用户名: 密码: 验证码:
基于IEEE 802.16 BWA系统的带宽请求和许可机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
IEEE 802.16协议定义的宽带无线接入系统(BWA, Broadband Wireless Access System)具有组网安装维护方便,运营价格低廉,面向连接且保证服务质量的特点,正在成为未来网络接入技术的主导方向。本文对IEEE 802.16 BWA系统基于竞争的带宽资源分配机制及冲突解决机制、带宽申请的许可机制进行了分析研究,提出一些新的算法,具体工作如下:
     1、IEEE 802.16的子站SS向基站BS发送数据前需申请带宽,申请的方式有预留方式和竞争方式。当SS采用竞争方式共用竞争时隙发送带宽申请时,冲突将不可避免。IEEE 802.16协议并未指出具体的分配机制。相关的带宽分配算法大多假设BS能监测到要发送带宽请求SS的数量,然而实际中很难实现。本文提出一种在竞争的轮询机制中,自适应分组的组播带宽分配算法。首次提出在带宽分配机制中,引入网络流量分析方法和自适应分组算法。首先对网络流量的自相似、长相关、突发性进行分析,并结合不同类型业务流的特性参数,构成线性半参数回归模型,计算下一个传输周期中所有不活跃SS发送带宽申请的概率。然后以此概率为依据,把不同概率的SS自适应分组,分组之间采用虚拟令牌环技术。仿真结果表明,该算法能有效减少竞争冲突发生,同时避免浪费大量空闲时隙。
     2、完整的冲突解决机制,不仅包括冲突前的资源分配机制,还包括冲突后的解决方法。标准定义的冲突的解决方法是截短的二进制指数后退算法,通过扩大重传后退时间窗(或称:退避时间窗)的大小,降低冲突发生。由于二进制指数后退算法的后退窗口会随着冲突次数的增加而迅速增大,在申请带宽SS数量较小时,会造成部分竞争时隙浪费。已有的改进算法大多是动态更新后退时间窗口方式,如乘法增加线性减少算法(MILD),快速冲突解决算法(FCR)等。因为不同业务流的容许延迟不同,而且多次冲突的SS应授予较高竞争优先级,以满足公平性要求。因此本文提出一种融合优先级和公平性的更新后退时间窗的冲突解决算法。该算法提出SS根据冲突次数和申请带宽相应连接的优先级,采用模糊控制方式定义下一周期带宽申请的后退时间窗的大小和起始窗口值,以提高优先级较高业务的服务质量,并保证子站申请带宽的公平性。仿真结果表明算法对系统性能有一定提高。
     3、IEEE 802.16并未定义基站BS侧和子站SS侧的带宽许可机制(或称调度机制),以保证不同类型业务的服务质量,然而这些调度方式对网络性能有着重要影响。BS的调度要根据请求信息给SS分配带宽,应考虑不同SS的服务质量(QoS)需求和公平性问题;SS的调度要为不同业务流分配由BS授权的带宽。关于调度算法的研究较为充分,考虑到传输信道的信噪比直接影响SS物理层的调制方式和MAC层传输分组大小,本文提出一种跨层调度算法。该算法采用Nakagami缓慢变化的时变信道模型, BS根据信道信噪比(SNR)决定某一时刻允许接入带宽资源的总量,并为每个活跃的SS分配带宽;SS根据SNR决定自适应编码调制方式,并根据自身不同业务流的服务质量要求,二次分配BS为其分配的带宽。仿真结果表明,算法在时变信道,对不同业务流能满足服务质量的要求。
     本文的创新点包括:
     1、提出一种组播轮询机制中,针对网络中不活跃站点突发数据的概率估算方法。通过对网络流量特性分析,根据自相似性计算线性相关参数,根据不同业务流的流量特征确定非线性相关参数,采用线性半参数回归模型估算不活跃SS下一个传输周期的突发带宽申请概率。
     2、提出一种在竞争的组播轮询机制中自适应的带宽分配算法。以不活跃站点的突发带宽请求概率为依据,把SS自适应分配到不同的分组,分组间采用虚拟令牌环技术轮询。该算法能有效减少竞争冲突发生,同时避免浪费大量空闲时隙。
     3、提出一种融合优先级和公平性的更新后退时间窗的冲突解决算法。该算法提出SS根据冲突次数和申请带宽相应连接的优先级,采用模糊控制方式定义下一周期带宽申请的后退时间窗的大小和起始窗口值,提高优先级较高业务的服务质量,保证子站申请带宽的公平性。
     4、提出一种BS和SS侧的跨层调度算法。采用Nakagami缓慢变化的时变信道模型,BS根据信道信噪比(SNR)允许接入带宽资源的总量;SS根据SNR决定自适应编码调制方式,并根据自身不同业务流的服务质量要求,二次分配BS为其分配的带宽。该算法能在时变信道满足不同业务流的服务质量要求。
The IEEE 802.16 BWA (Broadband Wireless Access) system has many advantages, such as easy installation and maintenance, inexpensive operation, connection-oriented service and quality of service guarantee. It is becoming the dominant network access technology in the future.In this thesis, analytic and researching contributions to bandwidth allocation, collision resolution, and bandwidth admission control are shown for the IEEE 802.16 BWA system.The details are as follows.
     1. According to the IEEE 802.16 standard, substations (SSs) should reserve the required bandwidth before transmitting data packets to the base station (BS). When the SSs share the transmission opportunities to transmit requests, the collision will be inevitable. IEEE 802.16 protocol does not point out the operational mechanism. Most bandwidth allocation algorithms suppose that BS can estimate the number of active SSs,which is not easy in real wireless network. This paper presents a multicast polling mechanism based on the adaptive grouping algorithm. This mechanism brings network traffic analysis and adaptive grouping algorithm in the multicast polling. Firstly, the traffic characteristics such as self-similar, long relative,burst character are analyzed in this mechanism. Secondly, a linear semi-parametric regression model is constituted to evaluate the requesting probability of the non-active SSs.Then the adaptive grouping algorithm based on the virtual Token Ring technology is proposed that operates with the evaluated requesting probability. Simulation results indicate that this polling algorithm can effectively decrease the number of the idle slots and collision slots.
     2. A completed contention resolution mechanism includes a pre-contention resource allocation and post-contention collision resolution. The mandatory method of contention resolution that shall be supported by the 802.16 standard is based on a truncated binary exponential backoff algorithm, with the initial backoff window and the maximum backoff window controlled by the BS. With the number of conflicts increasing, the backoff window size is growing rapidly in the algorithm. At the same time, the number of SSs which transmit the bandwidth request relatively keeps the normal level, and there will cause a lot of waste competitive slots. Most algorithm promotion is focus on tuning bandwidth size, for example,MILD algorithm and FCR algorithm. Because of fairness, different types of service flows have an optimal allocation on allowed delay, and retransmitted times of SSs. This article presents a hybrid backoff algorithm which considers both the priorities and fairness. The type of service flow determines the priority and the more times of retransmission hav the higher priority because of fairness. The maximum backoff window and the initial backoff window is controlled based on the fuzzy control method in the next competitive cycle for bandwidth in order to improve high-priority services' quality and ensure fairness between different SS.
     3. IEEE 802.16 protocol does not define the scheduling methods to guarantee the quality of different services in the BS and SSs.Because that channel quality has a great influence on the modulation and coding scheme in the PHY layer and the transmitting packet size in the MAC layer, a cross-layer scheduling algorithm is proposed in this thesis for the slow time-varying channel in the BWA system. The algorithm adopts the Nakagami channel model. The BS estimates the total allowed bandwidth resources and allocates bandwidth for each active SS according to the signal to noise (SNR) of the channel; SSs again allocate the authored bandwidth according to the QoS of different connections and the adaptive coded modulation and coding methods (AMC) according to SNR.
     The innovations of this paper include as follows.
     1. This thesis presents an evaluated algorithm of the bandwidth request of non-active SSs. Firstly, the characteristics such as self-similar, long relative, burst character are analyzed in this mechanism.Secondly, a linear Semi-parametric regression model is constituted to evaluate the requesting probability of non-active SSs based on the evaluated probability and characteristics of service flows.
     2. This thesis presents a multicast polling mechanism based on the adaptive grouping algorithm.The adaptive grouping algorithm based on the virtual Token Ring technology is proposed that operates with the evaluated requesting probability. Simulation results indicate that this polling algorithm can effectively decrease the number of the idle slots and collision slots.
     3. This thesis presents a hybrid backoff algorithm which considers about the priorities and fairness.The type of service flow determines the priority and the more times of retransmission are granted the higher priority of an SS because of fairness.In the next competitive cycle, the maximum backoff window and the initial backoff window are controlled based on the fuzzy control method in order to improve high-priority services'quality and ensure fairness between different SS.
     4.This thesis presents a cross-layer scheduling algorithm for the slow time-varying channel in the BWA system. The algorithm adopts the Nakagami channel model. The BS estimates the total allowed bandwidth resources and allocates bandwidth for each active SS according to the channel signal to noise ratio (SNR); SSs again allocate the authored bandwidth according to the QoS of different connections and the adaptive coded modulation and coding methods (AMC) according to SNR.
引文
[1]扬威, 宽带接入技术与实践[M],北京:人民邮电出版社,2008。
    [2]雷维礼,马立香,接入网技术[M],北京:清华大学出版社,2006.
    [3]尹长川.固定式宽带无线接入技术-LMDS.http://www.vlan9.com[EB/OL].2005-10-26.
    [4]张会霞.宽带无线接入标准-IEEE 802.16.电信工程技术与标准化[J].2003(5):33-36
    [5]IEEE Standard for Local and Metropolitan Area Networks, Part 16:Air Interface for Broadband Wireless Access Systems [S],2009.
    [6]IEEE Standard for Local and Metropolitan Area Networks, Part 16:Air Interface for Broadband Wireless Access Systems[S],2004.
    [7]杨光照,王占强.WiMAX-宽带无线接入新进程.华为技术[EB/OL].2005-1008期. http://www.huawei.com/cn/publications.
    [8]赵志法, 康弥, 展望未来的军用无线局域网[EB/OL],http://qkzz.net/article/94903cb3-2c81-46df-bcb8-f4e47601b314.html.
    [9]Roger B Marks. The IEEE 802.16 Working Group on Broadband Wireless [EB/OL]. http://www.comsoc.org/livepubs/ni/public/1999/mar/ni802.html.
    [10]李敏,3G、WiMAX竞相登场、中国移动通信烽烟正紧[EB/OL],http://publish.it168.com/2007/0615/20070615039203.html.
    [11]新浪科技,北京奥运前将建成150个无线WiMAX基站[EB/OL],http://publish.it168.com/2007/0620/20070620031801.shtml
    [12]Yan Zhang, Hsiao-Hwa Chen,李赞等(译) 构建宽带无线城域网的移动WiMAX技术[M],北京:电子工业出版社,2009.
    [13]SunMin Oh and J.H.Kim, The optimization of the collision resolution algorithm for broadband wireless access network, The 8th International Conference on Advanced Communication Technology, vol.3,pp: 1944-1948,2006.
    [14]R.Iyengor, V. Sharma, K. Kar, B. Sikalar, Analysis of contention-based multichannel wireless MAC for point-to-multipoint networks, IEEE International Sympsium on a World of Wireless, Mobile and Multimedia Networks, pp:453-455,2006.
    [15]A. Doha, H. Hassanein, G. Takahara, Performance evaluation of reservation mediam access control in IEEE 802.16 networks,IEEE
    International Conference on Computer Systems and Applications, pp:369-374,2006.
    [16]A. Vinel, Y. Zhang, M. Lott, A. Tiurlikov, Performance analysis of the random access in IEEE 802.16, The 16th International Symposium on Personal, Indoor and Mobile Radio Communications, vol.3, pp:1596-1600,2005.
    [17]C. Hoymann, Analysis and performance evaluation of the OFDM-based metropolitan area network IEEE 802.16, Elsevier Computer Networks, vol.49(3),341-363,2005.
    [18]Kitti Worigthavarawat and Aura Ganz, Packet scheduling for QoS support in IEEE 802.16 broadband wireless access system, IEEE Journal of Communication Systems, Vol.16, pp:81-96,2003.
    [19]Kitti Wongthavarawat and Aura Ganz, IEEE 802.16 based last mile broadband wireless military networks with quality of service support, IEEE Military Communications Conference, Vol.3 pp:779-784,2003.
    [20]Tzuchieh Tsai, Chihong Jiang, Chuangyin Wang, CAC and packet scheduling for IEEE 802.16 networks, Journal of Communications, vol.1(2), pp:30-38,2006.
    [21]C. Cicconetti, L. Lenzini, E. Mingozzi, C. Ekland, Quality of service support in IEEE 802.16 networks, IEEE Network, vol.20(2), pp:50-56,2006.
    [22]D. Niyato and E. Hossian, Queue-aware uplink bandwidth allocation and rate control for polling service in IEEE 802.16 broadband wireless networks, IEEE Transactions on Mobile Computing, Vol.5(6), pp:668-679,2006.
    [23]H. Shetiya and V. Sharma, Algorithms for routing and centralized scheduling in IEEE 802.16 Mesh networks[C], IEEE Wireless Communications and Networking Conference,2006.
    [24]刘志敏,杨毅,徐颍清,WiMAX宽带无线接入技术及其应用,中兴通讯技术,2008年第2期.
    [25]Norman Abramson, The ALOHA system:another alternative for computer communications, Proceedings of Joint Computer Conference, AFIPS, pp:281-285,1970.
    [26]L.G. Roberts, Extentions of packet communication technology to a hand held personal terminal, Proceedings of Spring Joint Computer Conference, AFIPS, pp:295-298,1972.
    [27]L.G. Roberts, Dynamic allocation of satellite capacity through packet reservation, Proceedings of National Computer Conference,AFIPS,pp: 711-716,1973.
    [28]L.Kleinrock and F. Tobagi, Random access techniques for data transmission over packet-switched radio channels, Proceedings of National Computer Conference, pp:187-201,1975.
    [29]G. Nutt, D. Bayer, Performance of CSMA/CD networks under combined voice and data loads, IEEE Trans, on Communications, vol.30(1), pp: 6-11,1982.
    [30]J.S. Meditch, C.-T. A. Lea, Stability and optimization of the CSMA and CSMA/CD channels, IEEE Trans, on Communications, vol.31, pp: 763-774,1983.
    [31]W.M. Kiesel, P.J. Kuehn, A new CSMA-CD protocol for local area networks with dynamic priorities and low collision probability, IEEE Journal of Electrical and Electronics Engineers, vol.1(5), pp: 869-876,1983.
    [32]Imad Aad and Claude Castellaccia, Differentiation mechanisms for IEEE 802.11, IEEE INFOCOM, pp:209-218,2001.
    [33]J.I. Capetanakis, Tree algorithms for packet broadcast channels,IEEE Trans. on Information Theory, vol. IT-25, pp:505-515,1979.
    [34](美)特南鲍姆(Tanenbaum,A.S.)著,潘爱民译,计算机网络(第四版),北京:清华大学出版社,2004.
    [35]D. Bortsekas and R. Gallager, Data networks,2rd Edition, Englewood Cliffs, NJ:Prentice Hall,1972.
    [36]H. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth, SLAM J. Computing, vol.25(6), pp:1305-1317,1996.
    [37]Admi Syarif, Youngsu Yun, Mitsuo Gen, Study on multi-stage logistic chain network:a spanning tree-based genetic algorithm approach, Computers & Industrial Engineering, vol.43(1), pp:299-314,2002.
    [38]Choong Y. Lee, A cross decomposition algorithm for a multiproduct-multitype facility location problem, Computers and Operations Research, vol.20(5), pp:527-540,1993.
    [39]Hasan Pirkul, Vaidyanathan Jayaraman, A multi-plant capacitated facility location problem:formulation and efficient heuristic solution, Computers and Operations Research, vol.25(10), pp:869-878,1998.
    [40]Dong-Guen Jeong, Chong-Ho Choi, Wha-Sook Jeon, Design and performance evalutation of a new medium access control protocol for local wireless data communications, IEEE/ACM Trans, on Networking (TON), vol.3(6), pp:742-752,1995.
    [41]Anthony S. Acampora, Srikanth V. Krishnamurthy, A new adaptive MAC protocol for broadband packet wireless networks in harsh fading and interference environments, IEEE/ACM Trans. on Networking (TON), vol.8(3), pp:328-336,2001.
    [42]Srikanth V. Krishnamurthy, Anthony S. Acampora, Michele Zorizi, Polling-based media access protocols for use with smart adaptive array antennas, IEEE/ACM Trans. on Networking (TON), vol.9(2), pp:148-161,2001.
    [43]Oran Sharon, Eitan Altman, An efficient polling MAC for wireless LANs, IEEE/ACM Trans. on Networking (TON), vol.9(4), pp:439-451,2001.
    [44]R. Srinivason, Arun K. Somani, on achieving fairness and efficiency in high-speed shared medium access, IEEE/ACM Trans. on Networking (TON), vol.11(1), pp:111-124,2003.
    [45]Qing zhao, Lang Tong, A multiqueue service room MAC protocol for wireless networks with multipacket reception, IEEE/ACM Trans, on Networking (TON), vol.11(1), pp:125-137,2003.
    [46]B. Yucel and H. Delic, Mobile radio window random-access algorithm with diversity, IEEE Trans, on Vehicular Technology, vol.49, pp: 2060-2070,2000.
    [47]I. Chlamtac, A. Farago, An optimal channel access protocol with multiple reception capacity, IEEE Trans, on Computers, vol.43(4), pp:480-484,1994.
    [48]Faisal Shard, Terence D. Todd, Vytas Kezys, John Litva, Dynamic slot allocation (DSA) in indoor SDMA/TDMA using smart antenna base station, IEEE/ACM Trans. on Networking (TON), vol.9(1), pp:69-81,2001.
    [49]Sung-Min Oh, Jae-Hyum Kim, The analysis of the optimal contention period for broadband wireless access network, Proceedings of the 3rd IEEE International Conference on Pervasive Computing and Communications Workshops, pp:215-219,2005.
    [50]Sung-Min Oh, Jae-Hyum Kim, The optimization of the collision resolution algorithm for broadband wireless access network, Proceedings of the International Conference on Advanced Communication Technology, vol.3, pp:1944-1948,2006.
    [51]Juanjuan Yan and Geng-sheng Kuo, Cross-layer Design of Optimal Contention Period for IEEE 802.16 BWA Systems, IEEE International Conference on Communications,2006.
    [52]Daniele Tarchi, Romano Fantacci and Marco Bardazzi, Quality of Service Management in IEEE 802.16 Wireless Metropolitan Area Networks, IEEE International Conference on Communications,2006.
    [53]J. F. Cali, M. Conti, and E. Gregori, Dynamic Tuning of the IEEE 802.11 Protocol to Achieve a Theoretical Throughput Limit, IEEE/ACM Trans. on Networking, vol.8, no.6, pp:785-799, Dec.2000.
    [54]Y.Kwon, Y.Fang and H.Latchman, Desing of MAC protocos with fast collision resolution for wireless local area networks, IEEE Trans. On wireless Comm. Vol.3, no.3, pp:793-807, may 2004.
    [55]W. E. Leland, W. Willinger and D. V. Wilson, On the Self-Similar Nature of Ethernet Traffic, IEEE/ACM Trans. on Networking. Vol.2(1), pp.1-15,1994.
    [56]V. Parson and S. Floyd, Wide-area traffic:the failure of possion modeling, Proceedings of the ACM/SIGCOMM'94, pp:257-268,1994.
    [57]V. Parson and S. Floyd, Wide-area traffic:the failure of possion modeling, IEEE/ACM Trans. on Networking, vol.3, pp:226-244,1995.
    [58]K. Park and W. Willinger, Self-Similar Network Traffic and Performance Evaluation, Wiley Interscience,2000.
    [59]W. Willinger, M. Taqqu, R. Sherman, and D. Wilson, Self-Similarity through Highvariability:Statistical Analysis of Ethernet LAN Traffic at the Source Level, Proceedings of ACM SIGCOMM'95, pp:100-113,1995.
    [60]Yibing Wang, Markos Papageorgiou, Real-time freeway traffic state estimation based on extended Kalman filter:a general approach, IEEE Journal of Transprotation Research (Part B), vol.39, pp:141-167,2005.
    [61]Y. Kamarianakis, P. Prastacos, Forcasting Traffic flow conditions in an Urban Network:Comparison of multivariate and univariate approaches, Transportation Research Record:Journal of the Transportation Research Board, vol.1857, pp:74-84,2007.
    [62]J.X. Lu, X.M. Shan, et. al., Multiscale analysis of TCP traffic, Journal of Data Acquisition & Processing, vol.19(1), pp:5-9,2004.
    [63]黄晓璐,闵应骅,吴起, 网络流量的半马尔科夫模型,计算机学报,vol.28(10),pp:1592-1600,2005.
    [64]李捷,刘瑞新,刘先省,韩志杰, 一种基于混合模型的实时网络流量预测算法,计算机研究与发展,vol.43(5),pp:806-812,2006.
    [65]柴根象,半参数回归模型,合肥:安徽教育出版社,ISBN:7533616448,2008.
    [66]郑明,项阳,基于分组数据的回归系数的估计,应用数学,vol.19(2),pp:296-303,2006.
    [67]X Yu, Y Chen, C Qiao, A Study of Traffic Statistics of Assembled Burst
    Traffic in Optical Burst Switched Networks, Proceedings of SPIE,2002.
    [68]M. Baldi, R. Ofek, B. Yener, Adaptive group multicast with time-driven priority, IEEE/ACM Trans. on Networking, vol.8(1), 匹配:31-43,2000.
    [69]D. Ferrari, A. Banerjea, and H. Zhang, Network support for multimedia, a discussion of the tenet approach, vol.26, pp:1267-1280.
    [70]Y. Ofek and B. Yener, Reliable concurrent multicast from bursty sources, IEEE JSAC, vol.4(3), pp:434-444,1997.
    [71]IEEE 802.11 Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications [S], IEEE,1997.
    [72]Data-Over-Cable Service Interface Specifications Radio Frequency Interface Specification, Version 1.1, Cable Television Laboratories, http://www.cablelabs.com/specifications.
    [73]IEEE Standards for Local Area and Metropolitan Area Networks: Distributed Queue Dual Bus (DQDB) Sub-network,1990.
    [74]V. Bharghavan, A. Demers, S. Shenker, et. al., MACAW:a media access protocol for wireless LANs [C], Proceedings of ACM SIGCOMM'94,pp: 212-225,1994.
    [75]Y. Kwon, Y. Fang, H. Latchman, A novel MAC protocol with fast collision resolution for wireless LANs [C], Proceedings of IEEE INFOCOM'03, pp:853-862,2003.
    [76]肖俊峰,邹仕洪,程时端, 一种IEEE 802.16中快速有效的冲突解决算法[J],电子与信息学报,vol.28(10),2006.
    [77]W. Feller, Introduction to probability theory and its applications[M], New York:Wiley, pp:91-103,1957.
    [78]Wen kuang Kuo, Sanil Kumor and C.C. Jay Kuo, Dynamical collision resolution and traffic scheduling for DOCSIS systems with QoS support [C], GLOBECOM, pp:3894-3898,2003.
    [79]Wen kuang Kuo, Sanil Kumor and C.C. Jay Kuo, Improved priority access, bandwidth allocation and traffic scheduling for DOCSIS cable network. [J], IEEE Trans, on Broadcasting, vol.49(4), pp:371-382,2003.
    [80]Wei-Min Yin and Ying-Dar Lin, Statistically optimized minislot allocation for initial and collision resolution in Hybird Fiber Coaxial networks [J], IEEE Journal on Selected Area in Communications, vol. 18(9),pp:1764-1773,2000.
    [81]P. M. Soni and A. Chockalingam, Analysis of Link-layer backoff schemes on point-to point Markov fading links [J], IEEE Trans, on Communications, vol.51(1),2003.
    [82]Boshen Zhou, Alan Marsall, Tsung-han Lee, A K-round elimination contention scheme for WLANs [J], IEEE Trans. on Mobile Computing, vol.6, pp:1230-1244,2007.
    [83]Xue Yang, Nitin H. Vaidya, DSCR-A wireless MAC protocol using implicit pipeline[C], ACM/SIGCOMM Computing and Communications Review, no.7, pp:25-26,2003.
    [84]黎宁,景丽,陈强, 无线媒体接入控制退避算法研究[J],计算机工程与应用,pp:124-127,2006年14期.
    [85]Younggoo Kwon, Yuguang Fang and Haniph Latchman, Design of MAC protocols with fast collision resolution for wireless local area networks[J], IEEE Trans. on Wireless Communications, vol.3(3), pp:793-807,2004.
    [86]F. Cali, M. Conti, E. Regori, IEEE 802.11 protocol:Design and performance evaluation of an adaptive backoff mechanism [J], IEEE Journal on Selected Area in Communications, vol.18(9), pp:1774-1786, 2000.
    [87]V. Bharghvan, Performance evaluation of algorithms for wireless medium access[C], IEEE International Computer Performance and Dependability Symposium'98, pp:142-149,1998.
    [88]J.Deng and R. S. Chang, A priority scheme for IEEE 802.11 DCF access method [J], IEEE Trans. on Communications, vol.EB2-B (1),1999.
    [89]Chonggang Wang, Bo Li and Lemin Li, A new collision Resolution Mechanism to enhance the performance of IEEE 802.11 DCF [J], IEEE Trans, on Vehicle Technology, vol.53(4), pp:1235-1246,2000.
    [90]Y. E. Sagduyu and A. Ephremides, Energy-efficient collision resolution in wireless Ad-Hoc networks [C], IEEE INFOCOM'03, pp:1-11,2003.
    [91]H.Fatah, C. Leung, An overview of scheduling algorithm in wireless multimedia networks [J], IEEE Journal on Wireless Communications, vol.9(5), pp:76-83,2002.
    [92]Kruse, Robert L, Data structure & programe design (2th edition), Englewood Cliff, New Jersey, pp:150,1987.
    [93]J. Fumkranz, Round robin classification, Jounal of Machine Learning Research, vol.2, pp:721-747,2002.
    [94]M.Katevenis, S. Sidiropoulos, C. Courcoubetis, Weighted round-robin cell multiplexing in a general-purpose ATM switch chip, IEEE Journal on Selected Area in Communications, vol.9(8), pp:1265-1279,1991.
    [95]H. Shimonishi, M. Yoshida, R. Fan, H. Suzuki, An improvement of weighted round robin cell scheduling in ATMnetworks, IEEE Global Telecommunications, pp:1119-1123,1997.
    [96]M. Shreedhar, G. Varghese, Efficient fair queueing using deficit round-robin, IEEE/ACM Trans. on Networking, vol.4(3), pp:375-385,1996.
    [97]H. Shimonishi, H, Suzuki, Performance analysis of weighted round robin cell scheduling and its provement in ATM networks, IEEE Trans. on Communications, vol. E81-B, no.5, pp:910-918,1998.
    [98]R. Knopp and P. Humblet, Information Capacity and power control in single-cell multiuser communications, IEEE ICC'95,1995.
    [99]Sanjay Shakkottai and Alexander L. Stolyar, A study of scheduling algorithm for a mixture of Real and non-Real time data in HDR, The 17th International Teletraffic Congress,2001.
    [100]Lin Yang and Moharned-Slim Aouni, Performance analysis of multiuser selection diversity, IEEE Trans. on Vehiculer Technology, vol.55(3), pp:1003-1018,2006.
    [101]Jake M. Holtzman, CDMA forward link waterfilling power control, VTC 2002, vol.3, pp:1663-1667,2002.
    [102]Soshant Bali, Sridhar Machiraja, Hui Zang and Victor Frost, A measurement study of scheduler-based attacks in 3G wireless networks, Springer-Verlag Berling Heridel Berg 2007, pp:105-114,2007.
    [103]Jin Qiu and Tiancong Huang, Packet scheduling scheme in the next generations High-Speed wireless packets networks,pp:224-227,2005.
    [104]Y. Liu, S. Sruhl and E. Knightly, WCFQ:an opportunistic wireless scheduler with statistical fairness bounds, IEEE Trans. on Wireless Communications, vol.2(5), pp:1017-1028,2003.
    [105]Gwen Barriac and Jack Holtzman, Introducing delay sensitivity into the proportional fair algorithm for CDMA downlink scheduling,IEEE 7th International Symposium on Spectrum Techniques and Applications,2002.
    [106]Matthew Andrews, Krishnan Kamaran, Kavita Ramanan, et.al.,CDMA data QoS scheduling on the forward link with variable channel conditions, Bell Laboratories Technical Report,2000.
    [107]Pable Jose Ameigeriras, Packet scheduling and quality of service in HSDPA,PhD.Thesis,2003.
    [108]Atilla Eryilmaz, R. Srikant, and James R. Perkins, Stable scheduling policies for fading wireless channels, IEEE/ACM Trans. on Networking, vol.13(2), pp:411-424,2005.
    [109]Binyang Xu, Hua ZENG, et.al., Resource allocation framework for QoS provising in HSDDA, VTC-2005,2005.
    [110]You-chium Wang, Yu-chee Tseng, and Wen-tsuen Chen, MR-FQ:a fair scheduling algorithm for wireless networks with variable transmission rates, Internationsl Trans. of the Society for Modeling and Simulation, vol.81(8),pp:587-608,2005.
    [111]Guocong Song, Cross-layer resource allocation and scheduling in wireless multicarrier networks, PhD. Thesis, School of Electrical and Computer Engineering, Georgia Insititue of Technology,2005.
    [112]Jong Hun Rhee and Dong Ku Kim, Scheduling of real/non-real time services in an AMC/TDM system:EXP/PF algorithm, The 7th International Conference on Mobile Communications,1-4,2002.
    [113]F.I.Clarke, S, Sarkar, and B. Mukherjee, Simulations and interleaved polling:an upsteam protocol for WDM-PON, Optical Fiber Communication Conference,2006.
    [114]R.S. Raji, Smart networks for control, IEEE Spectrum,vol.3, pp:49-55,1994.
    [115]K. M. Zuberi, K. G. Shin, Design and implementation of efficient message scheduling for controller area network, IEEE Trans, on Computers, vol.49(2), pp:182-188,2000.
    [116]A. Charny, K.K. Ramakrishnan, A. Lauck, Time scale analysis scalability issues for explicit rate allocation in ATM works, IEEE/ACM Trans, on Networking, vol.4(4), pp:569-581,1996.
    [117]S. Kodase, S. Wang, Zonghua Gu, Kang G. Shin, Improbing scalability of task allocation and scheduling in large distributed real-time systems using shared buffers, the 9th IEEE Real-time and Embedded Technology and Applications Symposium,2003.
    [118]R.L.Cruz, Quality of Service guarantees in virual circuit switched networks, IEEE Journal on Selected Areas in Communications, vol.13(6), pp:1048-1056,1995.
    [119]王兴亮,达新宇,林家蕊,王瑜,数字通信原理与技术[M],西安:西安电子科技大学出版社,2002.
    [120]李斯伟,曹新生,数据通信技术(第二版)[M],北京:人民邮电出版社,2007.
    [121]M. Nakagami, The m-Distribution-A General Formula of Intensity Distribution of Rapid Fading, Statistical Methods in Radio Wave Propagation, W. C. Hoffman, Ed. Elmsford, NY:Pergamon,1960
    [122]Michel Daoud Yacoub, Jose Edson Vargas Bautista, and Leonardo Guerra de Rezende Guedes, On Higher Order Statistics of the Nakagami-m Distribution, IEEE Transactions on Vehicular Technology, Vol.48, no.3, pp.790-794,1999.
    [123]H. Suzuki, A Statistical Model for Urban Radio Propagation, IEEE Trans.on Communications, vol. COM-25, no.7, pp.673-679,1975.
    [124]Q. Liu, S. Zhou, and G. B. Giannakis, Cross-Layer Modeling of Adaptive Wireless Links for QoS Support in Multimedia Networks, Proceeding of the.1st International Conference on QSHINE, pp: 65-75,2004.
    [125]Chong Tian, Dongfeng Yuan, A Novel Cross-Layer Scheduling Algorithm for IEEE 802.16 WMAN, Proceeding of the.1st International Workshop on on Cross Layer Design (IWCLD07), CHINA, pp:20-21,2007,
    [126]Changxin Fan, Communication Principle, Defense Industry Press of China, pp.167-185, May,2001.
    [127]Q. Liu, S. Zhou, and G. B. Giannakis, Cross-Layer Combining of Adaptive Modulation and Coding With Truncated ARQ Over Wireless Links, IEEE Trans. on Wireless Communication, vol.5, pp. 1746-1755, Sep.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700