究[J].传感技术学报,2007,20(9):1967-1970.
    [133]D. Meeker. BELA finite element electrostatics solver[M], version 1.0, User's Manual, 2003.
    [134]凌振宝,王君,张瑞鹏.基于非晶态合金感应式传感器补偿电路的设计[J].传感技术学报,2003,16(2):207-209.
    [135]P.S. Wright. A method for the calibration of harmonic analysers using signals containing fluctuating harmonics in support of IEC61000-3-2[J]. IEE Proc.-Sci. Meas. Technol.,2005,152(3):103-109.
    [136]M. Thurai and H. Hanado. Absolute calibration of C-band weather radars using differential propagation phase in rain[J]. ELECTRONICS LETTERS,2005,41(25).
    [137]U. Pogliano and G.C. Bosco. Automatic calibration of precision and programmable AC measuring instruments at IEN[J]. IEE Proc.-Sci. Meas. Technol.,1996,143(4): 259-263.
    [138]S.-C. Wang and C.-L. Chen. Computer-aided transducer calibration system for a practical power system[J]. IEE Proc.-Sci. Meas. Technol.,1995,142(6):459-462.
    [139]J. Tsimbinos and K.V. Lever. Improved error table compensation of A/D convertors using pseudorandom calibration signals[J]. ELECTRONICS LETTERS,1994,30(6): 461-462.
    [140]A.J. Gine's, E.J. Perali'as and A. Rueda. Noisy signal based background technique for gain error correction in pipeline ADCs[J]. IEE Proc.-Comput. Digit. Tech.,2005, 152(1):53-63.
    [141]J.W.F. Goddard, J. Tan and M. Thurai. Technique for calibration of meteorological radars using differential phase[J]. ELECTRONICS LETTERS,1994,30(2):166-167.
    [142]J.Q. Zhang and Y. Yan. Online validation of the measurement uncertainty of a sensor using wavelet transforms [J]. IEE Proc.-Sci. Meas. Technol.,2001,148(5):210-214.
    [143]国家地震局地质研究所大地电磁测深组,国家地震局兰州地震研究所大地电磁测 深组.大地电磁测深[M].北京:地震出版社,1981.
    [144]Wang Yanzhang, Cheng Defu, Lu Hao, Wan Yunxia. Magnetic Sensor Calibration Based on Multi-frequency Signal[C]. International Conference on Measuring Technology and Mechatronics Automation,2009.
    [145]洪泽宏,何乃明,王占辉等.关于磁传感器设计中的技术问题[J].海军工程大学学报,2005,17(5).
    [146]Mutsumi Hosoya and Eiichi Goto. Coils for generating uniform fields in a cylindrical ferromagnetic shield[J]. Rev. Sci. Instrum.,1991,62(10):2472-2475.
    [147]K. W. Rigby. Design of magnets inside cylindrical superconducting shields[J]. Rev. Sci. Instrum.,1988,59(1):156-158.
    [148]Robert H. Lambert and Chauncey Uphoff. Magnetically shielded solenoid with field of high homogeneity[J]. Rev. Sci. Instrum.,1975,46(3):337.
    [149]Roger J. Hanson and France M. Pipkin. Magnetically Shielded Solenoid with Field of High Homogeneity [J]. Rev. Sci. Instrum.,1965,36(2):179-188.
    [150]Terumitsu Shirai. A magnetic field generator with active compensation of external fields[J]. Measurement Science and Technology,2004,15 (1):248-253.
    [151]M. C. Buncick, H. H. Hubbell, Jr. and etc. Computer-controlled method for removal of stray magnetic fields[J]. Rev. Sci. Instrum.,1983,54(1):100-103.
    [152]Iniguez, V. Raposo, A. G. Flores. Measurement of the electrical conductivity of metallic tubes by studying magnetic screening at low frequency [J]. American Journal Physics,2005,73 (3):206-210.
    [153]Wang Yanzhang, Cheng Defu, etc. Research on calibration method of magnetic sensor in hybrid-source megneto tellurics[C]. Proceedings of the Eighth International Conference on Electric Measurement and Instruments,2007.
    [154]王言章,卢浩,程德福,万云霞.基于多频信号的混场源电磁发射系统设计[J].电波科学学报,2009,24(5):874-878.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700