用户名: 密码: 验证码:
秦岭造山带晚三叠世花岗岩类成因机制及深部动力学背景
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碰撞造山带中形成的花岗岩是造山作用各个阶段的重要物质记录,其源区性质和成因机制的研究对于反演造山带下地壳物质组成、造山作用深部动力学过程及造山过程中地壳和地幔物质的相互作用等科学问题具有重要意义。秦岭-大别-苏鲁造山带是中国大陆中部最重要的三叠纪造山带,标志着华北和扬子板块在晚三叠世发生陆陆碰撞形成统一的中国大陆。这次碰撞事件在造山带东、西段造成了完全不同的地质现象,造山带东部的大别-苏鲁地区形成全球规模最大的高压-超高压变质带,代表扬子大陆岩石圈曾俯冲至华北地块以下,并在随后发生快速折返;而在造山带西段的秦岭地区则出露大面积的晚三叠世花岗岩类。由此引发的科学问题是:造成三叠纪造山带东段和西段存在巨大差异的原因是什么?造山带西段的秦岭地区在晚三叠世是否存在陆壳俯冲作用?如果存在,这些俯冲陆壳的性质及命运与大别-苏鲁地区的俯冲陆壳有何不同?探讨这些问题对于认识华北和扬子板块在晚三叠世完整的碰撞动力学过程具有重要意义。本文正是着眼于秦岭-大别-苏鲁造山带中的这个明显差异,试图从俯冲陆壳发生部分熔融的角度探讨造山带西段秦岭地区晚三叠世花岗岩类的成因机制及其构造意义。
     本论文在秦岭造山带不同构造单元上选取晚三叠世典型的花岗岩体(南秦岭造山带选取东江口和五龙大型复式岩体,扬子地块北缘碧口地块选择阳坝岩体,西秦岭选择糜署岭岩体)进行系统的野外地质、岩相学、锆石LA-ICP MS U-Pb年代学、地球化学、Sr-Nd-Pb同位素地球化学及锆石Lu-Hf同位素研究,确立秦岭造山带晚三叠世花岗岩形成的年代学格架,反演花岗岩的源区性质、成因机制以及幔源物质在花岗质岩浆形成过程中的贡献;并在此基础上,综合区域地质背景及造山带中陆壳俯冲的最新研究结果,通过与大别-苏鲁高压-超高压岩石变质年代的对比,探讨陆壳俯冲作用与秦岭造山带晚三叠世花岗质岩浆活动之间的关系。研究结果对秦岭造山带晚三叠世花岗岩类的成因机制提出了新的认识,认为这些晚三叠世花岗岩类是由俯冲陆壳在折返过程中发生多阶段部分熔融作用形成的,这为研究碰撞造山带中陆壳俯冲的动力学机制以及后碰撞型高钾钙碱性、高Mg#埃达克质花岗岩的成因机制提供了新的研究思路。论文取得了如下的成果和认识:
     1.秦岭造山带晚三叠世花岗质岩浆活动可以分为三个阶段:235Ma~225Ma形成小规模石英闪长岩,220~210Ma左右形成大规模高钾钙碱性花岗岩,200Ma左右形成小规模黑云母花岗岩
     通过对秦岭造山带不同构造单元上花岗岩体精细的锆石LA-ICP MS U-Pb年代学研究结果表明,南秦岭东段东江口花岗岩的形成年代为214±2 Ma~222±2 Ma;而五龙岩体为一个大型复式岩体,岩石边缘石英闪长岩的形成年代为233±2 Ma~227±2Ma之间,岩体中间过渡相带花岗闪长岩的形成年龄为218±2 Ma;岩体中心相似斑状二长花岗岩的形成年代为207±2 Ma;由此可见五龙地区花岗岩的侵位历史长达25Ma左右,代表不同批次形成的花岗质岩浆在同一地区汇聚的产物;扬子地块北缘碧口地块上阳坝二长花岗岩的形成年代为208±2 Ma,西秦岭造山带糜署岭二长花岗岩的形成年代为213±3Ma。
     由此可见,秦岭造山带晚三叠世花岗质岩浆的活动时限为235Ma~200Ma,根据花岗岩的岩石学和年代学特征,可将该区花岗质岩浆活动大致划分为三个阶段:①235Ma到225Ma之间在五龙岩体边部形成石英闪长岩;②220Ma到210Ma之间在秦岭地区形成广泛的高钾钙碱性花岗岩,这些花岗岩中含有大量岩浆混合成因的暗色包体,此类花岗岩体包括南秦岭造山带东段的东江口岩体、五龙岩体中的花岗闪长岩和二长花岗岩、扬子地块北缘阳坝二长花岗岩以及西秦岭造山带的糜署岭二长花岗岩;③200Ma左右形成少量黑云母花岗岩,这些岩石中一般不包含暗色微粒包体,主要包括五龙岩体东侧的胭脂坝岩体以及勉略构造带中的光头山岩体。因此,秦岭造山带晚三叠世花岗质岩浆活动并非前人所认为的220~205Ma期间的幕式岩浆活动,而是多阶段岩浆作用的产物。
     2.秦岭造山带晚三叠世花岗岩不同程度具有高钾钙碱性、准铝质、埃达克岩的地球化学特征,多数花岗岩具有高Sr、Sr/Y,亏损Y和重稀土,不发育明显的负Eu异常;本文通过系统的岩石学、主微量元素地球化学,Sr-Nd-Pb同位素及锆石Lu-Hf同位素地球化学研究,对这些埃达克质花岗岩的成因提出一些新的观点:(1)这些埃达克质花岗岩形成于典型的后碰撞构造环境,岩石富K的特征可能是由于其地壳源区受到富K镁铁质流体/熔体的交代富集作用;(2)多数埃达克质花岗岩具有高Mg#的特征,但这并不代表该区在晚三叠世存在增厚下地壳的拆沉作用,而是由于俯冲陆壳部分熔融形成的埃达克质岩浆在上升过程中受到上覆地幔物质的交代混染作用;(3)所有花岗岩的锆石Hf同位素都表现出很大的变化范围,这表明岩石起源于一个不均一的源区,其源区物质包括新元古代岩石圈地幔物质、中元古代基性地壳以及更古老的地壳物质;(4)岩石高的Sr/Y比值有可能是继承其源岩的特征,并不能作为判断埃达克质岩浆源区残留相的确切依据。上述四点认识对于研究碰撞造山带中普遍出现的高钾钙碱性花岗岩的成因具有重要意义。
     详细的主微量元素地球化学研究表明,该区不同时代形成的花岗岩都为高钾钙碱性,而且不同程度的发育高Sr、低Y等埃达克岩的地球化学特征。根据形成时代和地球化学性质,其成因类型包括以下几类:①235Ma到225Ma之间形成的石英闪长岩具有低Si,富K、Mg的特征,岩石的Sr/Y比值变化范围较大,其形成机制为:基性下地壳在高温环境下发生高程度部分熔融作用形成具有高Sr、低Y等埃达克岩地球化学特征的闪长质岩浆,这些闪长质岩浆在上升过程中受到上覆地幔物质的交代混染,导致其具有高Mg#的特征;②220Ma到210Ma形成的高钾钙碱性花岗岩也具有埃达克岩的地球化学特征,其中东江口花岗岩提供了这些埃达克质花岗岩起源于俯冲陆壳部分熔融的确切证据,从岩体最中心的梅庄花岗闪长岩到岩体最外围的营盘街英云闪长岩,随着MgO含量的增高,岩石的P2O5、Y、Cr、Ni含量及Nb/Ta、Rb/Sr及Th/U比值升高,而Sr/Y及Eu异常值降低,这表明岩体从中心到边缘,岩石中地幔组份逐渐增多,暗示初始的壳源埃达克质岩浆在上升过程中受到上覆地幔楔橄榄岩的同化混染作用,梅庄花岗闪长岩应代表岩浆通道中心的样品,受地幔混染程度较小;而营盘街英云闪长岩应代表岩浆通道边缘的样品,受到地幔交代混染程度最强;在交代混染过程中,幔源岩石中的Cr、Ni、Mg、Y、Rb、K等元素进入埃达克质花岗岩中,而寄主花岗岩中的Na、Al等元素进入幔源岩石中,导致寄主埃达克质花岗岩具有高K、Mg的特征;③200Ma左右形成的黑云母花岗岩可能是中地壳物质在岩石圈伸展背景下,受来自下地壳或幔源流体的作用发生部分熔融作用的产物。
     3.该区花岗岩的源岩主要为中元古代地壳物质,并有少量新元古代新生地壳物质和中元古代早期表壳物质的加入;同时花岗岩同位素地球化学研究表明南秦岭造山带和西秦岭造山带具有不同的基底物质组成
     详细的Sr-Nd同位素研究表明,秦岭造山带晚三叠世花岗岩类的全岩Nd模式年龄主要集中在1.1~1.3Ga之间,和扬子地块中元古代地壳增生时间完全一致,而明显不同于华北地块,这表明该区晚三叠世花岗岩的源岩主要为扬子地块中元古代基性地壳;花岗岩中锆石Hf同位素特征表明,所有样品的锆石Hf同位素组成都表现出很大的变化范围,锆石Hf模式年龄的峰值也为1.1~1.3Ga,同时有少量颗粒的Hf模式年龄为800Ma或是1400~1600Ma;上述同位素特征表明秦岭地区晚三叠世花岗岩的源岩主要为扬子地块中元古代新生地壳物质,并且有少量新元古代新生地壳物质和中元古代早期表壳物质的加入;同时全岩Pb同位素揭示出西秦岭造山带的基底物质组成类似于扬子地块,而南秦岭造山带的基底物质则具有扬子地块和华北地块的过渡性质。
     4.花岗岩中广泛发育的暗色包体的形成时代也主要集中在220~210Ma,地球化学研究表明很多暗色包体都具有高Si、Sr/Y比值,相对亏损Y和重稀土的特征,表明这些暗色包体起源于石榴石二辉橄榄岩地幔的部分熔融作用;同时结合同位素地球化学研究结果,本文提出这些暗色包体代表新元古代岩石圈地幔在晚三叠世部分熔融作用形成的镁铁质岩浆,暗示秦岭造山带在晚三叠世存在一次区域性的地幔部分熔融事件
     在220~210Ma期间形成的高钾钙碱性花岗岩中广泛发育暗色包体,详细的锆石LA-ICP MS U-Pb年代学研究表明这些暗色包体与其寄主花岗岩的形成时代在误差范围内一致,暗示该区存在同期的镁铁质岩浆活动;地球化学研究表明该区花岗岩中的暗色包体属于碱性、中基性岩浆,岩石表现出富集大离子亲石元素(LILEs)和轻稀土(LREE)、亏损高场强元素(HFSEs)等岛弧岩浆的地球化学特征:同时结合全岩Sr-Nd-Pb及锆石Lu-Hf同位素研究,本论文提出该区暗色包体的形成机制可能为:新元古代富集岩石圈地幔在晚三叠世发生重熔作用形成镁铁质岩浆,在成岩过程中与花岗质岩浆发生岩浆混合作用,并可能同化了一部分地壳物质。秦岭造山带晚三叠世花岗岩中广泛分布的暗色包体表明,该区在晚三叠世存在一次区域性的地幔熔融事件,这对于探讨造山带构造演化及幔源物质在花岗质岩浆形成过程中的作用具有重要意义。
     5.秦岭地区晚三叠世花岗岩起源于俯冲于南秦岭地块之下的扬子地块陆壳物质发生多阶段的部分熔融作用。本文提出秦岭地区俯冲陆壳之所以发生部分熔融的原因可能是:(1)由于扬子地块在晚三叠世的顺时针旋转作用,大别地区在晚三叠世处于伸展状态,导致大规模高压-超高压岩石快速折返至地表,而秦岭地区此时处于挤压状态,俯冲陆壳发生部分熔融作用,形成广泛的花岗质岩浆;(2)在华北和扬子的碰撞过程中,秦岭地区的汇聚速率比大别-苏鲁地区的汇聚速率高;(3)扬子地块东段和西段具有不同的地壳物质组成和地温梯度。
     结合秦岭-大别造山带晚三叠世的区域动力学背景,本文提出秦岭造山带晚三叠世花岗岩起源于俯冲于南秦岭地块之下的扬子地块陆壳物质的多阶段部分熔融作用,形成机制如下:①晚古生代到早中生代期间勉略洋壳向南秦岭地块之下发生俯冲作用,南秦岭岩石圈地幔受交代富集;②晚三叠世扬子和华北板块在秦岭地区发生碰撞,由于区域挤压和洋壳的拖曳作用,导致扬子陆块俯冲至南秦岭地块之下;③俯冲陆壳物质在地幔高温环境下发生高程度部分熔融作用,形成埃达克质石英闪长岩,这些岩浆在上升过程中受到上覆地幔物质的交代混染,形成造山带中最早的(235~225Ma)高Mg#埃达克质石英闪长岩;由于俯冲陆壳部分熔融加上榴辉岩相洋壳的重力作用,最终发生板片断离作用;④板片断离作用诱发软流圈地幔物质上涌,同时俯冲陆壳由于浮力作用开始构造折返,在地幔热和构造减压的条件下,俯冲陆壳及上覆岩石圈地幔发生广泛的部分熔融作用,形成高钾钙碱性埃达克质花岗岩及伴生的镁铁质暗色包体;⑤随着俯冲陆壳折返作用的结束,南秦岭造山带内部发生岩石圈伸展,造山带中上地壳在构造伸展和地幔流体的双重作用下发生部分熔融作用,产生高SiO2含量的黑云母花岗岩,并可能导致佛坪穹窿的最终形成。
Granites formed at all stages of collisional orogenesis, the research of their petrogenesis can promote our understanding of the nature of the orogenic. lower crust, deep dynamic orogenic process and the interactions between crust and mantle during orogenic process. The Triassic Qinling-Dabie-Sulu orogenic belt is the most prominent tectonic features in central China, which was resulted from the continental-continental collision between the North China and Yangtze blocks, and led to the final formation of the China continents. However, this uniform collisional orogenesis caused obvious contrast between the western and eastern parts of the Qinling-Dabie-Sulu orogenic belt. In the Dabie-Sulu orogenic belt, there is large-scale of high-pressure (HP) and ultrahigh-pressure (UHP) metamorphic rocks, which were considered to be resulted from deep subduction (about 80~120km) and subsequent rapid exhumation of the Yangtze continental lithosphere beneath the North China Block. However, in the Qinling orogenic belt, the Late-Triassic collision caused large-scale high-K calc-alkaline granites and associated mafic enclaves. So some scientific questions were raised: (1) Why the uniform collision caused huge difference between the eastern and western parts of the of the Qinling-Dabie-Sulu orogenic belt? (2) Whether or not the occurrence of Triassic continental subduction in the Qinling orogenic belt. If their, how the nature and fate of the subducted continental lithosphere in the Qinling orogenic belt between differ from the Dabie-Sulu orogenic belt? Understanding these issues has great scientific significance for investigating the complete tectonic evolution of the Triassic Qinling-Dabie-Sulu orogenic belt. This thesis is focused on the significant difference between the eastern and western part of Qinling-Dabie-Sulu orogenic belt, trying to prove that the Late Triassic granitoids in the Qinling orogenic belt was resulted from partial melting of subducted Yangtze continental crust.
     This thesis focus on the petrogenesis and geodynamic implications of the Late-Triassic granites and associated mafic enclaves from the different tectonic unite of the Qinling orogenic belt(Dongjiangkou and Wulong pluton in the southern Qinling terrane, Yangba pluton from the northern margin of Yangtze block and Mishuling pluton from the western Qinling terrane), and the data of petrology, major-and trace element geochemistry, Sr-Nd-Pb isotopic composition, as well as zircon LA-ICP-MS U-Pb geo-chronology and Lu-Hf isotopic composition of typical granite pluton are presented in the thesis. We use these data to trace the source region and petrogenesis of the granites, discuss the role of mantle components in the genesis of the granitic magma. In combination with regional tectonic setting, we argue that the Late-Triassic granites in the Qinling orogenic belt were resulted from multi-stage partial melting of the subducted Yangtze continental crust during its exhumation process. These results provide a new research approach for the petrogenesis of high-K calc-alkaline adakitic granites in post-collisional setting. This thesis yielding the following results and understanding:
     1. Zircon U-Pb dating revealed a period of 235-200Ma for the formation of the Late-Triassic granites in the Qinling orogenic belt, and it can be divided into three stages according their petrology and geochemical features:the first stage (235~225Ma) formed minor quartz diorite; the second stage (225~210Ma) include large amount of high-K calc-alkaline granites and associated mafic enclaves; the third stage (~200Ma) formed minor biotite granite.
     Detailed zircon LA-ICP MS U-Pb dating on the granites from different tectonic unites of the Qinling orogenic belt revealed that:the Dongjiangkou granites from the eastern part of the south Qinling terrane have crystallization ages of 214±2 Ma to 222±2 Ma; The Wulong pluton is a composite pluton:quartz diorite from the pluton margin has crystallization ages of 233±2 Ma to 227±2 Ma, granodiorite from the intermediate zone has crystallization age of 218±2 Ma, K-feldspar megacrysts-bearing monzogranite has crystallization age of 207±2 Ma, this shows that the Wulong pluton was formed span a period of 25Ma, and the pluton was formed by increments of different batch of granitic magmas. The Yangba monzogtanite from northern margin of the Yangtze block have U-Pb age of 208±2 Ma. The Mishuling monzogranite from western Qinling terrane has zircon U-Pb age of 213±3 Ma.
     The above zircon U-Pb data show that Late-Triassic granitic magmatism in the Qinling orogenic belt span a period of 235Ma~200Ma, and three main pulse can be recognized according to their geochronology and petrological features:(1) the first pulse (235Ma to 225Ma) formed minor quartz diorite in the margin of the Wulong pluton; (2) the second pulse (220Ma to 210Ma) formed widespread high-K calc-alkaline granites and associated mafic enclaves, including the granodiorite and tonalite from the Dongjiangkou pluton, granodiorite and monzogranite from the Wulong pluton, monzogranite from the Yangba and Mishuling pluton; (3) the third pulse (~200Ma) formed biotite granites in the Guangyoushan and Yanzhiba pluton, and there is no mafic enclaves in these granites. Then, it can be concluded that Late-Triassic granitic magamtism in the Qinling orogenic belt is formed by multi-stage increment, but not short-lived (220 to 205Ma).
     2. Late-Triassic granites from the Qinling orogenic belt are mainly high-K calc-alkaline, and display adakitic affinity, e.g., enriched in Sr, Ba, extremely depleted in Y and HREE, without significant negative Eu anomalies. This thesis trace the petrogenesis and source rocks of the these granites through petrology, major-and trace-element geochemistry, Sr-Nd-Pb and zircon Lu-Hf isotopic composition, these result provide a new approach for the genesis of Late-Triassic granites in the Qinling orogenic belt:(1) these granites are formed in post-collisional setting, and their high K content may suggest that their source rock were metasomatized by K-rich fluid or melt; (2) their high-Mg# (Mg#>45) values can not prove Late-Triassic thickened lower crust delamination in the Qinling area, but may be formed by interaction between subducted continental crust-derived adakitic magma and overlying mantle; (3) zircons from all the granites display large variation in Hf isotopic composition, suggesting they were derived from a homogeneous source region, including slices of Neo-Proterozoic mantle lithosphere, Mid-Proterozoic mafic lower crust and some ancient crust; (4) the high Sr/Y ratios may be inherited from their source rocks, it is not a precise evidence for the high-pressure condition. Above conclusion have important potential significance for the genesis of post-collisional high-K calc-alkaline granites in collision oeogenic belt.
     Major-and trace-element geochemistry revealed that Late-Triassic granites are mainly high-K calc-alkaline, and display adakitic affinity, e.g., enriched in Sr, Ba, extremely depleted in Y and HREE, without significant negative Eu anomalies. According their geochemical features, three main types can be recognized:(1) quartz diorite formed at 235Ma to 225Ma were characterized by low Si, high K, Mg contents, which was considered to be resulted from high degree (>40%) partial melting of mafic lower crust and undergone subsequent interaction with enriched mantle wedge during their ascent; (2) high-K calc-alkaline granidiorites, tonalite and monzogranite formed at 220Ma~205Ma also display adakitic geochemical features, the high Mg# adakitic granodiorite and tonalite from the Dongjiangkou provide exact evidences for partial melting of subducted continental crust:Exhumation of subducted continental crust that resulted from slab break off would melt in condition of aqueous fluids derived from the decomposition of hydrous minerals and heat from the upwelling asthenosphere, producing adakitic melts at relatively high pressure (amphibole±garnet stable field). During their ascent, the adakitic magma bodies extensively react with ambient peridotite to form pyroxenite and orthopyr-oxene-rich zone, this is evidenced by the outward increasing trend of MgO, Mg#, Cr, Ni P2O5 and Y contents, as well as Nb/Ta, Rb/Sr and Th/U ratios, indicating more mantle components in the pluton margin. Extensive melt-mantle interactions would make the Cr, Ni, Mg, Y, Rb and K transfer into the granitic melt, and produce the Mg-rich hybrid magmas. (3) biotite granite formed at~200Ma should be resulted from partial melting of middle orogenic crust, which was induced by fluids from lower crust or mantle lithosphere.
     3. Whole-rock Sr-Nd and zircon Lu-Hf isotopic composition for the Late-Triassic granites in the Qinling orogenic revealed a complex source rocks:mainly consisted by Mid-Proterozoic mafic lower crust with minor incorporation of Neo-Proterozoic mantle lithosphere and Early-Proterozoic upper crust. Meanwhile, whole-rock Pb isotopic composition of the granites suggested that there is different basement in the southern Qinling terrane and western Qinling terrane.
     Late-Triassic granites from the Qinling orogenic belt mainly have whole-rock Nd isotopic model ages of 1.1 to 1.3Ga, this is consistent with the Mid-Proterozoic crustal formation event in the Yangtze block, but clearly different from the North China block, suggested that these granites were mainly derived from the Yangtze continental crust. Zircons from all the Late-Triassic granites display large variation in Lu-Hf isotopic composition, their Hf isotopic model ages mainly focus on 1.1 to 1.3Ga, but still contain some zircons that have Hf isotopic model ages of-800Ma and 1400 to 1600Ma. The overall isotopic geochemical data suggest that the source rocks of the Late-Triassic granites in the Qinling orogenic belt are mainly consisted by Mid-Proterozoic continental crust, with minor incorporation of Neo-Proterozoic mantle lithosphere and Early-Proterozoic upper crust. Whole-rock Pb isotopic composition reveal that basement from the western Qinling terrane have clearly Yangtze affinity, and the basement from the southern Qinling terrane and Bikou terrane have transitional features between Yangtze and North China blocks.
     4. Mafic enclaves from the Late-Triassic granites have zircon U-Pb ages of 220 to 210Ma, some of the mafic enclaves also display high Sr, Sr/Y and depleted in Y and HREE, in combination with whole-rock Sr-Nd-Pb and zircon Lu-Hf isotopic data, it can be considered that these mafic enclaves may be produced by Late-Triassic reworking of Neo-Proterozoic enriched sub-continental lithospheric mantle, which is consisted by garnet iherzolite. The widespread mafic enclaves in the granites suggest a regional partial melting of sub-continental lithospheric mantle during Late-Triassic time, which may have great contribution to the genesis of granitic magma.
     The high-K calc-alkaline granites that formed at 220 to 210Ma contain widespread mafic enclaves, detailed zircon LA-ICP MS U-Pb dating for the mafic enclaves indicates that these mafic enclaves have identical ages with their host granites, suggesting Late-Triassic mafic magmatism in the Qinling orogenic belt. These mafic enclaves have mafic-intermediate, alkaline composition, enriched in LILEs and LREE, display negative anomalies in HFSEs, display geochemical features of island arc volcanic rocks, in addition, some of the mafic enclaves display high Sr, Sr/Y ratios and depleted in Y and HREE, suggesting garnet in their source residue. In combination with the results of whole-rock Sr-Nd-Pb and zircon Lu-Hf isotopic analysis, we argued that these mafic enclaves may be formed by reworking of Neo-Proterozoic sub-continental lithospheric mantle, and undergone magma minxing with their host granites. The widespread Late-Triassic mafic enclaves in the granites suggest a regional partial melting of sub-continental lithospheric mantle during Late-Triassic time, which may have great contribution to the genesis of granitic magma.
     5. This thesis put forward a new petrogenetic model for the genesis of Late-Triassic granites in the Qinling orogenic belt:they were formed by multi-stage partial melting of subducted Yangtze continental crust. the partial melting of continental crust may be caused by:(1)the clockwise rotation of the Yangtze Block cause extension setting in the Dabie area, which led to the rapid exhumation of HP-UHP metamorphic rocks, while compression setting in the Qinling area and cause extensive partial melting of subducted continental lithosphere, led to the widespread Late-Triassic granites magmatism and associated mafic magmatiam; (2) there is higher convergence rate in the Qinling area than those of the Dabie-Sulu area during the Triassic collision between the Yangtze and North China blocks; (3) continental lithosphere in the western and eastern part of the Yangtze block has different composition and thermal structure.
     In combination with regional tectonic setting, this thesis proposed a new petrogentic model to explain the genesis of Late-Triassic granites in the Qinling orogenic belt:(1) the sub-continental lithospheric mantle was metasomatized by Late-Paleozoic to Early-Mesozoic northward subduction of the Mianlue oceanic crust beneath the south Qinling terrane; (2) in Late-Triassic time, the Yangtze and North China blocks collided in the Qinling area, because of the regional convergence and gravity of high-density eclogitized oceanic lithosphere, led the Yangtze continental lithosphere subducted beneath the south Qinling terrane; (3) dense and refractory mafic lower crust that was trapped in mantle depth by continental subduction will melt at high temperature to produce the early (235 to 225 Ma) quartz diorite, subsequent interaction with mantle peridotite would elevate and their Mg# and metasomatized the overriding mantle wedge, in combination with the gravity of high-density oceanic lithosphere, this would led to the slab break-off in the Qinling area; (4) the slab break-off cause asthenosphere upwelling and exhumation of the subducted continental crust, this would led to the extensive partial melting of subducted continental crust and overlying enriched wedge, produce large-scale high-K calc-alkaline granites and associated mafic enclaves. (5) In the final stage, exhumation of subducted continental crust would cause lithospheric extension in the interior of the south Qinling terrane, led to the partial melting of middle-crust on the condition of fluids from mantle lithosphere or lower crust, produce biotite granite and the exposure of Foping metamorphic complex.
引文
Ames, L., Zhou, G.-Z. and Xiong, B.-C.,1996. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for the collision of the Sino-Korean and Yangtze cratons, central China. Tectonics 15,472-489.
    Andersen T.,2002, Correction of common lead in U-Pb analyses that do not report 204Pb:Chemical Geology, v.192, p.59-79
    Annen C, Bilundy J D, Sparks R S J.2006. The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones. Journal of Petrology,47(3):505-539
    Annen C., Blundy, J. D. and Sparks, R. S. J.,2008, The sources of granitic melt in deep hot zones:Philipe. Transactions of the Royal Society of Edinburgh:Earth Sciences, v.97, p.297-309.
    Atherton M P, Petford N.1993. Generation of sodium-rich magmas from newly underplated basaltic crust.Nature,362:144-146.
    Auzanneau E., Vielzeuf D. and Schmidt M. W.,2006, Experimental evidence of decompression melting during exhumation of subducted continental crust:Contributions to Mineralogy and Petrology, v.152, p.125-148
    Ayer J C., Dunkle S, Gao S, Miller C F.2002. Contraints on timing of peak and retrograde metamorphism in the Dabieshan ultrahigh-pressure metamorphic belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chemical Geology,186:315-331
    Ayers, J.C., Delacruz, K., Miller, C., Switzer, O.,2003. Experimental study of zircon coarsening in quartzite ±H2O at 1.0 GPa and 1000℃, with implications for geochronological studies of high-grade metamorphism. Am. Mineral.88,365-376.
    Barbarin, B.,1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46,605-626.
    Barbarin, B.,2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California:nature, origin, and relations with the hosts. Lithos 80,155.
    Barbey, P., Bertrand, J.-M., Angoua, S., Dautel, D.,1989. Petrology and U/Pb geochronology of the Telohat migmatites, Aleksod, Central Hoggar, Algeria. Contrib. Mineral. Petrol.101,207-219.
    Barker, F.,1979. Trondhjemite:definition, environment and hypotheses of origin. In:F. Barker (Editor), Trondhjemites, Dacites and Related Rocks. Elsevier, Amsterdam, pp.1-12.
    Barker, F., Arth, J.G.,1976. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites. Geology 4,596-600.
    Beard J. S. and Lofgren G. E.,1991, Dehydration melting and watersaturated melting of basaltic and andesitic greenstones and amphibolites at 1,3 and 6.9 kbar:Journal of Petrology, v.32, p.365-402.
    Beard, J.S., Ragland, P.C.& Crawford, M.L.2005. Reactive bulk assimilation:a model for crust-mantle mixing in silicic magmas. Geology,33,681-684.
    Bedard, J.H.,2006, A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle:Geochimica et Cosmochimica Acta, v.70, p.1188-1214
    Bebout, G.E.,2007. Metamorphic chemical geodynamics of subduction zones. Earth Planet. Sci. Lett.260, 373-393.
    Beier, C., Haase, K.M., Hansteen, T.H.,2006. Magma evolution of the Sete Cidades volcano, Sao Miguel, Azores. J. Petrol.47,1375-1411.
    Belousova, E.A., Griffin, W.L., O'Reilly, S.Y.,2006. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modeling:examples from Eastern Australian granitoids. J. Petrol.47,329-353.
    Bievre D P, Taylor P. D.1993.Table of the isotopic compositions of the elements. International Journal of Mass Spectrometry and Ion Processes,123(2):149-166.
    Bindeman I. N., Eiler J. M., Yogodzinski G. M., Tatsumi Y., Stern, C. R., Grove T. L., Portnyagin M., Hoernle K. and Danyushevsky L. V.,2005, Oxygen isotope evidence for slab melting in modern and ancient subduction zones:Earth Planetary Science Letters, v.235, p.480-496
    Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., Foudoulis, C.,2003a. TEMORA 1:a new zircon standard for Phanerozoic U-Pb geochronology. Chem. Geol.200,155-170.
    Black, L.P., Kamo, S.L., Williams, I.S., Mundil, R., Davis, D.W., Korsch, R.J., Foudoulis, C.,2003b. The application of SHRIMP to Phanerozoic geochronology:a critical appraisal of four zircon standards. Chem. Geol.200,171-188.
    BlichertToft, J., Albarede, F.,1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett.148,243-258.
    Blichert-Toft, J., Boyet, M., Telouk, P., Albarede, F.,2002.147Sm-143Nd and 176Lu-176Hf in eucrites and the differentiation of the HED parent body. Earth Planet. Sci. Lett.204,167-181.
    Blundy J D,Sparks R S J.1992. Petrogenesis of mafic inclusion in granitoids of the Adamello Massif,Italy. J. Petrol,33(5):1039-1101.
    Bonin B.2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos,78:1-24
    Boutelier D, Chemenda A, Jorand C.2004. Continental subduction and exhumation of high-pressure rocks: insights from thermo-mechanical laboratory modeling. Earth and Plantery Science Letters.222: 209-216
    Brown M.2001. Crustal Melting and Granite Magmatism:Key Issues. Physics and Chemistry Earth. 26(4-5):201-212
    Brueckner H. H.,2009. Subduction of continental crust, the origin of post-orogenic granitoids (and anorthosites?) and the evolution of Fennoscandia:Journal of Geological Society of London, v.166, p. 753-762
    Burns J-P., Faccenna C.2008. Exhumation of high-pressure rocks driven by slab rollback. Earth and Planetary Science Letters 272:1-7
    Cai H M., Zhang H F., Xu W C.2009. U-Pb Zircon Ages, Geochemical and Sr-Nd-Hf Isotopic Compositions of Granitoids in Western Songpan-Garze Fold Belt:Petrogenesis and Implication for Tectonic Evolution. Journal of Earth Science,20(4):681-698
    Calvin,F M.,McDowell,S M.,Mapes,R W.,2003. Hot and cold granites? Implication of zircon saturation temperatures and preservation of inhertance. Geology,31(6):529-532.
    Cantagrel J M, Dider,J and Gourgaud.A.1984.Magma mixing:origin of intermediate rock and enclave from volcanism to plutonism.Phys.Earth.Inter.35:63-76
    Castillo P R,Janney P E,Solidum R U.1999. Petrology and geochemistry of Camiguin island,southern Philippiness:insight to the source of adakites and other lavas in a complex arc setting. Contribution to Mineralogy and Petrology,134:33-51
    Castillo P. R.,2006. An overview of adakite petrogenesis:Chinese Science Bulletin, v.51, p.257-268
    Castillo P. R.,2008. Origin of the adakite-high-Nb basalt association and its implications for postsubduction magmatism in Baja California, Mexico:Geological Society of American Bulletin, v. 120, p.451-462
    Castro A. M. I. and Rosa J. D.1990.Microgranular enclave as indicator of hybridization process in granitoid rocks, Hercynian Belt,Span. Wally Pitcher Conference,University of Liverpool, Journal of Geology,25:391-404.
    Castro.A H-type(hybird) granitoids:1991.a proposed revision of the granite type classfication and nomenclature.Earth Science Review.31:237-253.
    Chappell B W & White A J R.1974.Two contrasting granite types. Pacific Geology,8:173-174
    Chappell B W.1996.Magma mixing and the production of compositional variation within granite suite:Evidence from the granites ofsoutheastern Australia.J.Petrol.,37(3):449-470.
    Chappell, B.W.,1984. Source Rocks of I-Type and S-Type Granites in the Lachlan Fold Belt, Southeastern Australia. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 310,693-707.
    Chappell, B.W.,1996. Compositional variation within granite suites of the Lachlan fold belt:Its causes and implications for the physical state of granite magma. Trans. Royal Soc. Ediburgh, Earth Sci.87, 159-170.
    Chappell, B.W.,1999. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites. Lithos 46,535-551.
    Chappell, B.W.,2004. Towards a unified model for granite genesis. Trans. Royal Soc. Ediburgh, Earth Sci. 95,1-10.
    Chappell, B.W., Bryant, C.J., Wyborn, D., White, A.J.R., Williams, I.S.,1998. High-and low-temperature I-type granites. Res. Geol.48,225-235.
    Chappell, B.W., White, A.J.R.,1992. I-Type and S-Type Granites in the Lachlan Fold Belt. Trans. Royal Soc. Ediburgh, Earth Sci.83,1-26.
    Chappell, B.W., White, A.J.R.,2001. Two contrasting granite types:25 years later. Australlian Journal of Earth Sciences 48,489-499.
    Chappell, B.W., White, A.J.R., Williams, I.S., Wyborn, D.,2004. Low-and high-temperature granites. Trans. Royal Soc. Ediburgh, Earth Sci.95,125-140.
    Chappell, B.W., White, A.J.R., Wyborn, D.,1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. J. Petrol.28,1111-1138.
    Chen, J.F., Xie, Z., Li, H. M., Zhang, X. D., Zhou, T. X., Park Y.-S, Ahn K. S., Chen D. G., Zhang X.,2003. U-Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane, China. Geochem J 37:35-46.
    Cheng, H., et al., DuFrane S A., Vervoort J D., Nakamura E., Li Q L., Zhou Z Y.2010. The Triassic age for oceanic eclogites in the Dabie orogen:Entrainment of oceanic fragments in the continental subduction, Lithos, doi:10.1016/j.lithos.2010.02.007
    Cheng, H., King, R.L., Nakamura, E., Vervoort, J.D., Zheng, Y.F., Ota, T., Wu, Y.B., Kobayashi, K., Zhou, Z.Y.,2009. Transitional time of oceanic to continental subduction in the Dabie orogen:constraints from U-Pb, Lu-Hf, Sm-Nd and Ar-Ar multichronometric dating. Lithos 110,327-342.
    Cheng, H., King, R.L., Nakamura, E., Vervoort, J.D., Zhou, Z.,2008. Coupled Lu-Hf and Sm-Nd geochronology constrains garnet growth in ultra-high-pressure eclogites from the Dabie orogen. Journal of Metamorphic Geology 26,741-758.
    Chopin, C.,2003. Ultrahigh-pressure metamorphism:tracing continental crust into the mantle. Earth Planet. Sci. Lett.212,1-14.
    Chu, N.C., Taylor, R.N., Chavagnac, V, Nesbitt, R.W., Boella, R.M., Milton, J.A., German, C.R., Bayon, G., Burton, K.,2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry:an evaluation of isobaric interference corrections. J. Anal. At. Spectrom.17,1567-1574.
    Chung S L, Liu D Y, Ji J, Chu M F, Lee H.Y, Wen D.J, Lo C.H, Lee T.Y, Qian Qing, Zhang Qi.2003. Adakites from continental collision zones:melting of thickened lower crust beneath southern Tibet. Geology 31:1021-1024
    Chung SL, Wang KL, Crawford AJ. Kamenetsky VS, Chen CH, Yang CY, Chen CH.2001. High-Mg potassic rocks from Taiwan:implications for the genesis of orogenic potassic lavas. Lithos, 59:153-170.
    Clemens JD, Darbyshire DPF, Flinders J.2009. Sources of post-orogenic calcalkaline magmas:The Arrochar and Garabal Hill-Glen Fyne complexes, Scotland. Lithos,112:524-542
    Clemens, J.D.,2006. Melting of the continental crust; fluid regimes, melting reactions, and source rock fertility. In:Brown, M., Rushmer, T. (Eds.), Evolution and Differentiation of the Continental Crust. Cambridge University Press, New York, NY, United States, pp.296-330.
    Clemens, J.D.,Wall, V.J.,1981. Origin and crystallization of some peraluminous (S-type) granitic magmas. Canadian Mineralogist 9,111-131.
    Coleman D. S., Gray W. and Glazner A. F.,2004, Rethinking the emplacement and evolution of zoned plutons:Geochronologic evidence for incremental assembly of the Tuolumne intrusive suite, California: Geology, v.32, p.433-436.
    Coleman, D.S., Bartley, J.M., Glazner, A.F., Law, R.D.,2005. Incremental assembly and emplacement of Mesozoic plutons in the Sierra Nevada andWhite and Inyo Ranges, California.Geological Society of America Field ForumField Trip Guide (Rethinking the Assembly and Evolution of Plutons:Field Tests and Perspectives,7-14 October,2005). doi:10.1130/2005.MCBFYT.FFG.
    Collins W J.1996. S-and I-type granites of the eastern Lachlan fold belt:products of three component mixing. Transaction of the Royal Society of Edinburgh, Earth Sciences,88:171-179
    Collins W J.1998. Evaluation of petrogenetic models for Lachlan Fold Belt granitoids:implications for crustal arcitecture and tectonic models. Australian Journal of Sciences,45:483 Dewey J F. 1989.Tectonic evolution of the India/Eurasia collision zone. Eclogae Geologicae Helvetiae,82: 717-734.
    Collins W. J., Wiebe R. A., Healy B. and Richards, S. W,2006, Replenishment, crystal accumulation and floor aggradation in the megacrystic Kameruka suite, Australia:Journal of Petrology, v.47, p. 2073-2104
    Collins, W.J.,1996. Lachlan Fold Belt granitoids:Products of three-component mixing. Trans. Royal Soc. Ediburgh, Earth Sci.87,171-181.
    Condie K.C.2005. TTGs and adakites:are they both slab melts?Lithos 80:33-44
    Condie, K.C.,1993. Chemical composition and evolution of the upper continental crust:contrasting results from surface samples and shales. Chem. Geol.104,1-37.
    David, K., Schiano, P., Allegre, C.J.,2000. Assessment of the Zr/Hf fractionation in oceanic basalts and continental materials during petrogenetic processes. Earth Planet. Sci. Lett.178,285-301.
    Davidson, J. P., Hora, J. M. Garrison, J. M.& Dungan, M. A.2005. Crustal forensics in arc magmas. Journal of Volcanology and Geothermal Research 140,157-170.
    Davies and von. Blankenburg,1995, Slab breakoff:a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogents:Earth Planetary Science Letters, v.129, p.85-102
    Davis, J., Hawkesworth, C.,1993. The petrogenesis of 30-20 Ma basic and intermediate volcanics from the Mogollon-Datil Volcanic Field, New-Mexico, USA. Contributions to Mineralogy and Petrology 115, 165-183.
    De la Roche H., Leterrier J., Grandclaude P. and Marchal M.,1980, A classification of volcanic and plutonic rocks using R1, R2-diagrams and major element analysis-its relationships with current nomenclature:Chemical Geology, v.29, p.183-210.
    Defant M J, Xu J F, Kepezhinskas P.2002.Adakites:some variations on a theme. Acta Petrologica sinica, 18(2):129-142.
    Defant M. J. and Drummond M. S.,1990, Derivation of some modern arc magmas by melting of young subducted lithosphere:Nature, v.347, p.662-665
    Defant M.J, Drummond M.S.1993. Mount St. Helens:potential example of the partial melting of the subucted lithosphere in a volcanic arc. Geology 21:547-550
    DePaolo D. J.,1981, Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic:Nature, v.291, p.193-196
    Dewey J F, Lamb S H.1992. Active tectonics of the Andes. Tectonophysics,205:79-95.
    Dewey, J.F.,1988. Extensional collapse of orogens. Tectonics 7,1123-1139.
    Dider J and Barbarin B,.1991.Macroscopic features of mafic microgranular enclaves[A]. Dider J and Barbarin B.Enclaves and Granite Petrology[C].Amsterdam:Elsevier,253-262.
    Didier J.1987.Contribution of enclaves to understanding of origin and evolution of granitic magma.Geologische Rundschau.,76(1):41-50.
    Drummond, M. S.& Defant, M. J.,1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting:Archean to modern comparisons. Journal of Geophysical Research 95, 21503-21521.
    Drummond, M.S., Defant, M.J., Kepezhinskas, P.K.,1996. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Transactions of the Royal Society of Edinburgh. Earth Sciences 87, 205-215.
    Duggen S, Hoernle K, van Den Bogaard P, Garbe-Schonberg D.2005. Post-Collisional Transition from Subduction-to Intraplate-type Magmatism in the Westernmost Mediterranean:Evidence for Continental-Edge Delamination of Subcontinental Lithosphere. Journal of Petrology,45(6):1155-1201.
    Duggen, S., Portnyagin, M., Baker, J., Ulfbeck, D., Hoernle, K., Garbe-Schonberg, D., Grassineau, N., 2007. Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone:Evidence for the transition from slab surface dehydration to sediment melting. Geochimica et Cosmochimica Acta 71,452-480
    Dupuy, C., Liotard, J.M., Dostal, J.,1992. Zr/Hf fractionation in intraplate basaltic rocks:carbonate metasomatism in the mantle source. Geochim. Cosmochim. Acta 56,2417-2423.
    Elhlou S, Belousova E, Griffin W.L, et al. Trace Element and Isotopic Composition of GJ Red Zircon Standard by Laser Ablation. Geocheim. Cosmochim. Acta 70 (Supplement 1),2006, A158,
    England C, Houseman G A.1989.Extension during continental convergence with application to the Tibetan plateau. J. Geophys. Res,94:17561-17579.
    Ernst, W.G.,2005. Alpine and Pacific styles of Phanerozoic mountain building:subduction-zone petrogenesis of continental crust. Terra Nova 17,165-188.
    Ernst, W.G.,2006. Preservation/exhumation of ultrahigh-pressure subduction complexes. Lithos 92, 321-335.
    Ernst, W.G., Tsujimori, T., Zhang, R.Y., Liou, J.G.,2007. Permo-Triassic collision, subduction-zone metamorphism, and tectonic exhumation along the East Asian continental margin. Ann. Rev. Earth Planet. Sci.35,73-110.
    Ernst,W.C., Tsujimori, T., Zhang, R., Liou, J.G.,2008. Permo-Triassic collision, subduction zone metamorphism, and tectonic exhumation along the East Asian continental margin. Annual Review of Earth and Planetary Science 35,73-110.
    Faccenda M., Minelli G, Gerya T V.2009. Coupled and decoupled regimes of continental collision: Numerical modeling. Earth and Planetary Science Letters,278:337-349
    Faure M., Lin W., Scharer U., Shu L.S., Sun Y. and Arnaud N.,2003. Continental subduction and exhumation of UHP rocks. Structural and geochronological insights from the Dabieshan (East China). Lithos 70,213-241.
    Ferrando, S., Frezzotti, M.L., Dallai, L., Compagnoni, R.,2005a. Multiphase solid inclusions in UHP rocks (Su-Lu, China):Remnants of supercritical silicate-rich aqueous fluids released during continental subduction. Chem. Geol.223,68-81.
    Ferrando, S., Frezzotti,M.L.,Dallai, L., Compagnoni, R.,2005b.Multiphase solid inclusions in UHP rocks (Su-Lu, China):remnants of supercritical silicate-rich aqueous fluids released during continental subduction. Chem. Geol.223,68-81.
    Ferre, E.C., Bernard, E.L.,2001. geodynamic significance of earlyorogenic high-K crustal and mantle melts:example of the Corsica Batholith. Lithos 59,47-67.
    Foley, S., Tiepolo, M., Vannucci, R.,2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417,837-840.
    Foley, S.F., Buhre, S., Jacob, D.E.,2003. Evolution of the Archaean crust by delamination and shallow subduction. Nature 421,249-252.
    Fornelli A, Piccarreta G, Del Moro A, Acquafredda P.2002. Multi-stage Melting in the Lower Crust of the Serre (Southern Italy). Journal of Petrology,43(12):2191-2217
    Foster D A., Schafer C, Mark Fanning C., Hyndman D W.2001. Relationships between crustal partial melting, plutonism, orogeny, and exhumation:Idaho-Bitterroot batholith. Tectonophysics,342: 313-350
    Furman, T., Graham, D.,1999. Erosion of lithosphericmantle beneath the East African Rift system: geochemical evidence fromthe Kivu volcanic province. Lithos 48,237-262.
    Gao S, Rudnick R L, Xu WL, Yuan HL, Liu YS, Walker R J, Puchtel IS, Liu XM, Huang H, Wang XR, Yang J.2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth and Planetary Science Letters,270:41-53
    Gao S, Rudnick R.L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H.2004. Recycling lower continental crust in the North China craton. Nature 432:892-897
    Gary CM, Kemp AIS.2009. The two-component model for the genesis of granitic rocks in southeastern Australia - Nature of the metasedimentary-derived and basaltic end members. Lithos,111:113-124
    Getsinger A, Rushmer T, Jackson M D, Baker D.2009. Generating High Mg-numbers and Chemical Diversity in Tonalite-Trondhjemite-Granodiorite (TTG) Magmas during Melting and Melt Segregation in the Continental Crust. Journal of Petrology,50(10):1935-1954.
    Goolaerts A., Mattielli N., de Jong J., Weis D., Scoates J. S.,2004, Hf and Lu isotopic reference values for the zircon standard 91500 by MC-ICP-MS:Chemical Geology, v.206, p.1-9
    Gormet L P and Silver L T.1987. REE variations across the peninsular ranges batholith:implications for batholithic petrogenesis and crustal growth in magmatic arcs. J. Petrology,28:75-125
    Griffin W. L., Wang X, Jackson S.E., Pearson N.J., O'Reilly S.Y., Xu X S., Zhou X M.2002.Zircon chemistry and magma mixing, SE China:In-situ analysis of Hf-isotopes, Tonglu and Pingtan igneous complexes.Lithos,61:237-269.
    Guo F, Nakamuru E., Fan W M., Kobayoshi K., Li C W.,2007, Generation of Palaeocene Adakitic Andesites by Magma Mixing; Yanji Area, NE China, Journal of Petrology,48(4):661-692
    Gutscher MA, Maury RC, Eissen J-P,Bourdon E.1999.Can slab melting be caused by flat subduction?Geology,28(6):535-538
    Hacker B. R., Ratschbacher L., Webb L., Ireland T., Walker D. and Dong S.,1998, U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth Planetary Science Letters, v.161, p.215-230.
    Hacker, B., Wallis, S.R., Ratschbacher, L., Grove, M., Gehrels, G.,2006. High-temperature geochronology constraints on the tectonic history and architecture of the ultrahigh-pressure Dabie-Sulu orogen. Tectonics 25, TC5006, doi:10.1029/2005TC001937.
    Hacker, B.R., Ratschbacher, L., Webb, L., McWilliams, M.O., Ireland, T., Calvert, A., Dong, S., Wenk, H.-R., Chateigner, D.,2000. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic-Early Jurassic tectonic unroofing. J. Geophys. Res. B105,13339-13364.
    Halla J.2005. Late Archean high-Mg granitoids (sanukitoids) in the southern Karelian domain, eastern Finland:Pb and Nd isotopic constraints on crust-mantle interactions. Lithos,79:161-178
    Harrison T M., Watson E B., Aikman A B.,2007, Temperature spectra of zircon crystallization in plutonic rocks. Geology,35(7):635-638.
    Harrison, T.M., and Clarke, G.K.C.,1979, A model of the thermal effects of igneous intrusion and uplift as applied to Quottoon pluton, British Columbia:Canadian Journal of Earth Sciences, v.16, p.411-420.
    Hawkesworth C. J., Kemp, A I S,2006, Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution, Chemical Geology,226:144-162
    Hawkesworth, C.J., Kemp, A.I.S.,2006. Evolution of the continental crust. Nature 443,811-817.
    Hawkesworth, C.J., Kemp, A.I.S.,2006b. The differentiation and rates of generation of the continental crust. Chem. Geol.226,134-143.
    Hermann, J.,2002a. Experimental constraints on phase relations in subducted continental crust. Contrib. Mineral. Petrol.143,219-235.
    Hermann, J.,2002b. Allanite:thorium and light rare earth element carrier in subducted crust. Chem. Geol. 192,289-306.
    Hermann, J.,2003. Experimental evidence for diamond-facies metamorphism in the Dora-Maira massif. Lithos 70,163-182.
    Hermann, J., Green, D.H.,2001a. Experimental constraints on high pressure melting in subducted crust. Earth Planet. Sci. Lett.188,149-168.
    Hermann, J., Rubatto, D., Korsakov, A., Shatsky, V.S.,2001b. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contrib. Mineral. Petrol.141,66-82.
    Hermann, J., Spandler, C., Hack, A., Korsakov, A.V.,2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks:implications for element transfer in subduction zones. Lithos 92,399-417.
    Hofmann A., Jochum K., Seufert M. and White M.,1986, Nb and Pb in oceanic basalts:New constraints on mantle evolution:Earth Planetary Science Letters, v.33, p.33-45
    Holden P, Halliday A N, Stephens W E. Neodymium and strontium isotope content of microdiorite enclaves points to mantle input to granitoid production. Nature,1987,330:53-56[doi]
    Holden, P., Halliday, A.N., Stephens,W.E., Henney, P.J.,1991. Chemical and isotopic evidence for major mass transfer between mafic enclaves and felsic magma. Chemical Geology 92,135-152.
    Hoskin, P.W.O., Schaltegger, U.,2003. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem.53,27-55.
    Iizuka T., Hirata T.,2005, Improvements of precision and accuracy in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique:Chemical Geology, v.220, p.121-137
    Ionov, D.A., O'Reilly, S.Y., Griffin, W.L.,1997. Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem. Geol.141,153-184
    Iyer, H.M., Evans, J.R., Dawson, P.B., Stauber, D.A., and Achauer, U.,1990, Differences in magma storage in different volcanic environments as revealed by seismic tomography:Silicic volcanic centers and subduction-related volcanoes, in Ryan, M.P., ed., Magma transport and storage:Chichester, United Kingdom, John Wiley and Sons, p.293-316.
    Jahn, B.M., Wu, F.Y., Lo, C.H., Tsai, C.H.,1999. Crustmantle interaction induced by deep subduction of the continental crust:geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem. Geol.157,119-146.
    Jiang YH, Ling HF, Jiang SY, Fan HH, Shen WZ, Ni P.2005. Petrogenesis of a Late Jurassic Peraluminous Volcanic Complex and its High-Mg, Potassic, Quenched Enclaves at Xiangshan, Southeast China. Journal of Petrology,46(6):1121-1154
    Jiang, Y H, Jin, G D, Liao, S Y, Zhou, Q, Zhao, P.2010. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China:Implications for a continental arc tocontinent-continent collision, LITHOS (2010), do 10.1016/j.lithos.2010.02.014
    Johnson K, Barnes CG, Miller CA.1997. Calvin Petrology, Geochemistry, and Genesis of High-Al Tonalite and Trondhjemites of the Cornucopia Stock, Blue Mountains, Northeastern Oregon. Journal of Petrology,38:1585-1611
    Johnson, B.R., Glazner, A.F., Coleman, D.S.,2006a. Significance of K-feldspar megacryst size and distribution the Tuolumne Intrusive Suite, California. Geological Society of America, Abstracts with Programs 38,93.
    Johnson, K.T.M.,1998. Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basalticmelt at high pressures. Contributions to Mineralogy and Petrology 133,60-68.
    Jorg, A., Pfander, J.A., Munker, C., Stracke, A., Mezger, K.,2007. Nb/Ta and Zr/Hf in ocean island basalts-Implications for crust-mantle differentiation and the fate of Niobium. Earth Planet. Sci. Lett. 254,158-172.
    Jung S, Hoernes S, Mezger K. Synorogenic melting of mafic lower crust:Constraints from geochronology, petrology and Sr, Nd, Pb and O isotope geochemistry of quartz diorites (Damara orogen, Namibia). Contrib Mineral Petrol,2002,143(5):551-566
    Kamber, B.S., Ewart, A., Collerson, K.D., Bruce, M.C., McDonald, G.D.,2002. Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contributions to Mineralogy and Petrology 144,38-56.
    Kamei, A., Owada, M., Nagao, T., Shiraki, K.,2004, High-Mg diorite derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc:evidence from clinopyroxene and whole rock compositions. Lithos,75:359-371
    Kay R.W., Kay, S.M.2002.Andean adakites:three ways to make them, Acta Pet. Sin.18:303-311.
    Kelemen P. B.,1995, Genesis of high Mg# andesites and the continental crust:Contributions to Mineralogy and Petrology, v.120, p.1-19
    Keller L M, Abart R, Stunitz H, et al. Deformation, mass transfer and mineral reactions in an eclogite facies shear zone in a polymetamorphic metapelite (Monte Rosa nappe, western Alps). J Metamorph Geol,2004,22:97-118[doi]
    Kemp, A. I. S.; Hawkesworth, C. J.; Foster, G. L.; Paterson, B. A.; Woodhead, J. D.; Hergt, J. M.; Gray, C. M.; and Whitehouse, M. J.2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science 315:980-983
    Kemp, A.I.S., Hawkesworth, C.J.,2003. Granitic perspectives on thegeneration and secular evolution of the continental crust. In:Rudnick, R.L. (Ed.), The Crust, Treatise in Geochemistry vol.3, pp.349-410.
    Kessel, R., Schmidt, M.W., Ulmer, P., Pettke, T.,2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth. Nature 437,724-727.
    Labrousse, L., Jolivet, L., Agard, P., Hebert, R., and Anderson, T.B.,2002, Crustal-scale boudinage and migmatization of gneiss during their exhumation in the UHP province of Western Norway:Terra Nova, v.14, p.263-270, doi:10.1046/j.1365-3121.2002.00422.x.
    LaTourrette, T., Hervig, R.L., and Holloway, J.R.,1995, Trace element partitioning between amphibole, phlogopite, and basanite melt:Earth and Planetary Science Letters,135:13-30
    Lai S C, Zhang G W, Li S Z.,2004. Ophiolites from the Mianlue suture in the Southern Qingling and their relationship with eastern paleotethys evolution. Acta Geologica Sinica,78(1):107-117
    Lai S. C., Qin J. F., Chen L. and Rondey G.,2008, Geochemistry of Ophiolites from the Mian-Lue Suture Zone:Implications for the Tectonic Evolution of the Qinling Orogen, Central China:International Geology Review, v.50, p.650-664
    Lai S. C., Zhang G. W., Dong Y. P., Pei X. Z., Chen L.,2004, Geochemistry and regional distribution of ophiolite and associated volcanics in Mianlue suture, Qinling-Dabie Mountains:Science in China (Series D), v.47, p.289-299
    Lai, S.C., Li, S.Z., Zhang, G.W.,2003. Tectonic settings of the volcano-sedimentary rock association from Xixiang Group, Shaanxi province:volcanic rock geochemistry constraints. Acta Petrologica Sinica 19, 141-152.
    Lai, S.C., Qin, J.F., Chen, L.,2008. Geochemistry of ophiolites from the Mian-Lue Suture Zone: implications for the tectonic evolution of the Qinling Orogen, Central China. International Geology Review 50,650-664.
    Lai, S.C., Zhang, G.W.,1996. Geochemical features of ophiolite in Mianxian-Lueyang suture zone, Qinling Orogenic belt. Journal of China University of Geosciences 7,165-172 (in English).
    Lai, S.C., Zhang, G.W., Yang, Y.C., Chen, J.Y.,1999. Geochemistry of the ophiolite and island-arc volcanic rocks in the Mianxian-Lueyang suture zone, southern Qinling and their tectonic significance. Chinese Journal of Geochemistry 18,39-50 (in English).
    Lang, H.J., and Gilotti, J.A.,2007, Partial melting of metapelites at ultrahigh-pressure conditions, Greenland Caledonides:Journal of Metamorphic Geology, v.25, p.129-147, doi: 10.1111/j.1525-1314.2006.00687.x.
    Li S G, Huang F, Nie Y H, et al. Geochemical and geochronological constraints on the suture location between the North and South China blocks in the Dabie Orogen, Central China. Phys Chem Earth Part A:Solid Earth Geod,2001,26:655-672k[doi]
    Li S Z., Kusky T M., Wang L., Zhang G W., Lai S C., Liu X C., Dong S W., Zhao G C.2007. Collision leading to multiple-stage large-scale extrusion in the Qinling orogen:Insights from the Mianlue suture. Gondwana Research 12,121-143
    Li S. G., Jagoutz E., Chen Y. D. and Li Q.,2000, Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressuremetamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, central China:Geochimica et Cosmochimica Acta, v.64, p.1077-1093.
    Li S. Z., Kusky T..M., Wang L., Zhang G. W., Lai S.-C., Liu X.-C., Dong S.-W.& Zhao G. C.,2006, Collision leading to multiple-stage large-scale extrusion:insights from the Mianlue suture. In:Zhai M. G, Xiao W. J., Kusky T. M.& Santosh, M. (eds) Tectonic Evolution of China and Adjacent Crustal Fragments, Special Issue of Gondwana Research, doi:10.1016/j.gr.2006.11.011.
    Li X-H, Li Z-X, Zhou H, et al. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China:Implications for the initial rifting of Rodinia. Precambr Res,2002,113:135-154
    Li, S., Jagoutz, E., Chen, Y, Li, Q.,2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochimica et Cosmochimica Acta 64,1077-1093.
    Li,Q., Li, S., Zheng,Y, Li, H.,Massonne,H.J.,Wang,Q.,2003a.A high precision U-Pb age ofmetamorphic rutile in coesite-bearing eclogite from the Dabie Mountains in central China:a new constraint on the cooling history. Chemical Geology 200,255-265.
    Ling WL., Gao S., Zhang B R., Li H M., Liu Y, Cheng J P.2003. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China:implications for amalgamation and break-up of the Rodinia Supercontinent. Precambrain Research,122:111-140.
    Liu F L., Xu Z Q., Liou J G., Song B.2004a. SHRIMP U-Pb ages of ultrahigh-pressure and retrograde metamorphism gneisses, southwestern Sulu terrane, eastern China. Journal of Metamorphic Geology, 22:315-326
    Liu F L., Xu Z Q., Xue H M.2004b. Tracing the protolith, UHP metamorphism, and exhumation ages of orthogneiss from the SW Sulu terrane (eastern China):SHRIMP U-Pb dating of mineral inclusion-bearing zircons. Lithos,78:411-429
    Liu Y C., Li S G., Xu S T.2007. Zircon SHRIMP U-Pb dating for gneisses in northern Dabie high T/P metamorphic zone, central China:Implications for decoupling within subducted continental crust. Lithos,96:170-185
    Liu, J.B., Ye, K., Sun,M.,2006. Exhumation P-T path of UHP eclogites in the Hong'an area, western Dabie Mountains, China. Lithos 89,154-173.
    Liu, Y.C., Li, S.G.,2008. Detachment within subducted continental crust and multi-slice successive exhumation of ultrahigh-pressure metamorphic rocks:Evidence from the Dabie-Sulu orogenic belt. Chi. Sci. Bull.53,3105-3119.
    Liu, Y.C., Li, S.G., Xu, S.T.,2007. Zircon SHRIMP U-Pb dating for gneisses in northern Dabie high T/P metamorphic zone, central China:Implications for decoupling within subducted continental crust. Lithos 96,170-185.
    Lopez S, Castro A, Garcia-Casco A.2005. Production of granodiorite melt by interaction between hydrous mafic magma and tonalitic crust. Experimental constraints and implications for the generation of Archaean TTG complexes. Lithos,79:229-250
    Lopez, S., Castro, A.,2001. Determination of the fluid-absent solidus and supersolidus phase relationships of MORB-derived amphibolites in the range 4-14 kbar. Am. Mineral.86,1396-1403.
    Ludwig K R.2003, Isoplot 3.0-A geochronological toolkit for Micro-soft Excel. Berkeley Geochronology Center, Spec Pub:(4):1-70
    Maas R., Nicholls I. A., and Legg C.,1997, Igneous and metamorphic encalves in the S-type Deddick Granodiorite, Lachlan Fold Belt, SE Australia:Petrographic, geochemical and Nd-Sr isotopic evidence for crustal melting and magma mixing:Journal of Petrology, v.38, p.815-841.
    Macpherson CG, Dreher ST and Thirlwall MF. 2006. Adakites without slab melting:high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243:581-593
    Mahan, K.H., Bartley, J.M., Coleman, D.S., Glazner, A.F., and Carl, B.S.,2003, Sheeted intrusion of the synkinematic McDoogle pluton, Sierra Nevada, California:Geological Society of America Bulletin, v. 115, p.1570-1582.
    Martin H, Smithies R H, Rapp R, Moyen J F, Champion D.2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:relationships and some implications for crustal evolution. Lithos,79:1-24.
    Martin H.1999.The adakitic magmas:Modern analogue of Archean granotoids. Lithos,46:411-429
    Massonne H J.2005. Involvement of crustal material in delamination of the lithosphere after continent-continent collision. International Geology Review,47:792-804
    Mattauer M, Matte P, Malaveile J, Tapponier P,Maluslci H,Xu Zh Q, ha YL and Tang Y Q.1985.Tectonics of Qinling belt:build-up and evolution of Western Asia.Nature,1085(317):496-500
    McCarthy, T.C., Patino Douce, A.E.,1997. Experimental evidence for high-temperature felsic melts formed during basaltic intrusion of the deep crust. Geology 25,463-466.
    McNulty, B.A., Tong, W., and Tobisch, O.T.,1996, Assembly of a dike-fed magma chamber:The Jackass Lakes pluton, central Sierra Nevada, California:Geological Society of America Bulletin, v.108, p. 926-940.
    Meng Q R, Wang E Q, Hu J M.2005. Mesozoic sedimentary evolution of the northwest Sichuan basin: Implication for continued clockwise rotation of the South China block. Geological Society of American Bulletin,117(3-4):396-410
    Meng Q R, Zhang G W.1999.Timing of the collision of the North and South China Blocks:Controversy and reconciliation. Geology 27:123-126.
    Meng Q. R., Zhang G. W.,2000, Geologic framework and tectonic evolution of the Qinling orogen, Central China:Tectonophysics, v.323, p.183-196
    Montel JM and V ielzeuf D.1997. Partial melting of metagreywackes. Part 11. Compositions of minerals and melts. Contribution to Mineralogy and Petrology,128:176-196
    Moreno O G, Castro A, Corretge L G, EI-Hmidi.H.2006.Dissolution of tonalitic enclaves in ascending hydrous granitic magmas:An experimrntal study. Lithos,89:245-258
    Moyen J F., Martin H., Jayananda M., Auvary B.2003. Late Archaean granites:a typology based on the Dharwar Craton (India). Precambrian Res.127,103-123.
    Moyen J. F.,2009, High Sr/Y and La/Yb ratios:The meaning of the "adakitic signature":Lithos, v.112, p. 556-574
    Moyen, J.-F., Martin, H., Jayananda, M.,2001. Multi-elements geochemical modelling during Late Archaean crustal growth:the Closepet Granite (South India). Precambrian Res.112,87-105.
    Munker, C., Pfander, J.A.,Weyer, S., Buchl, A., Kleine, T.,Mezger, K.,2003. Evolution of planetary cores and the Earth-Moon system from Nb/Ta systematics. Science 301,84-87.
    Munker, C., Worner, G., Yogodzinski, G., Churikova, T.,2004. Behaviour of high field strength elements in subduction zones:constraints from Kamchatka-Aleutian arc lavas. Earth and Planetary Science Letters 224,275-293.
    Otamendi J E, Ducea M N, Tibaldi A M, Bergantz G W, de La Rosa J D, Vujovich G I.2009. Generation of tonalitic and dioritic magmas by coupled partial melting of gabbroic and metasedimentary rocks within the deep crust of Famatinian magmatic Arc, Argentina. Journal of Petrology,50(5):841-873
    Parkinson C.D. and Kohn M.J.,2002, Continental subduction to depths of 200 km implications for intra-continental ultrapotassic magmatism. In:Parkinson C.D., Katayama, I., Liou, J.G.& Maruyama, S. (eds) The Diamond Bearing Kokchetav Massif, Kazakhstan:Frontiers in Science Series, v.38, p. 463-476.
    Patino Douce AE.2005. Vapor-Absent Melting of Tonalite at 15-32 kbar. Journal of Petrology,46(2): 275-290
    Patino Douce, A.E.,1995. Experimental generation of hybrid silicic melts by reaction of high Al basalt with metamorphic rocks. J. Geophys. Res.100,623-639.
    Patino-Douce A.E. and McCarthy T.C.,1998, Melting of crustal rocks during continental collision and subduction. In:Hacker B.R. and Liou J.G. (eds) When Continents Collide. Kluwer, Dordrecht, p. 27-55.
    Patino-Douce A.E.,1999, What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In:Castro, A., Fernandez, C.& Vigneresse, J.L. (eds) Understanding Granites. Integrating New and Classical Techniques:Geological Society, London, Special Publications, v.158, p.55-75.
    Peacock S.M, Rushmer T, Thompson A.B.1994. Partial mehing of subdueting oceanic crust. Earth and Planet and Science Letters.121:227-244.
    Peacock, S.M., van Keken, P.E., Holloway, S.D., Hacker, B.R., Abers, G.A., Fergason, R.L.,2005. Thermal structure of the Costa Rica-Nicaragua subduction zone. Physics of the Earth and Planetary Interiors 149,187-200.
    Petford N & Atherton M.1996. Na-rich Partial Melts from Newly Underplated Basaltic Crust:the Cordillera Blanca Batholith, Peru. Journal of Petrology,37(6):1491-1521
    Petford N, Gallagher K.2001. Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma. Earth Planet Sci Lett 193:483-499
    Petford, N., Cruden, A. R., McCaffrey, K. J. W.& Vigneresse, J.-L. (2000). Granite magma formation, transport and emplacement in the Earth's crust. Nature 408,669-673.
    Polat, A., Kerrich, R.,2001. Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada:implications for late Archean subduction zone petrogenetic processes. Contributions to Mineralogy and Petrology 141 (1),36-52.
    Portnyagin, M., Hoernle, K., Plechov, P., Mironov, N., Khubunaya, S.,2007. Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth and Planetary Science Letters 255, 53-69.
    Prouteau G, Scaillet B, Pichavant M, Maury R.2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410:197-200
    Prouteau. B and Scaillet. P.,2003, Experimental Constraints on the Origin of the 1991 Pinatubo Dacite, Journal of Petrology,44 (12):2203-2241
    Qi L, Hu J., Gregoire, D.C 2000.Determination of trace elements in granites by inductively coupled plasma-mass spectrometry, Talanta 51:507-513.
    Qin J. F., Lai S. C., C. R., Ju, Y. J., Li Y. F.,2009b, Magma mixing origin for the post-collisional adakitic monzogranite of the Triassic Yangba pluton, Northwestern margin of the South China block: geochemistry, Sr-Nd isotopic, zircon U-Pb dating and Hf isotopic evidences:Contributions to Mineralogy and Petrology, (in press) doi:10.1007/s00410-009-0433-2
    Qin J. F., Lai S. C., Li Y. F.,2008a, Slab breakoff model for the Triassic post-collisional adakitic granitoids in the Qinling orogenic belt, central China:zircon U-Pb ages, geochemistry and Sr-Nd-Pb isotopic constraints:International Geology Review, v.50, p.1080-1104
    Qin J. F., Lai S. C., Rodney, G, Diwu, C. R., Ju, Y. J., Li Y. F.,2009a, Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen (central China):Lithos, v.112, p.259-276
    Qin J. F., Lai S. C., Wang J., Li Y. F.,2007, The high-Mg# adakite-like tonalites from Xichahe, South Qinling:Its petrogenesis and geological implication. International Geology Review, v.49, p. 1145-1158
    Qin J. F., Lai S. C., Wang J., Li Y. F.,2008b, Zircon LA-ICP MS U-Pb age, Sr-Nd-Pb isotopic compositions and geochemistry of the Trassic Wulong granodiorite (South Qinling, Central China) and their petrogenesis significance:Acta Geogica Sinica, v.82, p.425-437
    Rapp P R, Irifune T, Shimizu N, Nishiyama N, Morman M C, Inoue T.2008. Subduction recycling of continental sediments and the origin of geochemically enriched reservoirs in the deep mantle. Earth and Planetary Science Letters,271:14-23
    Rapp R. P. and Watson E. B.,1995, Dehydration melting of metabasalt at 8-32 kbar:implications for continental growth and crust-mantle recycling:Journal of Petrology, v.36, p.891-931
    Rapp R. P., Laporte D., Martin H., Shimizu N.,2006, Experimental insights into slabmantle interactions in subduction zones:Melting of adakite-metasomatized peridotite and the origin of the "are signature": Geochimica et Cosmochimica Acta,70, A517
    Rapp R. P., Watson E. B. and Miller C. F.,1991, Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites:Precambrian Research, v.51, p.1-25.
    Rapp R.P, Shimizu N, Norman M.D, Applegate G.S.1999.Reaction between slab-derived melts and peridotite in the mantle wedge:experimental constraints at 3.8 GPa. Chem Geol,160:335-356
    Rapp, R.P., Shimizu, N., Norman,M.D.,2003. Growth of early continental crust by partial melting of eclogite. Nature 425,605-609.
    Ratschbacher L., Hacker B. R., Calvert A., Webb L. E., Crimmer J. C., Mcwilliams M.O., Ireland T., Dong S. and Hu J.,2003, Tectonics of the Qinling (Central China):Tectonostratigraphy, geochronology, and deformation history:Tectonophysics, v.366, p.1-53.
    Roberts, M.P., Clemens, J.D.,1993. Origin of high-potassium, calcalkaline, I-type granitoids. Geology 21, 825-828.
    Roger, F., Malavieille, J., Leloup, P. H., et al.,2004. Timing of Granite Emplacement and Cooling in the Songpan-Garze Fold Belt (Eastern Margin of the Tibetan Plateau) with Tectonic Implications. J. Asian Earth Sci.,22:465-481
    Rollinson H R, Tarney J.2005. Adakites-the key to understanding LILE depletion in granulites. Lithos,79: 61-81
    Rollinson, H. Martin H.,2005.Geodynamic controls on adakite, TTG and sanukitoid genesis:implications for models of crust formation, Lithos,79:9-12.
    Rollinson, H.,1993. Using geochemical data:evaluation, presentation, interpretation. Longman Group UK Ltd., Oxford.352p.
    Rudnick R. L. and Fountain D. M.,1995, Nature and composition of the continental crust:A lower crustal perspective:Review in Geophysics, v.33, p.267-309
    Rudnick, R.L., Barth, M., Horn, I., McDonough, W.F.,2000. Rutile-bearing refractory eclogites:Missing link between continents and depleted mantle. Science 287,278-281.
    Rudnick, R.L., McDonough, W.F., Chapell, B.W.,1993. Carbonatite metasomatism in the northern Tanzanian mantle:petrographic and geochemical characteristics. Earth Planet. Sci. Lett.114,463-475.
    Rushmer T.,1991, Partial melting of two amphibolites:contrasting results under fluid-absent conditions: Contributions to Mineralogy and Petrology, v.107, p.41-59.
    Sajona F. G., Naury R. C., Pubellier M., Leterrier J., Bellon H. and Cotton J.,2000, Magmatic source enrichment by slab-derived melts in a young post-collision setting, central Mindanao (Philippines): Lithos, v.54, p.173-206
    Saleeby J, Ducea M, Clement-Knott D.2003. Production and loss of high-density batholithic root, southern Sierra Neveda, California.Tectonics,22(6):1064
    Sawyer, E.W.,1991. Disequilibrium melting and the rate of melt-residuum separation during migmatization of mafic rocks from the Grenville Front, Quebec. J. Petrol.32,701-738.
    Schaltegger, U., Corfu, F.,1992. The age and source of Late Hercynian magmatism in the central Alps-evidence from precise U-Pb ages and initial Hf isotopes. Contributions to Mineralogy and Petrology 111,329-344
    Scherer, E., Munker, C., Mezger, K.,2001. Calibration of the lutetium-hafnium clock. Science 293, 683-687.
    Schilling, F.R., and Partzsch, G.M.,2001, Quantifying partial melt fraction in the crust beneath the Central Andes and the Tibetan Plateau:Physics and Chemistry of the Earth, v.26, p.239-246.
    Schmidt M.W., Vielzeuf D.& Auzanneau E.,2004, Melting and dissolution of subducting crust at high pressures:the key role of white mica:Earth Planetary Science Letters, v.228, p.65-84.
    Sen C, Dunnt T.1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 Gpa: implication for the origin of adakites. Contrib Mineral Petrol 117:394-409
    Shaw S. E. and Flood R. H.,2009, Zircon Hf Isotopic Evidence for Mixing of Crustal and Silicic Mantle-derived Magmas in a Zoned Granite Pluton, Eastern Australia:Journal of Petrology, v.50, p. 147-168
    Shaw, D.M.,1956. Geochemistry of pelitic rocks. Part Ⅲ:Major elements and general geochemistry. Bull. Geol.Soc. Am.67,919-934.
    Simon E J, Norman J P, William L G, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in-situ U-Pb zircon geochronology. Chem Geol,2004,211:47-69
    Sisson, T.W., Ratajeski, K., Hankins, W.B., Glazner, A.F.,2005. Voluminous granitic magmas fromcommon basaltic sources. Contributions toMineralogy and Petrology 148,635-661.
    Skjerlie, K.P., Johnston, A.D.,1996. Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases:implications for anatexis in the deep to very deep continental crust and active continental margins. J. Petrol.37,661-691.
    Smithies R.H.2000.The Archaean tonalite-trondhjemite-granodiorite(TTG) series is not an analogue of Cenozoic adakite.Earth Planet Sci Lett 182:115-125
    Soesoo, A.,2000. Fractional crystallization of mantle-derived melts as a mechanism for some I-type granite petrogenesis:an example from Lachlan Fold Belt, Australia. J. Geol. Soc.157,135-149.
    Sparks R S J and Marshall L A.1986.Thermal and mechanical constrints on mixing between mafic and silicic.J.Volcanol.Geothern.Res.,29:99.
    Stern C. R. and Kilian R.,1996, Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the custral volcanic zone:Contributions to Mineralogy and Petrology, v. 123, p.263-281
    Stern, R.A.,1989. Petrogenesis of Archaean Sanukitoid Suite. Ph.D. thesis, State University of New York at Stony Brook,275 pp.
    Stern, R.A., Hanson, G.N.,1991. Archean High-Mg granodiorites:a derivative of light rare element-enriched Monzodiorite of mantle origin. Journal of Petrology 32,201-238.
    Sun S. S. and McDonough W. F.,1989, Chemical and isotopic systematics of oceanic basalts:implications or mantle composition and processes. In:Saunders AD, Norry MJ (eds) Magmatism in the ocean basins: Geological Society Special Publications, vol.42, pp.313-345. London
    Sun W D, Li S G, Chen Y D, Li Y J.2002.Timing of synorogenic granotoids in the south Qinling,central China:Constraints on the evolution of the Qinling-Dabie Orogenic Belt.J Geology,110:457-468
    Sylvester P J. Post-collisional strongly peraluminous granites. Lithos,1998,45:29-44.
    Tatsumi Y,2006, High-Mg andesites in the Setouchi volcanic belt, southwestern Japan:analogy to Archean magmatism and continental crust formation? Annual Review in Earth and Planetary Science Letters, v.34, p.467-499
    Taylor S. R. and McLennan S. M.,1995, The geochemical evolution of the continental crust:Review in Geophysics, v. p.33,241-265
    Taylor, H.P.J.,1977. Water/rock interaction and origin of H2O in granitic batholiths. J. Geol. Soc. London 133,509-558.
    Taylor, S.R. and McLennan, S.M.,1985. The Continental Crust:its composition and evolution. Oxford: Blackwell Scientific Publishers.
    Tepper, J H., and Kuehner S M.,1999, Complex zoning in apatite from the Idaho Batholith; a record of magma mixing and intracrystalline trace element diffusion, American Mineralogist,84(4):581-595
    Thompson AB.2001. Clockw ise P-T path s for crustal melting and H2O recycling in granite source regions and m igmatite terrains.Lithos,56:33-45
    Thompson, A.B., Connolly, J.A.D.,1995. Melting of the continental crust:some thermal and petrologic constraints on anatexis in continental collision zones and other tectonic settings. J. Geophys. Res.100, 15565-15579.
    Tiepolo M., Bottazzi P, Foley S F.,2001. Fractionation of Nb and Ta from Zr and Hf at mantle depth:the role of Titanian pargasite and kaersutite. Journal of Petrology,42:221-232
    Tiepolo, M., Vannucci, R., Oberti, R., Foley, S., Bottazzi, P., Zanetti, A.,2000. Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite:crystalchemical constraints and implications for natural systems. Earth Planet. Sci. Lett.176,185-201.
    Topuz.G,Altherr.R,Schwarz.W.H.2005.Post-collisional plutonism with adakite-like signatures:the Eocene Saraycik granodiorite (Eastern Pontides,Turkey).Contribution to Mineralogy and Petrology,150: 441-455.
    Tribuzio R., Thirlwall M. F., Vannucci R. and Matthew F.,2004, Origin of the gabbro-peridotite association from the Northern Apennine Ophiolites (Italy):Journal of Petrology, v.45, p.1109-1124.
    Tsuchiya N., Suzuki S., Kimura J. I. and Kagami H.,2005, Evidence for slab melt/mantle reaction: petrogenesis of Early Cretaceous and Eocene high-Mg andesites from the Kitakami Mountains, Japan: Lithos,v.79, p.179-206
    Turner S, Sandiford M, Foden J. Some geodynamic and compositional constraints on "post-orogenic" magmatism. Geology,1992,20:931-934.
    Turner, S., Hawkesworth, C., Rogers, N., Bartlett, J., Worthington, T., Hergt, J., Pearce, J., Smith, I.,1997. 238U-230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec island arc. Geochimica et Cosmochimica Acta 61,4855-4884.
    Vernon R H and Paterson S R.2008. How late are K-feldspar megacrysts in granites? Lithos,104:327-336.
    Vernon R H.1984.Microgranitoid enclaves:Globules of hybrid magma quenched in aplutonic enviroment.Nature,304:483.
    Vernon R H.1991.Interpretation of microstructure of microgranitoid enclaves. Dider J and Barbarin B Enclaves and Granite Petrology.Amsterdam:Elsevier,277-292.
    Vernon R. H. and Paterson S. R.,2008, Mesoscopic structures resulting from crystal accumulation and melt movement in granites:Transactions of the Royal Society of Edinburgh:Earth Sciences, v.97, p. 369-381.
    Vernon, R.H.,1986. K-feldspar megacrysts in granites-phenocrysts, not porphyroblasts. Earth-Science Reviews 23,1-63.
    Vernon, R.H.,1990. Crystallization and hybridism in microgranitoid enclave magmas- microstructural evidence. Journal of Geophysical Research 95 (B11),17,849-17,859.
    Vervoort, J.D., Blichert-Toft, J.,1999. Evolution of the depleted mantle:Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta 63,533-556.
    Vervoort, J.D., Patchett, P.J., Soderlund, U., Baker, M.,2004. Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS. Geochemistry Geophysics Geosystems 5, Q11002.
    Wallis, S., Tsuboi, M., Suzuki, K., Fanning, M., Jiang, L., and Tanaka, T.,2005, Role of partial melting in the evolution of the Sulu (eastern China) ultrahigh-pressure terrane:Geology, v.33, p.129-132, doi: 10.1130/G20991.1.
    Wan Y S, Li R W, Wilde S A.2005. UHP metamorphism and exhumation of the Dabie orogen, China: Evidence from SHRIMP dating of zircon and monazite from a UHP granitic gneiss cobble from the Heifei basin. Geochimica et Cosmochimica Acta,69:4333-4348.
    Wang F, Lu X X, Lo C H, Wu F Y, He H Y, Yang LK, Zhu RX.2007. Post-collisional, potassic monzonite-minette complex (Shahewan) in the Qinling Mountains (central China): 40Ar/39Arthermochronology, petrogenesis, and implications for the dynamic setting of the Qinling orogen. Journal of Asian Earth Sciences 31:153-166
    Wang Q,Frank McDermott,Xu J F,Herve Bellon,Zhu Y T.2005.Cenezoic K-rich adakitic volcanic rock in the Hohxil area,northern Tibet:Lower-crustal melting in an intracontinental setting.Geology,33(6):465-468
    Wang Q., Xu J. F., Jian P., Bao Z. W., Zhao Z. H., Li C. W., Xiong X. L., Ma J. L.,,2006, Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China:Implications for the Genesis of Porphyry Copper Mineralization:Journal of Petrology, v.47, p.119-144
    Wang X X., Wang T., Jahn B M., Hu N G., Chen W.2007. Tectonic significance of Late Triassic post-collisional lamprophyre dykes from the Qinling Mountains (China). Geological Magazine,144(4): 1-12
    Wang XC, Li XH, Li WX, Li ZX, Liu Y, Yang YH, Liang XR, Tu XL.2008. The Bikou basalts in the northwestern Yangtze block, South China:Remnants of 820-810 Ma continental flood basalts? Geol Soc Am Bull 120:1478-1492
    Wang, E.C., Meng, Q.R., Burchfiel, B.C., Zhang, G.W.,2003. Mesozoic largescale lateral extrusion, rotation, and uplift of the Tongbai-Dabie Shan belt in east China. Geology 31,307-310.
    Wareham, C D., Millar I. L., Vaughan Alan P. M.,1997, The generation of sodic granite magmas, western Palmer Land, Antarctic Peninsula, Contribution to Mineralogy and Petrology,128(1):81-96
    Watght T E, Wiebe R A, Krogstad E J.(2007). Isotopic evidence for multiple contributions to felsic magma chambers:Gouldsboro Granite, Coastal Maine. Lithos,93:234-247
    Watkins JM, Clemens JD, Treloar PJ.2007. Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6-1.2 GPa. Contrinutions to Mineralogy and Petrology,154:91-110
    Watson E B., and Harison T M,2005, Zircon Thermometer Reveals minimum melting conditions on earliest Earth, Science,308:841-844
    Watson,E B.,Harrison,T.M.1983,Zircon saturation revisited:Temperature and composition effect in a variety of crustal magmas types. Earth and Planetary Science Letters,64:295-304
    Wawrzenitz N., Romer R L., Oberhansli R., Dong S W.2006. Dating of subduction and differential exhumation of UHP rocks from the Central Dabie Complex (E-China):Constraints from microfabrics, Rb-Sr and U-Pb isotope systems. Lithos,89:174-201
    Whitney D L., Teyssier C., Rey P F.2009. The consequences of crustal melting in continental subduction. Lithosphere, 1(6):323-327
    Whitney, D.L., Teyssier, C., and Fayon, A.K.,2004a, Isothermal decompression, partial melting and exhumation of deep continental crust, in Grocott, J., McCaffrey, K.J.W., Taylor, G., and Tikoff, B., eds., Vertical Coupling and Decoupling in the Lithosphere:Geological Society, London, Special Publication 227, p.313-326.
    Wiebe RA, Manon MR, Hawkins DP, McDonough WF.2004. Late-Stage Mafic Injection and Thermal Rejuvenation of the Vinalhaven Granite, Coastal Maine. Journal of Petrology,45(11):2133-2153
    Wiedenbeck,M., Alle, P., Corfu, F., Griffin,W.L.,Meier, F., Oberli, F., Von Quadt, A., Roddick, J.C., Spiegel, W,1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element, and REE analyses. Geostand. Newsl.19,1-23.
    Winkler, H.G.F., Schultes, H.,1982. On the problem of alkali feldspar phenocrysts in granitic rocks. Neues Jahrbuch fur Mineralogie Monatshefte 1982/12, pp.558-564.
    Winther, K.T.,1996. An experimentally based model for the origin of tonalitic and trondhjemitic melts. Chem. Geol.127,43-59.
    Wolf M. B. and Wyllie P.J.,1994, Dehydration-melting of amphibolite at 10 kbar:the effects of temperature and time:Contributions to Mineralogy and Petrology, v.115, p.369-383.
    Wood, B.J., Turner, S.P.,2009. Origin of primitive high-Mg andesite:constraints from natural examples and experiments. Earth and Planetary Science Letters 283,59-66.
    Woodhead, J., Hergt, J., Shelley, M., Eggins, S., Kemp, R.,2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem. Geol.209,121-135.
    Wu R X, Zheng Y F, Wu Y B, et al. Reworking of juvenile crust:element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Res,2006,146:179-212
    Wu Y B, Gao S, Zhang H F, et al. Timing of UHP metamorphism in the Hong'an area, western Dabie Mountains, China:Evidence from zircon U-Pb age, trace element and Hf isotope composition. Contrib Mineral Petrol,2008,155:123-133
    Wu Y B, Gao S, Zhang H F, et al. U-Pb age, trace-element, and Hf-isotope composition of zircons in a quartz vein from eclogite in the western Dabie Mountains:Constraints on fluid flow during early exhumation of ultra-high pressure rock. Am Mineral,2009,94:303-312[doi]
    Wu, F.Y., Yang, Y.H., Xie, L.W., Yang, J.H., Xu, P.,2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol.234,105-126.
    Wu, Y.-B., Hanchar, J.M., Gao, S., Sylvester, P.J., Tubrett, M., Qiu, H.N., Wijbrans, J.R., Brouwer, F.M., Yang, S.H., Yang, Q.J., Liu, Y.S., Yuan, H.L.,2009. Age and nature of eclogites in the Huwan shear zone, and the multi-stage evolution of the Qinling-Dabie-Sulu orogen, central China. Earth and Planetary Science Letters 277,345-354.
    Wu, Y.-B., Zheng, Y.-F., Zhao, Z.-F., Gong, B., Liu, X.M., Wu, F.-Y.,2006. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites fromthe Dabie orogen. Geochimica et Cosmochimica Acta 70,3743-3761.
    Wyborn D., Chappell B.W. and James M.,2001, Examples of convective fractionation in high temperature granites from the Lachlan Fold Belt:Australian Journal of Earth Science, v.48, p.531-541
    Xiao, L., Zhang, H. F., Clemens, J. D., et al.,2007. Late Triassic Granitoids of the Eastern Margin of the Tibetan Plateau:Geochronology, Petrogenesis and Implications for Tectonic Evolution. Lithos,96: 436-452
    Xiong, X.-L.,2006. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology 34,945-948.
    Xiong, X.L., Adam, J., Green, T.H.,2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt:implications for TTG genesis. Chem. Geol.218,339-359.
    Xiong, X.L., Xia, B., Xu, J.F., Niu, H.C., Xiao, W.S.,2006. Na depletion in modern adakites via melt/rock reaction within the sub-arc mantle. Chemical Geology 229,273-292.
    Xu J F, Shinjio R, Defant M.J, Wang Qiang, Rapp R.P.2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:partial melting of delaminated lower continental crust? Geology 32:1111-1114
    Xu J. F. and Castillo P. R.,2004, Geochemical and Nd-Pb isotopic characteristics of the Tethyan asthenosphere:implications for the origin of the Indian Ocean mantle domain:Tectonophysics, v.393, p.9-27.
    Xu J. F., Castillo P. R., Li X. H., Yu X. Y., Zhang B. R., Han Y. W.,2002, MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, central China:implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd mantle component in the Indian Ocean: Earth and Planetary Science Letters, v.198, p.323-337
    Yamasaki T, Gernigon L.2009. Styles of lithospheric extension controlled by underplated mafic bodies. Tectonophysics,468:169-184
    Yan, Q.R., Hanson, A.D., Wang, Z.Q., Druschke, P.A. and Yan, Z.,2004. Neoproterozoic subduction and rifting on the northern margin of the Yangtze plate, China:implications for Rodinia reconstruction. International Geology Review,46:817-832.
    Yan, Q.R., Wang, Z.Q., Yan, Z., Hanson, A.D., Drushke, P.A., Liu, D.Y., Song, B., Jian, P., Wang, T. and Jiang, C.F.,2003. SHRIMP age and Geochemistry of the Bikou volcanic terrane:implications for Neoproterozoic tectonics on the northern margin of the Yangtze craton. Acta Geological Sinica,77: 497-508.
    Yang J H, Wu F Y, Chung S L, et al. Petrogenesis of Early Cretaceous intrusions in the Sulu ultrahigh-pressure orogenic belt, east China and their relationship to lithospheric thinning. Chem Geol, 2005,222:200-231 [doi]
    Yang J H,'Wu F Y, Wilde S A, Xie L W, Yang Y H, Liu X M.2007.Tracing magma mixing in granite genesis: in situ U-Pb dating and Hf-isotopes analysis of zircons.Contributions to Mineralogy and Petrology,153:177-190
    Yin A. and Nie S.,1993, An indentation model for the North and South China collision and the development of the Tanlu and Honan fault systems, eastern Asia:Tectonics, v.12, p.801-813.
    Yin Q,Jagoutz E and Kroner A.1991. Precambrian (?) blueschist/coesite-bearing eclogite belt in central China. Terra Abstract.3:85-86
    Yogodzinski G. M., Kay R. W., Volynets O. N., Koloskov A.V. and Kay S. M.,1995, Magnesian andesite in the western Aleutian Komandorsky region:implications for slab melting and processes in the mantle wedge:Geological Society of American Bulletin, v.505-519.
    Yuan H. L., Gao S., Dai M. N., Zong C. L., Gunther D., Fontaine G. H., Liu X. M., Diwu C. R.,2008, Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS:Chemical Geology, v.247, 100-118
    Yuan H. L., Gao S., Liu X. M., Li H. M., Gunther D., Wu F. Y,2004, Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry: Geo-standard Newsletters, v.28, p.353-370
    Zak J., Paterson S. R. amd Memeti V.,2007, Four magmatic fabrics in theTuolumne batholith, central Sierra Nevada, Califormia (USA):Implications for interpreting fabric patterns in plutons and evolution of magma chambers in the upper crust:Geological Society of American Bulletin, v.119, p.184-201.
    Zhang B. R., Luo T., Gao S., Ouyang J., Chen D., Ma Z., Han Y., and Gu X.,1994, Geochemical study of the lithosphere, tectonism and metallogenesis in the Qinling-Dabieshan region:Wuhan, Chinese University of Geoscience Press, p.110-122 (in Chinese with English abstract).
    Zhang H. F., Zhang L., Harris N., Jin L. L.,2006, U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Graze fold belt, eastern Tibetan Plateau:Constraints on petrogenesis and tectonic evolution of the basement:Contributions to Mineralogy and Petrology, v.152, p.75-88
    Zhang, H. F., Parrish, R., Zhang, L., et al.,2007. A-Type Granite and Adakitic Magmatism Association in Songpan-Garze Fold Belt, Eastern Tibetan Plateau:Implication for Lithospheric Delamination. Lithos, 97:323-335
    Zhao, J.H and Zhou, M.-F. 2009. Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China. Lithos,107:152-168
    Zhao, J.H., Zhou, M.-F. 2008. Neoproterozoic adakitic plutons in the northern margin of the Yangtze Block, China:partial melting of a thickened lower crust and implications for secular crustal evolution. Lithos 104,231-248,
    Zheng Y F, Zhao Z F, Wu Y B, et al.2006. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chem Geol,231:135-158
    Zheng Y. F.,2008, A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt:Chinese Science Bulletin, v.53, p.3081-3104
    Zheng Y. F.,2009, Fluid regime in continental subduction zones:petrological insights from ultrahigh-pressure metamorphic rocks:Journal of Geological Society of London, v.166, p.763-782
    Zheng Y. F., Fu B., Gong B. and Li L.,2003, Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China:implications for geodynamics and fluid regime:Earth Science Review, v.62, p.105-161.
    Zheng Y. F., Gao T. S., Wu Y. B., Gong B., Liu X. M.,2007, Fluid flow during exhumation of deeply subducted continental crust:zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite:Journal of Metamorphic Geology, v.25, p.267-283
    Zheng Y. F., Wu R. X., Wu Y. B., Zhang S. B., Yuan H. L., Wu F. Y.,2008, Rift melting of juvenile arc-derived crust:geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China:Precambrian Research, v.136, p.351-383
    Zheng Y. F., Zhang S. B., Zhao Z. F., Wu Y. B., Li X., Li Z., Wu F. Y.,2007, Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:Implications for growth and reworking of continental crust:Lithos, v.96, p.127-150.
    Zhong, Z., Suo, S., You, Z., Zhang, H., and Zhou, H.,2001, Major constituents of the Dabie collisional orogenic belt and partial melting in the ultrahigh-pressure unit:International Geology Review, v.43, p. 226-236, doi:10.1080/00206810109465010.
    Zhu L M, Ding Z J, Y S Z,2009. Ore-forming event and geodynamic setting of molybdenum deposit at Wenquan in Gansu Province, Western Qinling. Chinese Science Bulletin,54(12).doi: 10.1007/s11434-009-0094-6
    Zindle A. and Hart S. R.,1986, Chemical geodynanics. Annu:Annual Review in Earth and Planetary Science Letters, v.14, p.493-573.
    陈丹玲,刘良,孙勇,张安达,柳小明,罗金海.2004.北秦岭松树沟高压基性麻粒岩的锆石LA-ICP MSU-Pb定年及其地质意义.科学通报,49(18):1901-1908
    陈亮,孙勇,裴先治,高明,冯涛,张宗清,陈文.2001.德尔尼蛇绿岩40Ar-39Ar年龄:青藏最北端古特提斯洋盆存在和延展的证据.科学通报,46(5):424-426.
    陈强,陈能松,王勤燕,孙敏,王新宇,李晓彦,舒桂明.2006.秦岭造山带秦岭岩群独居石电子探针化学年龄:晚泛非期变质证据?科学通报,51(21):2512-2516
    陈智樑,陈世瑜.1987.扬子西缘地质构造演化.重庆:重庆出版社.
    崔建堂,赵长缨,王炬川.1999.南秦岭东江口,柞水岩体岩石谱系单位划分及演化.陕西地质,17(2):8-16
    丁振举,姚书振,周宗桂,方金云.1998.碧口地体中元古代构造属性.大地构造与成矿,22(3):219-225.
    董申保.1999.Some discussion on the recent development of granite petrogenesis.董申保文集,246-235,北京:北京大学出版社.
    董云鹏,杨钊,张国伟,赵霞,徐静刚,姚安平.2008.西秦岭关子镇蛇绿岩地球化学及其大地构造意义.地质学报,82(9):1186-1194
    董云鹏,张国伟,杨钊,赵霞,马海勇,姚安平.2007.西秦岭武山E-MORB型蛇绿岩及其相关火山岩地球化学特征.中国科学,37(增刊Ⅰ):199-208.
    高山,张本仁,金振民,H.Kern.1999.秦岭-大别造山带下地壳拆沉作用.中国科学(D辑),29(6):532~540.
    郭安林,张国伟,孙延贵,郑健康,刘烨,王建其.2006.阿尼玛卿蛇绿岩带OIB和MORB的地球化学及空间分布特征:玛积雪山古洋脊热点构造证据.中国科学,36(7):618-629
    郭敬辉,陈福坤,张晓曼,等.苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程:锆石U-Pb年代学.岩石学报,2005,21:1281—1301
    弓虎军,朱赖民,孙博亚,李彝,郭波,王建其.2009a.南秦岭地体东江口花岗岩及其基性包体的锆石U-Pb年龄和Hf同位素组成.岩石学报,25(11):3029-3042
    弓虎军,朱赖民,孙博亚,李犇,郭波.2009b.南秦岭沙河湾、曹坪和柞水岩体锆石U-Pb年龄、Hf同位素组成特征及其地质意义.岩石学报,25(2):248-264
    郝杰,刘小汉,王二七.2005.关于大陆地壳消亡与再生循环过程的新认识-大别山新的区域地质资料和榴辉岩专题研究成果提出的启示.岩石学报,21(6):1677-1686.
    胡健民,孟庆任,石玉若,渠洪杰.2005.松潘—甘孜地体内花岗岩锆石SHRIMP U-Pb定年及其构造意义.岩石学报,21(3):867-880
    霍勤知,曾俊杰,董玉书.2002.扬子板块西北缘碧口增生体的形成与演化。甘肃地质学报,11(2):17—23。
    金维浚,张旗,何登发,贾秀勤.2005.西秦岭埃达克岩的SHRIMP定年及其构造意义.岩石学报,21(3):959-966
    赖绍聪,李永飞,秦江锋.2007.碧口群西段董家河蛇绿岩地球化学及LA-ICP-MS锆石U-Pb定年.中国科学(D辑),37(增刊):262-270
    赖绍聪,刘池阳.2001.青藏高原北羌塘榴辉岩质下地壳及富集型地幔源区.岩石学报,17(3):459-468
    赖绍聪,刘池阳.S.Y.O'Reilly.2001.北羌塘新第三世高钾钙碱性火山岩的成因及其大陆动力学意义.中国科学(D辑),2001,31(增刊):34—42
    赖绍聪,张国伟,董云鹏,裴先治,陈亮.2003a.秦岭-大别勉略构造带蛇绿岩与相关火山岩的性质及其时空分布.中国科学(D辑),33(12):1174-1183
    赖绍聪,张国伟,裴先治,杨海峰.2003b.南秦岭康县-琵琶寺-南坪构造混杂带蛇绿岩与洋岛火山岩地球化学及其大地构造意义.中国科学(D辑),33(1):10-19
    赖绍聪,张国伟,杨瑞英.2000.南秦岭巴山弧两河-饶峰-五里坝岛弧岩浆带的厘定及其大地构造意义.中国科学,30:53-63
    赖绍聪,张国伟,杨永成.1997.南秦岭勉县—略阳结合带变质火山岩岩石地球化学特征.岩石学报,13(4):563-573
    赖绍聪.2003.青藏高原新生代埃达克质岩的厘定及其意义.地学前缘(中国地质大学,北京),10(4):407-415
    李昌年.2002.岩浆混合作用及其研究评述 地质科技情报,21(4):49-54
    李齐 陈文寄,马宝林,王清晨,孙敏.1995.华北扬子板块碰撞后热演化史的初步研究.地震地质,17(3):193-198
    李胜荣,孙丽,张华锋.2006.西藏曲水碰撞花岗岩的混合成因:来自成因矿物学证据.岩石学报,22(4)884-894.
    李曙光,黄方,李晖.2001.大别-苏鲁造山带碰撞后的岩石圈拆离.科学通报,46(17):1487-1491
    李曙光,孙卫东,张国伟,陈家义,杨永成.1996.南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学:古生代洋盆及其闭合的证据.中国科学,D辑,26(3):223~230.
    李曙光.2004.大别山超高压变质岩折返机制与华北-华南陆块碰撞过程.地学前缘,11(3):63-70.
    李献华,李武显,王选策,李秋立,刘宇,唐国强.2009.幔源岩浆在南岭燕山早期花岗岩形成过程中的作用:锆石原位Hf-O同位素制约.中国科学,39(7):872-887.
    李永飞,赖绍聪,秦江锋,刘鑫,王娟.2007.碧口火山岩系地球化学特征及其Sr-Nd-Pb同位素组成——晋宁期扬子北缘裂解的证据.中国科学(D辑),37(增刊Ⅰ):295-306
    李永军,王冉,李注苍,刘志武,李金保.2003.西秦岭糜署岭岩体镁铁质微粒包体的特征及成因.地质通报,22(7):506-512
    李佐臣,裴先治,丁仨平,刘战庆,王飞,李高阳,李瑞保,李夫杰.2007.川西北平武地区南—里花岗闪长岩锆石U-Pb定年及其地质意义.中国地质,34(6):1003-1012
    凌文黎,任邦方,段瑞春,柳小明,毛新武,彭练红,刘早学,程建萍,杨红梅,2007,南秦岭武当山群、耀岭河群及基性侵入岩群锆石U-Pb同位素年代学及其地质意义,科学通报,52(12):1445-1456
    刘福来,薛怀民,刘平华.2009.苏鲁超高压岩石部分熔融时间的准确限定:来自含黑云母花岗岩中锆石U-Pb定年、REE和Lu-Hf同位素的证据.岩石学报,25(12):1039-1055
    刘福来,薛怀民,许志琴,梁风华,Gerdes A.2006.大别超高压变质岩的进变质、超高压和退变质时代的准确限定:以双河大理岩中榴辉岩锆石SHRIMP U-Pb定年为例.岩石学报,22(7):1761-1778
    刘铁庚,叶霖.1999.碧口群形成的地质构造环境探讨.矿物学报,19(4):446-451
    刘哗,柳小明,胡兆初,第五春荣,袁洪林,高山.2007. ICP - MS测定地质样品中37个元素的准确度和长期稳定性分析,岩石学报,23(5):1203-1210
    卢欣祥,尉向东,肖庆辉,张宗清,李惠民,王卫,1999.秦岭环斑花岗岩的年代学研究及其意义,高校地质学报,5:372—377.
    路凤香,王春阳,郑建平,张瑞生.2003.秦岭北界岩石圈组成及结构—河南明港地区深源捕虏体研究.中国科学(D辑):33(1):1-9.
    裴先治,丁仨平,胡波,李勇,张国伟,郭军锋.2004.西秦岭天水地区关子镇蛇绿岩的厘定及其地质意义.地质通报,23(12):1202~1208.
    裴先治.1989.南秦岭碧口群岩石组合特征极其构造意义.西安地质学院学报,5 11(2):46-56.
    裴先治.2001.勉略-阿尼玛卿构造带形成演化与动力学特征.西北大学博士论文
    秦克令,何世平,宋述光.1992.碧口地体同位素年代学及其意义.西北地质科学.,13(2):97-109.
    秦克令,金浩甲,赵东宏.1994.碧口岛弧带构造演化与成矿.河南地质.,12(4):304-317.
    时毓,于津海,徐夕生,邱检生,陈立辉.2009.秦岭造山带东段秦岭岩群的年代学和地球化学研究.岩石学报,25(10):2651-2670
    宋立军,陈隽璐,张英利,刘池洋,吴冲龙,张小浩.2010.鄂尔多斯盆地西南部汭水河上三叠统碎屑锆石U-Pb年代学特征及其地质意义.地质学报,84(3):370-386
    孙卫东,李曙光,Chen Y D,李育敬.2000.南秦岭花岗岩锆石U-Pb定年及其地质意义.地球化学,29(3):209~216.
    汤军,赵鹏大,陈建平,历青,勒秀菊,冯春.2002.龙门山碧口断块的形成及其空间归位研究.中国地质,29(3):286-290.
    陶洪祥,王全庆,高肇英等.1994.扬子板块北缘构造演化历史.西安:西北大学出版社,103-106.
    汪相,Griffin, W. L.,王志成,周新民,汪传胜.2003.湖南丫江桥花岗岩中锆石的Hf同位素地球化学,科学通报,48:379-382.
    王德滋,周新民,徐夕生,等.1992.微粒花岗岩包体的成因.桂林冶金地质学院学报,(3):235-240
    王二七,孟庆仁,陈智樑,陈良忠.2001.龙门山断裂带印支期左旋走滑运动及其大地构造成因.地学前缘(中国地质大学.北京),8(2):375-384.
    王非,朱日祥,李齐,贺怀宇,罗清华,卢欣祥,桑海清,王英兰.2004.秦岭造山带的差异隆升特征—花岗岩40Ar/39Ar年代学研究的证据.地学前缘,11(4):445-459
    王涛,王宗起,闫全人,闫臻,卢海峰,李秋根.2006.西秦岭南缘康县!留坝一带白水江群碎屑岩的地球化学特征及构造背景.地质通报,25(6):730-736
    王晓霞,王涛,卢欣祥,等.2003,北秦岭老君山、秦岭梁环斑结构花岗岩及构造环境—一种可能的造山带型环斑花岗岩.岩石学报,19(4):650~660
    王晓霞,王涛,Himari Happala,等.2005,秦岭环斑结构花岗岩中暗色包体的岩浆混合成因及岩石学意义—元素和Nd、Sr同位素地球化学证据.岩石学报,21(3):935~946
    王晓霞,王涛,卢欣祥,等.2002.北秦岭老君山、秦岭梁环斑结构花岗岩岩浆混合的岩相学证据及其意义. 地质通报,21(8~9):523~529.
    魏春景,杨崇辉,张寿广,李荣社.1998.南秦岭佛坪地区麻粒岩的发现及其地质意义科学通报,43(9):982-985
    吴福元,葛文春,孙德有.2002.埃达克质岩的概念,识别标志及其地质意义.见:肖庆辉,邓晋福,马大铨等.花岗岩研究思维与方法.北京:地质出版社,172-191
    吴福元,李献华,杨进辉,郑永飞.2007.花岗岩成因研究的若干问题.岩石学报,23(6):1217-1238.
    吴福元,李献华,郑永飞,高山,2007, Lu-Hf同位素体系及其岩石学应用.岩石学报,23(2):185-220
    夏林圻,夏祖春,李向民,马中平,徐学义.2008.南秦岭东段耀岭河群、郧西群、武当山群火山岩和基性岩墙群成因.西北地质,41(3):1-29
    夏林圻,夏祖春,马中平,徐学义,李向民.2009.南秦岭中段西乡群火山岩岩石成因.西北地质,42(2):1-37
    夏林圻,夏祖春,任有祥.1991.祁连、秦岭山系海相火山岩,中国地质大学出版社,1-304
    夏林圻,夏祖春,徐学义,李向民,马中平.2007.碧口群火山岩岩石成因研究.地学前缘,14(3):85-101
    肖庆辉,邢作云,张昱,伍光英,童劲松.2003.当代花岗岩研究的几个重要前沿.地学前缘,10(3):221-229
    熊小林,韩江伟,吴金花.2007.变质玄武岩体系相平衡及矿物-熔体微量元素分配:限定TTG/埃达克岩形成条件和大陆壳生长模型.地学前缘,14(2):149-158
    徐学义,陈隽璐,李向民,马中平,王洪亮,李平,李婷.2009a.扬子地台北缘白勉峡组和三湾组火山岩形成的构造环境及岩石成因的地球化学约束.地质学报,83(11):1703-1717
    徐学义,夏林圻,陈隽璐,马中平,李向民,夏祖春,王洪亮.2009b.扬子地块北缘西乡群孙家河组火山岩的形成时代及元素地球化学研究.岩石学报,25(12):3309-3326
    徐学义,陈隽璐,李向民,马中平,王洪亮,夏林圻,夏祖春,李平.2010.西乡群三郎铺组和大石沟组火山岩U-Pb定年及岩石成因研究.岩石学报,26(2):617-632
    闫全人,王宗起,Ander D.Hanson,闫臻,Peter A.Drushke,王涛,刘敦一,宋彪,姜春发.2004.扬子板块西北缘碧口群火山岩系的SHRIMP年代,Sr-Nd-Pb同位素特征及其意义.岩石矿物学杂志23(1):1-11.
    闫全人,王宗起,闫臻,陈隽璐,向忠金,王涛,张宏远.2009.秦岭岩群中两类斜长角闪岩的性质和时代及其地质意义.岩石学报,25(9):2177-2194
    闫臻,王宗起,王涛,闫全人,肖文交,李继亮,韩芳林,陈隽璐.2007.秦岭造山带泥盆系形成的构造环境:来自碎屑岩组成和地球化学方面的约束.岩石学报,23(5):1023-1042
    杨进辉,吴福元.2009.华北东部三叠纪岩浆作用与克拉通破坏.中国科学(D辑),39(7):910-921
    杨军录,冯益民.1999.西秦岭吴家山隆起的隆升过程及时代.西北地质,32(4):1-4
    杨钊,董云鹏,柳小明,张津海.2006.西秦岭关子镇蛇绿岩锆石LA-ICP-MS定年研究.地质通报,25(11):1321—1325
    张本仁,高山,张宏飞,韩吟文.2002.秦岭造山带地球化学.北京:科学出版社,125~132.
    张成立,周鼎武,金海龙,韩松,刘鹰宇.1999.武当地块基性岩墙群及耀岭河群基性火山岩的Sr-Nd-Pb-O同位素研究.岩石学报,15(3):430-437
    张成立,高山,袁洪林,张国伟,晏云翔,罗静兰,罗金海.2007.南秦岭早古生代地幔性质:来自超 镁铁质、镁铁质岩脉及火山岩的Sr-Nd-Pb同位素数据.中国科学(D辑):37(7):857-865.
    张成立,王涛,王晓霞.2008.秦岭造山带早中生代花岗岩成因及其构造环境.高校地质学报,14(3):304-316
    张成立,张国伟,晏云翔,王煜.2005.南秦岭勉略带北光头山花岗岩岩体群的成因及其构造意义.岩石学报,21(3):711~720.
    张成立,王晓霞,王涛,戴梦宁.2009.东秦岭沙河湾岩体成因——来自锆石U-Pb定年及其Hf同位素的证据.西北大学学报(自然科学版),39(3):453-465
    张帆,刘树文,李秋根,王宗起,韩以贵,杨恺,吴峰辉.2009.秦岭西坝花岗岩LA-ICP MS锆石U-Pb年代学及其地质意义.北京大学学报(自然科学版),45(5):833-840
    张国伟,Kroner,周鼎武等,1991.秦岭造山带岩石圈组成、结构和演化特征.见:秦岭造山带学术讨论会论文选集(叶连俊,钱祥麟,张国伟主编),西安:西北大学出版社,121-138
    张国伟,程顺有,郭安林,董云鹏,赖绍聪,姚安平.2004.秦岭-大别中央造山系南缘勉略古缝合带的再认识----兼论中国大陆主体的拼合.地质通报,23(9-10):846-853
    张国伟,张本仁,袁学诚,陈家义.2001.秦岭造山带与大陆动力学.北京:科学出版社,1~855.
    张国伟,张宗清,董云鹏,1995a.秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义.岩石学报,11(2):101-114
    张国伟,孟庆任,赖少聪,1995b.秦岭造山带的结构与构造.中国科学(B辑),25(9):994-1003
    张宏飞,勒兰兰,张利,Nigel Harris,周炼,胡圣虹,张本仁.2005.西秦岭花岗岩类地球化学和Pb-Sr-Nd同位素组成及其构造属性的限制.中国科学(D辑):35(10):914-926
    张宏飞,肖龙,张利,袁洪林,靳兰兰.2007,扬子陆块西北缘碧口块体印支期花岗岩类地球化学和Pb-Sr-Nd同位素组成:限制岩石成因及其动力学背景,中国科学,37(4):460-470
    张宏飞,张本仁,赵志丹,等.1996.东秦岭商丹带陆壳俯冲碰撞—花岗质岩浆源区同位素示踪证据.中国科学(D辑),26(3):231~236
    张宏飞,张本仁,赵志丹等,1997a.东秦岭造山带花岗岩类长石铅同位素组成及其构造意义.地质学报,71(2):142-149
    张宏飞,张本仁,凌文黎等,1997b.南秦岭新元古代地壳增生事件:花岗质岩石钕同位素示踪.地球化学,26(5):16-24
    张宏飞,欧阳建平,凌文黎等,1997c.南秦岭宁陕地区花岗岩类Pb、Sr、Nd同位素组成及其深部地质信息.岩石矿物学杂志,16(1):20-32
    张静,陈衍景,舒桂明,张复新,李超.2002.陕西西南部秦岭梁花岗岩体的矿物成分研究和相关问题讨论,中国科学(D辑),32(2002),pp.114—120.
    张旗,潘国强,李承东,金惟俊,贾秀勤.2008.花岗岩研究的误区——关于花岗岩研究的思考之五.岩石学报,24(10):2212-2218.
    张旗,潘国强,李承东,金惟俊,贾秀勤.2007a.花岗岩混合问题:与玄武岩对比的启示—关于花岗岩研究的思考之一.岩石学报,23(5):1141-1152
    张旗,潘国强,李承东,金惟俊,贾秀勤.2007b.花岗岩结晶分离作用问题—关于花岗岩研究的思考之二.岩石学报,23(6):1239-1251
    张旗,钱青,翟明国,金惟浚,王焰,简平,王元龙.2005. Sanukite(赞岐岩)的地球化学特征、成因及其 地球动力学意义.岩石矿物学杂志,24(2):117-125
    张旗,王焰,钱青,杨进辉,王元龙,赵太平,郭光军.2001.中国东部埃达克岩的特征及其构造成矿意义.岩石学报,17(2):236-244
    张宗清,宋彪,唐索寒,张寿广,杨永成,王进辉.2004.秦岭佛坪变质结晶岩系年龄和物质组成特征——SHRIMP锆英石年代学和全岩Sm-Nd年代学数据.中国地质,3 1(2):161-168.
    张宗清,张国伟,付国民,唐索寒,宋彪.1996.秦岭变质地层年龄及其构造意义.中国科学D辑26(3):216-222
    张宗清,张国伟,唐索寒,卢欣祥.1999.秦岭沙河湾奥长环斑花岗岩的年龄及其对秦岭造山带主造山期结束时间的限制,科学通报,44:981—984.
    赵太平.2001对秦岭奥长环斑花岗岩的质疑.地质论评47:487—491
    赵子福,郑永飞.2009.俯冲大陆岩石圈重熔:大别-苏鲁造山带中生代岩浆岩成因.中国科学(D辑),39(7):888-909
    郑德文,张培震,万景林,李大明,王非,袁道阳,张广泉.2004.西秦岭北缘中生代构造活动的40Ar/39Ar、FT热年代学证据.岩石学报,20(3):697~703
    郑永飞,2004.深俯冲大陆地壳折返过程中的流体活动.科学通报49,917-929.
    郑永飞,陈福坤,龚冰,赵子福.2003.大别-苏鲁造山带超高压变质原岩的性质:锆石氧同位素和U-Pb年龄数据.科学通报,48(2):110-119
    郑永飞,张少兵.2007.华南前寒武世大陆地壳的形成和演化.科学通报,52(1):1-10
    郑永飞.2008.超高压变质与大陆碰撞研究进展:以大别-苏鲁造山带为例.科学通报,53(18):2129-2152
    朱赖民,张国伟,李犇,郭波,弓虎军,康磊,吕拾零.2009.马鞍桥金矿床中香沟岩体锆石U-Pb定年、地球化学及其成矿关系的研究.中国科学(D辑).39(6):700-720.
    朱茂旭,骆庭川,张宏飞.1998.南秦岭东江口岩体群Pb、Sr和Nd同位素地球化学特征及其对物源的制约.地质地球化学.1:30—36
    祝禧艳,陈福坤,杨力,王伟,Hieu Pham Trung,苗来成,张福勤.2009.豫西地区秦岭造山带武当群Nd-Hf同位素组成及其物源特征.岩石学报,25(11):3017-3028.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700