用户名: 密码: 验证码:
全波段(0.35~25μm)高光谱遥感矿物识别和定量化反演技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高光谱遥感矿物填图发展到现在,主要研究集中在可见光—反射红外(0.35~2.5μm)波段,矿物种类填图技术方法已逐渐成熟,形成了一套较完善的方法体系。矿物含量定量反演也取得了一定的进展,但也面临着许多新的挑战,如(1)对岩石和矿物介质表面与光辐射之间相互作用的机理研究还比较滞后,而对地物介质结构信息的光学特性时空分布规律和光场二向性分布规律的研究,能够提高遥感岩矿信息精细定量提取的精度,具有十分重要的科学和现实意义(。2)将高光谱矿物填图的光谱区间和提取技术从可见-反射红外波段延伸到中红外(2.5~25μm)波段,建立全谱段光谱矿物识别规则及方法可以全面提高遥感岩矿识别的能力与精度。但是,由于中热红外遥感数据获取、处理及发射率反演等问题难度较大,中红外波段的岩矿信息提取研究滞后。
     本次研究以多类型的矿物粉末为研究对象,在可见光—反射红外(0.35~2.5μm)波段,以实验室测量的多角度岩矿二向性反射率为数据源,使用Matlab和Visual c#语言开发了基于“有约束的非线性最小二乘法”的反演系统,提出并建立了基于“先验知识”基础上的参数分阶段反演和敏感性分析评价体系。将专家的先验知识、Hapke反射模型以及实验测量数据结合在一起。实现了对Hapke反射模型的五个参数(平均单次散射反照率W、相函数前后散射比例系数c、相函数振幅b、后向散射的经验系数B0、后向效应宽度h)在可见光—反射红外全波段内的初始值的敏感性分析和最优化反演。敏感性分析表明:平均单次散射反照率W、相函数前后散射比例系数c和相函数振幅b的反演受参数初始值影响较大,敏感性强;向散射的经验系数B0和后向效应宽度h的反演受参数初始值影响较小,敏感性较弱。确定参数的最优化反演初始值后的反演结果表明:反演结果均方根误差很小,Hapke反射模型模拟计算二向性反射率和原始数据误差很小,Hapke反射模型可以从物理层面上模拟岩矿反射光谱的形成及变异机理。总结了五个参数的反演值在在以岩矿介质为目标时的规律和特点,深刻理解这些参数对研究岩矿光谱机理和进一步提高和改进遥感岩矿定量识别精度有着重要意义。
     本次研究系统分析和总结了主要矿物在中热红外(2.5~25μm)区间光谱红外光谱机理和分类,对常见矿物中红外漫反射光谱进行了分析,表明在此区间可识别硅酸盐(包括不含水造岩矿物)、硫酸盐探测、碳酸盐、磷酸盐、氧化物、氢氧化物等矿物,遥感岩矿识别的能力和精度可以得到全面的提高。以实验室测量的多类型中热红外漫反射光谱为端元光谱和混合光谱,以基于光谱相似性算法的识别方法作为技术支撑,较深入地研究和开发了中热红外(2.5~25μm)区间矿物光谱混合特性、光谱解混及矿物含量反演的方法。
     综合上述研究表明,对中热红外区间的矿物进行种类识别和光谱解混及含量反演的研究和利用Hapke反射模型对岩矿的二向反射特性进行研究,是对现有的高光谱遥感矿物填图技术在深度和广度上的有益探索,在此基础上综合应用可见光-反射红外遥感和中热红外遥感开发全谱段矿物识别规则,进行岩矿识别是提高遥感岩矿识别精度、能力及可靠性的有效途径之一。
By this time, the technology of hyperspectral mineral mapping mainly research on visible - infrared (0.35 ~ 2.5μm). The methods of the mineral mapping have gradually matured, and have formed a more complete methodology. Quantitative inversion of mineral content has also made progress, but it is also facing many new challenges, such as: (1) It relativly lag behind for the mechanization research between the rock and mineral medium surface and light radiation. But it is the basis of precise quantitative remote sensing information extraction of rock and mineral to the capture of the structural information and accurate bidirectional reflectance data. (2)Make the spectral region of hyperspectral mineral mapping and the extraction technology range from the visible - infrared reflection to extend to the mid-infrared (2.5 ~ 25μm) band, set up the whole spectrum mineral identification rules and method, in order to improve the abillity and precision of rock recognition base on remote sensing. However, duing to the thermal infrared remote sensing data acquisition, processing and emissivity data inversion is a great problem, which lead to the research of the information extraction in the middle-infrared band lag.
     Many types of mineral powder is regarded as the research object. In visible -reflection infrared (0.35~2.5μm) band, multi-angle rock bidirectional reflectance measured in laboratory was the data source. This paper developed the inversion system based on "a constrained nonlinear least squares method" using Matlab and Visual c # language, proposed and established sensitivity analysis and retrieval system in stages based on "prior knowledge". The expert's prior knowledge, Hapke reflectance model and the experimental data were hung together, which realized the sensitivity analysis and optimization inversion of the initial value in all visible light - reflection Infrared(0.35 ~ 2.5μm) bands for the five parameters of Hapke reflectance model (the average single scattering albedo W, before and after the scattering phase function scale factor c, the amplitude of the phase function b, the backscatter experience coefficient B0, the width of the effect after h) .
     Sensitivity analysis shows that: The contribution of the various parameters of Hapke reflectance model to the bidirectional reflectance is interactive. The multiple parameters involved in inversion is an interaction. The relevance of the sensitivity of inversion parameters is also an important influence factor for parameter inversion accuracy. The average single scattering albedo W, before and after the scattering phase function scale factor , the amplitude of the phase function b have high sensitivity on the set of initial value, the backscatter experience coefficient B0, and the width of the effect after h has less sensitivity on the set of the initial value.
     The inversion results of the optimum inversion initial value after determining parameters show that: the root mean square error of the inversion results is very small. The bidirectional Reflectance simulated by Hapke reflectance model is almost the same as the raw data. This explained that Hapke reflectance model can simulate the spectrum formation and the variation mechanisms from the physical level. This paper summarized the laws and characteristics of the five parameters based on the target of rock. It plays an important role on understanding the rock and mineral spectral mechanism and the improvement of the quantitative identification about the rock and minerals based on remote sensing.
     Analyzing and summarizing the IR spectral mechanism and classification of the major minerals in the thermal infrared (2.5 ~ 25μm). The infrared spectra analysis of common minerals showed that silicate, sulfate detection, carbonates, phosphates, oxides, hydroxides and other minerals can be identified in this interval (including non-water rock-forming minerals),. The identification capabilities and precision of remote sensing of rock and minerals can be comprehensively improved. Taking the multi-types middle-thermal infrared spectra measured by the lib as the endmember spectra and mixed spectra, taking identification methods based on spectral similarity algorithm as the technical support, deeply researched and developed the mineral spectral mixed properties, mineral unmixing and the inversion method of mineral content in the thermal infrared (2.5 ~ 25μm ).
     The above study shows that, it is a useful exploration in the depth and breadth for the existing hyperspectral remote sensing mineral mapping to study the mineral species identification, spectral unmixing, content inversion on the range of thermal infrared and study the bidirectional reflectance characteristics of rock and mineral using Hapke reflectance model. Based on these, comprehensively applying the visible t - reflection infrared remote sensing and thermal infrared spectral to develop the whole spectrum mineral identification rules. Rock and mineral identification is an effective way to improve the accuracy, capability and reliability of rock and mineral identification of remote sensing.
引文
Adams J B, Smith M 0 et al. . 1986. Spectral mixture modeling: a new analysis of rock and soil type at the Viking Lander 1 site. Journal of Geophysical Research, 91(B8) :8098~8112
    Ben-Dore and Kruse F A. 1994. Mineral mapping of Makhtesh Ramon Negev, Israel, using Ger 63 channel scanner data and linear unmixing procedures. Presented at the tenth thematic conference on geologic remote sensing. San Antonio, TX, 7-8 may 1994 , I -215- I -226
    Bierwirth, P. Blewett R.S. & Huston D.L., 1999,Finding new mineral prospects with HYMAP: early results from a hyperspectral remote sensing case study in the West Pilbara,AGSO Research Newsletter,31, 1-3.
    Bierwirth, P.,D. Huston and R. Blewett,2002,Hyperspectral Mapping of Mineral Assemblages Associated with Gold Mineralization in the Central Pilbara, Western Australia Economic Geology,97: 819-826.
    Boardman,J. W., 1993, Automating Spectral Unmixing of AVIRIS Data using Convex Geometry Concepts, Summaries of the Fouth Annual JPL Airborne Earth Science Workshop, JPL Published, 93-26, pp11-14.
    Boardman,J. W., F. A. Kruse and R. O. Green, 1995, Mapping Target Signature via Partial Unmixing of AVIRIS Data, Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, JPL Published, 95-1, pp39-40.
    Boardman,J. W., 1998a, Leveraging the High Dimensionality of AVIRIS Data for Improved Sub-Pixel Target Unmixing and Rejection of False Positives: Mixture Tuned Matched filtering,Summaries of the Seventh Annual JPL Airborne Earth Science Workshop, Pasadena,CA.
    Boardman,J. W., 1998b, Post-ATREM Polishing of AVIERIS Apparent Reflectance Data using EFFORT: a Lesson in Accuracy versus Precision, Proceedings of 1998 AVIRIS Workshops, JPL, Pasadena, CA.
    Brian Curtiss, Field Spectrometry: Techniques and Instrumentation, FieldSpec Pro User Analytical Spectral Devices , Inc. Internet: httm://www. asdi.com
    Chandrasekhar S. Radiative Transfer. London: Oxford University Press,1950
    Christensen P.R., Bandfield J.L., Hamilton V.E. A thermal emission spectral library of rock-forming minerals[J]. Journal of Geophysical Research,2000,105(E4):9735-9739
    Christensen P.R., Bandfield J.L., Hamilton V.E. A thermal emission spectral library
    Clark R N, King T V V, Ager C et al. 1995. Initial vegetation species and senescence /stress mapping in the Luis Valley, Colorado using imaging spectrometer data. Proceeding: Summitville Forum '95, H. H. Posey, J.A. Pendelton,D. Van Zyl (eds. ), Colorado Geological Survey Special Publication 38, 64-69
    Clark R N, Swayze G A, Gallagher A. et al. 1993. The U. S. Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0 m, U. S. Geological Survey, Open File Report 93-592, 1326
    Clark R N, King T V V, Klejwa M, Swayze G, Vergo N. 1990. High Spectral Resolution Reflectance Spectroscopy of Minerals. J. Geophys Res. 95: 12653-12680
    Clark R N. Spectro scopy of Rock s andM inerals, and Principals of Spectroscopy[A]. In: Remo te Sensing fo r the Earth Sciences: M anual of Remo te Sensing〔C〕. 3 ed. , Vo l. 3,edited by A ndrew N. Rencz. JohnW iley & Sons, Inc. 1999,3~58.
    Clark, R. N., Swayze G. A., Livo K. E. et al. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems, J. Geophys. Res., 2003,108(E12):5-1 to 5-44
    Cloutis E A. 1996. Hyperspectral geological remote sensing: evaluation of analytical techniques. Int. J. Remote Sensing, 17(12) ;2215~2242
    Crippen R E. 1987. The regression intersection method of adjust image data for band ratioing. Int. J. Remote Sensing, 8(2): 137-155
    dark N R. 1999. Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy, http://speclab.cr.usgs.gov (last revised June 25,1999)
    dark R N, Roush T L. 1984. Reflectance Spectroscopy: quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 89(B7): 6329-6340
    dark R N, Swayze G A. 2000. Evolution in Imaging Spectroscopy analysis and sensor Signal-to-Noise: An examination of how far we have come. http://speclab.cr. usgs. Gov/pub/cuprite/
    Dalton J. D, King T. V.V., Bove D. J., et al, 2000,Distribution of Acid-Generating and Acid-Buffering Mineralsin the Animas River Watershed as Determined by AVIRIS Spectroscopy, http://speclab.cr.usgs.gov
    Dalton, J. B., D. Bove, C. Mladinich, B. W. Rockwell, 2001, Spectral Classification of Similar Materials Using the Tetracorder Algorithm: The Calcite-Epidote-Chlorite Problem, Proceedings of 2001 AVIRIS Workshops.
    Dalton, J. B., D. Bove, C. Mladinich, B. W. Rockwell, 2004, Identification of Spectrally Similar Materials Using the Tetracorder Algorithm: The Calcite-Epidote-Chlorite Problem, Remote Sensing of Environment, 89:455-466.
    Drake N. H., 1995, Reflectance spectral of evaporite mineral(400-2500nm): applications for remote sensing, Int. J. Remote Sensing, 16(14):253-268
    Drake N. A., Mackin S., et al, 1998, Mapping vegetation, soil, and geology in semiarid shrublands using spectral matching and mixture modeling of SWIR AVIRIS imagery , Remote Sens. Environ., 68:12-25
    Drake N H. 1995. Reflectance spectral of evaporite mineral (400 ~ 2500nm): applications for remote sensing. Int. J. Remote Sensing. 16(14) :253
    Earth Observing-1 (EO-1) ,http://eo1.gsfc.nasa.gov
    ENVI user' s guide, Research Systems Inc,US, 1999.7ASTER Spectral Library, Version 1.2, http://Speclib.jpl.nans.gov
    Gaffey S J. 1987. Spectral reflectance of carbonates minerals in the visible and near infrared (0.35-2.55 (nm) :anhydrous carbonate minerals. J. Geophysical Research, 92 (B2 ): 1429-1440
    Gaffey S J. 1986. Spectral reflectance of carbonates minerals in the visible and near infrared ( 0. 35 - 2. 55 microns) : calcite, aragonite, and dolomite. American Mineralogist, 71:151-162
    Gaffey S. J., 1987, Spectral reflectance of carbonates minerals in the visible and near infrared (0.35~2.55 um): anhydrous carbonate minerals, J. Geophysical Research, 92(B2):1429-1440
    Gil lespie A R . Spect ral m i xt ure analysis of m ult ispectral thermal i nfrared im ages [J]. Rem ote S ensing of Environm en t ,19 92 ,42 :137 -1 45
    Goetz A. F. H., and V. Srivastava, 1985, Mineralogical mapping in the Cuprite mining district, Navada, Proceeding of Airborne Imaging Spectrometer Data Analysis Workshop, JPL Publication 85-41, pp.22-31.
    G.R.Hunt and J.W.Salisloury,Visibal & Near-infrared Spectra of Rocks and Minerals,Modern Geology, 1974, 5 (1).
    G..R.Hunt,Near-infrared(1.3-2.4μm) Spectra of Alternation Minearls-Potentical for Use in Remote Sensing,Geophysics, 1979,44(1).
    Hamilton V.E., Wyatt M.B., Mcsween H.Y. Analysis of terrestrial and Martian volcanic composition using thermal emission spectroscopy:2.Application to Martian surface spectral from the Mars global surveyor thermal emission spectrometer[J]. Journal of Geophysical Research,2001,106(E7):14733-14746
    Hamilton V.E., Christensen P.R., McSween H.Y. et al. Determinatin of Martian meteorite lithologies and mineralogies using vibrational spectroscopy[J]. Journal of Geophysical Rearch,1997,102(E11):25593-26603
    Hapke B. Bidirectional reflectance spectroscopy : 1. Theory . Journal of Geophysical Research , 1981, 86(B4): 3039-3054
    Hapke B. Bidirectional reflectance spectroscopy : 3. Correction for macroscopic roughness . Icarus, 1984,59(1): Pages 41-59
    Hapke B. Bidirectional reflectance spectroscopy: 4. the extinction coefficient and the opposition effect. Icarus, 1986,67: 264-280
    Hapke B. Bidirectional Reflectance Spectroscopy: 5. The Coherent Backscatter Opposition Effect and Anisotropic Scattering . Icarus, 2002, 157(2): 523-534
    Hapke B. Bidirectional reflectance spectroscopy: 6. Effects of porosity, Icarus,2008 195: 918-926
    Hapke, B. Theory of reflectance and emittance spectroscopy. New York: Cambridge University Press, 1993
    Hapke B., DiMucci D., Nelson R., The cause of the hot spot in vegetation canopies and soils: Shadow-Hiding versus coherent backscatter . Remote Sensing of Environment, 1996,58:63-68
    Hapke B. Theory of reflectance and emittance spectroscopy[M]. London:Cambridge University Press,1993b
    Hapke B. Combined theory of reflectance and emittance spectroscopy, In Remote Geochemical analysis: Elemental and Mineralogical Composition[M]. London:Cambridge University Press,1993a:31-41
    Hapke B. Theory of reflectance and emittance spectroscopy[M]. London:Cambridge University Press,1993b
    Hunt , G. R. , Salisbury , J . W. , and Lenhoff , G. J . Visible and near2infrared spectra of minerals and rocks : III Oxides and hydroxides[J ] . Modern Geology ,1978 (2) : 195~205.
    Hunt G R, 1989, Spectroscopic properties of rocks and minerals. In Practical Handbook of Physical Properties of Rocks and Minerals, edited by Carmichael R C, Boca Raton Florid: C.R.C. Press Inc., 599-669
    Jacquemoud S., Baret F., Hanocq J. F. Modeling spectral and bidirectional soil reflectance. Remote Sensing of Environment,1992, 41(2): 123-132
    Johnson P.E., Smith M.O.,Adams J.B., Simple algorithms for remote determination of mineral abundances and particles sizes from reflectance specta.Jounal of Geophysical Research,1992,97(E2):2649-2657
    Johnson P E, Smith M 0, Adams J B. 1992. Simple algorithms for remote determination of mineral abundances and particles sizes from reflectance specta. J. Geophysical Research, 97(E2)::2649-2657
    Johnson P.E., Smith M.O., Susan T.G. and Adams J.B.A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures.Journal of Geophysical Research,1983,88(B4):3557~3561
    Johnson P.E., Smith M.O.,Adams J.B., Simple algorithms for remote determination of mineral abundances and particles sizes from reflectance specta. Jounal of Geophysical Research,1992,97(E2):2649-2657
    Kruse F A, G. L. Raines, and K. Watson, 1985;Analytical techniques for extracting geologic information from multichannel airborne spectroradiometer and airborne imaging Kruse F. A., 1988, Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the Northern Grapevine Mountains, Nevada, and California , Remote Sens. Environ., 24:31-51
    Lucey P G. 1998. Model near-infrared optical constants of olivine and pyroxene as a function of iron content. J. Geophysical Research, 103(E1):1703-1713
    Lucey P. G., 1998, Model near-infrared optical constants of olivine and pyroxene as a function of iron content, J. Geophysical Research, 103(E1):1703-1713
    Mustard J F, Pieters C M. 1989. Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra. J. Geophysical Research, 94(B10): 13619-13634
    Mustard J F. 1992. Chemical analysis of actinolite from reflectance spectra. American Mineralogist, 77:345-258
    Mustard J F, Pieters C M. 1987. Abundance and distribution of ultramafic microbreccia in Moses Rock Dike; quantitative application of mapping spectroscopy. Journal of Geophysical Research, 92(B10) : 10376~ 10390
    Mustard J F. 1992. Chemical composition of actinolite from reflectance spectra. American Mineralogist, 77: 345-358
    Mustard J.F. and Pieters C.M.Quantitative abundance estimates from bidirectional reflectance measurements. Journal of Geophysical research,1987,92(B4):E617~E626
    Mustard J.F., Pieters C.M.Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra.Jounal of Geophysical Research,1989,94(B10): 13619~13634
    Pieters C M, Englert P A J. 1993. Remote geochemical analysis: Elemental and mineralogical composition, Cambridge Uninersity Press
    Roger N. Clark.Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy, Derived from Chapter 1 in: Manual of Remote Sensing, A. Rencz, Editor, John Wiley and Sons, Inc , New York , 1999 , http:// speclab.cr.usgs.gov
    Rock-forming minerals[J]. Journal of Geophysical Research,2000,105(E4):9735-9739
    Salisbury J., Estes J. The effect of particle size and porosity on spectral contrast in the mid-infared[J]. Icarus,1985,64(3):586-588
    Salisbury J., Wald A. The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals[J]. Icarus,1992,96(1):121-128
    Smith M 0, Johnson P E et al. 1985. Quantitative determination of mineral type and abundances from reflectance spectra using principal components analysis. Journal of Geophysical Research, 90(supp. ) : 797-804
    spectrometer data, Proceedings of the t Fourth thematic conference on geologic remote sensing, San Francisco, California, 1-4 April, PP309-324.
    Sunshine J M, Mustard J F. 1994. Quantification of variations in the mafic mineralogy of Mars through MGM analysis of ISM spectra. Bulletin of the American Astronomical Society, 26:1113
    Sunshine J M, Pieters C M. 1993. Estimating modal aboundances from the spectra of natural and laboratory pryroxene mixture using the modified Gaussian model. Journal of Geophysical Research, 98:9075 - 9087
    Sunshine J M, Pieters C M-et al. 1990. Deconvolution of minerals absorption bands: an improved approach. Journal of geophysical research, 95 (B5): 6955-6966
    Sunshine J M, Pieters C M. 1998. Determining the compositio of olivine from reflectance spectroscopy. J. Geophysic. Research., 103(E6): 13675-13688
    Thomson J.L., Salisbury J.W. The mid-infrared reflectance of mineral mixtures(7~14μm) [J]. Remote Sensing of Environment,1993,45(1):1-13
    北京大学地质学系岩矿教研室.光性矿物学.地质出版社,1979
    陈述彭、童庆禧、郭华东主编.遥感信息机理研究.北京,科学出版社,1998,139~212
    陈述彭.1999.“数字地球”战略及其制高点.遥感学报,4(3):247—253
    陈丰、林传易、张蕙芬、谢洪森,1995,矿物物理学概论,科学出版社,1995.6,北京
    陈光远,孙岱生,殷辉安,1988,成因矿物学与找矿矿物学,重庆出版社,重庆
    甘甫平,王润生,马蔼乃.基于特征谱带的高光谱遥感矿物谱系识别阴.地学前缘,2003(2):445一454.
    甘甫平,王润生等.2000c.高光谱遥感信息提取与地质应用前景.国土资源遥感,(3):38—44
    胡受奚等.交代蚀变岩岩石学及其找矿意义[M] .武汉:地质出版社,2003
    丰茂森.1992.遥感数字图像处理.北京:地质出版社
    乐昌硕.岩石学[M] .武汉:地质出版社,1984
    李小文.地物的二向性反射和方向谱特征.环境遥感,1989,4(1):67-72
    浦瑞良,宫鹏.2000.高光谱遥感及其应用.北京:高等教育出版社
    张宗贵,王润生,郭小方,等.基于地物光谱特征的成像光谱遥感特征的识别方法明.地学前缘,2003(2):435一443.
    章革.高光谱短波红外技术在矿区矿物填图中的应用研究[D].北京:中国地质大学,2004
    王润生,甘甫平等。成像光谱方法技术开发应用研究.国土资源部“九五”重点科研项目研究成果报告.2005,11北京
    王润生,甘甫平等。成像光谱方法技术开发应用研究.国土资源部“九五”重点科研项目研究成果报告.2007,10北京
    王润生.遥感地质技术发展的战略思考.国土资源遥感,2008, 78(1): 1-13
    王润生等.1992.地质勘查图像综合与分析.北京:地质出版社
    王晋年郑兰芬童庆禧成像光谱图像光谱吸收鉴别模型与矿物填图研究环境遥感,1996,11(1):20~31
    徐元柳。基于裸露地表辐射传输模型的粗糙度反演与地形校正[D].北京:中国地质大学,2009
    闫柏琨.热红外遥感岩矿波谱机理及信息提取技术方法研究[D].北京:中国地质大学,2006
    袁见齐,朱上庆,翟裕生.1985.矿床学.北京:地质出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700