用户名: 密码: 验证码:
刺五加皂苷B对大鼠心肌缺血再灌注和过氧化氢损伤心肌细胞凋亡的影响及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
刺五加叶皂苷(Acanthopanax senticosus saponins, ASS)是从刺五加叶中分离得到的含有16种活性成分的总皂苷,其中刺五加皂苷B(Ciwujianoside B, C-B)是一种新发现的主要单体成分。本论文研究C-B对心肌细胞过氧化氢(H_2O_2)损伤和大鼠心肌缺血再灌注损伤的影响,探讨C-B对H_2O_2和心肌缺血再灌注诱导的心肌细胞凋亡的作用及机制。主要研究内容如下:
     1.原代培养乳鼠心肌细胞,利用不同浓度的H_2O_2引起心肌细胞损伤,结果显示: C-B可增加H_2O_2 50、100μmol·L~(-1)损伤后的心肌细胞存活率,提高抗氧化能力,减轻氧化损伤。
     2.原代培养乳鼠心肌细胞,通过H_2O_2 200μmol·L~(-1)诱导心肌细胞凋亡,采用流式细胞术及蛋白免疫印迹等方法,证实:C-B可减轻氧化损伤,降低Caspase-3和Caspase-9的蛋白表达及活性,调节Bcl-2和Bax蛋白表达,阻止线粒体膜电位降低,抑制线粒体释放Cyt c、Smac和AIF,通过调控线粒体途径相关的凋亡蛋白表达抑制细胞凋亡。
     3.通过结扎大鼠左冠状动脉前降支30 min、再灌注4 h建立心肌缺血再灌注损伤模型,结果表明:C-B可改善大鼠心脏功能及心肌组织病理改变,增加GSH含量及GSH-Px、SOD活性,降低MDA含量及MPO活性,通过抗氧化机理对心肌缺血再灌注损伤起保护作用。
     4.通过大鼠在体心肌缺血再灌注诱导心肌细胞凋亡,采用TUNEL原位标记细胞凋亡检测法、免疫组化、蛋白免疫印迹及实时荧光定量PCR等方法,结果表明:C-B可提高Bcl-2/Bax比值,抑制线粒体释放Cyt c、Smac和AIF,减少心肌组织Caspase-3、Caspase-9蛋白表达和活性,减弱PARP降解,抑制心肌细胞凋亡,其保护心肌的作用可能与P38MAPK、JNK及PI3K/AKT信号转导通路的激活有关。
     综上所述,C-B对乳鼠心肌细胞过氧化氢损伤及大鼠心肌缺血再灌注损伤有保护作用,可抑制其所诱导的心肌细胞凋亡。
Myocardial ischemia is one kind of cardiovascular diseases of high disease incidence, and it can endanger human health. When myocardial ischemia happened, the restoration of blood supply can not improve cardiac function, but aggravate the original myocardial injury induced by ischemic, and induce the incidence of arrhythmias, increased myocardial infarct size, and even cause heart failure. This phenomenon is called myocardial ischemia reperfusion injury (MIRI). Cardiomyocyte apoptosis plays a important role in the process of MIRI. Therefore, to find drugs which can treat MIRI, inhibit cardiomyocyte apoptosis and improve cardiac fuction has very important clinical significance.
     Acanthopanax senticosus saponins (ASS) is extracted from the leaves of Acanthopanax. Ciwujianoside B(C-B) is one of a monomer component of ASS. The previous studies shown that ASS has protective effect on myocardial ischemia and MIRI. However, the study about the effect of C-B on MIRI has not been reported.
     In the thesis, we establish the model of oxidative injury and apoptosis in cardiomyocytes by hydrogen peroxide(H_2O_2) of different concentration to study the effect of C-B on cardiomy-ocytes oxidative injury and apoptosis,and we establish the MIRI model of rats in vivo to probe the effect of C-B on MIRI and apoptosis.
     1. Effect of C-B on oxidative injury of neonatal rat cardiomyocytes induced by H_2O_2 The cardiomyocytes were primary cultured for 72h. And the cardiomyocytes were subjected with H_2O_2(25,50,100,200μmol·L~(-1))for 60 or 120min, and the cell morphology change and the rate of survival cell was observed. The cardiomyocytes were cultured and subjected to H_2O_2 50,100μmol·L~(-1) for 60 min to induce oxidative injury. The cardiomyocytes were incubated with C-B 200 and 400μg·mL~(-1) for 24 h before exposed to H_2O_2. The cell morphology change, the rate of survival cardiomyocytes, the activity of LDH in medium, the content of maleic dialdehyde(MDA) and glutathione(GSH) in cardiomyocytes, the activity of superoxide dismutase(SOD), glutathione peroxidase(GSH-Px) and catalase(CAT) in cardiomyocytes was observed.
     The results shown that the cardiomyocytes morphology change in the groups of H_2O_2 50,100,200μmol·L~(-1) was obvious. With the increase of the concentration of H_2O_2, the oxidative injury was more serious. The rate of survival cells in groups of H_2O_2 50, 100, 200μmol·L~(-1) was decreased significantly. C-B of 200 and 400μg·mL~(-1) decreased the activity of LDH in medium and the content of MDA significantly, increased the content of GSH, the activity of SOD, GSH-Px and CAT of cardiomyocytes injuried by H_2O_2 of 50 and 100μmol·L~(-1),which indicated that C-B can extenuate oxidative injury and increase the antioxidant capacity of cardiomyocytes.
     2. Effect of C-B on cardiomyocytes apoptosis induced by H_2O_2 and its mechanism
     The cardiomyocytes were incubated with C-B 200,400μg·mL~(-1) for 24 h, then were subjected with H_2O_2 200μmol·L~(-1) for 120 min to induce apoptosis. The cell morphology, the rate of survival cells, the activity of LDH in medium, the content of MDA and the activity of SOD in cardiomyocytes were assayed. The apoptosis was observed by staining of Hoechst 33342 and AO/EB. The rate of apoptosis was assayed by AnnexinⅤ-FITC kit. The mitochondrial membrane potential was assayed by staining with Rhodamine123 and detected by flow cytometry. The activity of Caspase-3, Caspase-9 were assayed by spectrophotometric detection. The protein expression of Cyt c, Smac, AIF, Caspase-3, Caspase-9, PARP, Bcl-2 and Bax were dertermined with the method of Western Blot.
     The results demonstrated that C-B 200 and 400μg·mL~(-1) can reduce the changes of oxidative injury induced by H_2O_2 200μmol·L~(-1) for 120min, increase the cardiomyocytes survival rate, and decrease the apoptosis rate. C-B can decrease the activity of Caspase-3 and Caspase-9. C-B can decrease the expression of Cyt c, Smac, AIF, Bax, Caspase-3, Caspase-9 protein and PARP degradation, increase the expression of Bcl-2 protein. C-B can inhibit apoptosis in cardiomyocytes by regulating the expression of apoptosis-related proteins about the mitochondrial route .
     3. The effect of C-B on myocardial ischemia reperfusion injury in rats
     The myocardial ischemia reperfusion injury model was established by ligation of the left anterior descending coronary artery for 30min and reperfused for 4h in rats The dose of C-B used in the study are 20 and 40 mg.kg~(-1). The changes of cardiac hemodynamics, the activity of myocardial enzymes, the activity of SOD and the content of MDA in myocardial tissue and serum, the activity of MPO and GSH-Px of serum, the content of GSH in myocardial tissue, and the level of ANP, TNFαand IL-6 in plasma were detected. The myocardial infarct size, myocardial histopathology and ultrastructure changes were observed.
     The results shown that C-B 20 and 40 mg.kg~(-1) can increase HR, SBP, DBP, MAP, LVSP and±dp/dtmax in MIRI rats, which manifested that C-B can improve heart function. C-B 20 and 40 mg.kg~(-1) can reduce myocardial infarct size and increase the activitIies of AST, LDH and CPK. C-B 20 and 40mg.kg~(-1) can increase the level of SOD, GSH-Px and GSH , reduce MDA content and MPO activity. C-B can increase the content of ANP and reduce the content of TNFαand IL-6. Myocardial histopathology and ultrastructural observation results shown that C-B can reduce myocardial pathological changes. It has a protective effect on MIRI in rat, and it mechnism may be related to its antioxidant effects.
     4. Effect of C-B on apoptosis induced by MIRI and its mechanism
     The MIRI model was established by ligation of the left anterior descending coronary artery for 30min and then reperfused for 4h. The dose of C-B used were 20 and 40 mg.kg~(-1). The apoptosis rate was assayed by TUNEL kit. The protein expression of Caspase-3, Cyt c, Bcl-2 and Bax were detected by immunohistochemistry. The protein expression of Caspase-3, Caspase-9, PARP, Bax, Bcl-2 and Bax were detected by Western Blot. The activities of Caspase-3 and Caspase-9 were detected by spectrophotometric detection. The level of Bax and Bcl-2 gene were determined by RT-PCR. The level of P38MAPK, JNK and AKT and its phosphorylation state were analysed by Western Blot.
     The results demonstrated that C-B can decrease the number of positive stained cells by TUNEL. The immunohistochemical results shown that C-B can decrease the expression of Cyt c, Caspase-3 and Bax, increase Bcl-2 expression, increase the ratio of Bcl-2/Bax of MIRI rats. C-B can decrease the activity of Caspase-3 and Caspase-9, lower the expression of Caspase-3 and Caspase-9 and PARP degradation. C-B can up-regulate Bcl-2 protein and gene level, and reduced Bax protein and gene level. C-B can reduce the phosphorylation of P38MAPK and JNK and increase AKT phosphorylation. The results above manifested that C-B can inhibit apoptosis by regulating the expression of apoptosis-related proteins about the mitochondrial route. The mechanism of its protective effect may be related to the activition of pathway of P38MAPK, JNK and AKT.
     In summary, C-B can extenuate oxidative injury of cardiomyocytes induced by H_2O_2 and has protective effect on the myocardial ischemia reperfusion injury in rats. C-B can inhibit cardiomyocytes apoptosis induced by H_2O_2 and myocardial ischemia reperfusion injury in rats by regulating the expression of apoptosis-related proteins about the mitochondrial route.
引文
[1] Chambless L, Keil U, Dobson A , et al. Population versus clinical view of case fatality from acute coronary heart disease: results from the WHO MONICA Project 1985-1990. Multinational Monitoring of Trends and Determinants in Cardiovascular Disease. For the WHO MONICA Project[J]. Circulation, 1997, 96 (11) : 3849-3859.
    [2] Yellon Derek M, Hausenloy Derek J. Myocardial Reperfusion Injury[J]. N Engl J Med, 2007, 357: 1121-1135.
    [3] L Maximilian Buja. Myocardial ischemia and reperfusion injury[J]. Cardiovascular Pathology, 2005, 14: 170-175.
    [4] Jennings RB, Sommers HM, Smyth GA, et al. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog[J]. Arch Pathol, 1960, 70: 68-78.
    [5] Dinender Kumar, Bodh I Jugdutt. Apoptosis and oxidants in the heart[J]. J Lab Clin Med, 2003, 142 (5) : 288-297.
    [6] John L Farber. Mechanisms of Cell Injury by Activated Oxygen Species[J]. Environmental Health Perspectives, 1994, 102 (Suppl 10) : 17-24.
    [7] Zweier JL, Kuppusamy P, Williams R, et al. Measurement and characterization of postischemic free radical generation in the isolated perfused heart[J]. J Biol Chem, 1989, 264 (32) :18890-18895.
    [8] Bohr VA. Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells[J]. Free Radic Biol Med, 2002, 32: 804-812.
    [9] Paradies G, Petrosillo G, Pistolese M, et al. Lipid peroxidation and alterations to oxidative metabolism in mitochondria isolated from rat heart subjected to ischemia and reperfusion [J]. Free Radic Biol Med, 1999, 27 (1-2) :42-50.
    [10] Frank Eefting, Benno Rensing, Jochem Wigman, et al. Role of apoptosis in reperfusion injury[J]. Cardiovascular Research, 2004, 61: 414-426.
    [11] Czarnowska E, Kurzelewski M, Beresewicz A, et al. The role of endogenous nitric oxide in inhibition of ischemia/reperfusion-induced cardiomyocyte apoptosis[J]. Folia Histoc- hem Cytobiol, 2001, 39 (2) : 179-180.
    [12] Zweier JL, Fertmann J, Wei G. Nitric oxide and peroxynitrite in postischemicmyocardium[J]. Antioxid Redox Signal, 2001, 3 (1) :11-22.
    [13]吴立玲.心血管病理生理学[M].北京:北京医科大学出版社, 2000 : 25–26.
    [14] Glyn MC, Ward BJ. Contraction in cardiac endothelial cells contributes to changes in capillary dimensions following ischaemia and reperfusion[J]. Cardiovasc Res, 2000, 48 (2) : 346-356.
    [15] Vinten Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial repefusion injury[J]. Cardiovasc Res, 2004, 61 (3) :481-497.
    [16] Haunstetter A, Izumo S. Apoptosis: basic mechanisms and implications for cardiovascular disease[J]. Circ Res, 1998, 82 (11) :1111-1129.
    [17] Saraste A, Pulkki K, Kallajoki M, et al. Apoptosis in human acute myocardial infarction[J]. Circulation, 1997, 95 (2) : 320-323.
    [18] Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium[J]. Circ Res, 1996, 79 (5) : 949-956.
    [19] Narula J, Pandey P, Arbustini E, et al. Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy[J]. Proc Natl Acad Sci USA, 1999, 96 (14) : 8144-8149.
    [20] Ru¨diger von Harsdorf, Pei-Feng Li, Rainer Dietz. Signaling Pathways in Reactive Oxygen Species-Induced Cardiomyocyte Apoptosis[J]. Circulation, 1999, 99(22): 2934- 2941.
    [21] Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species[J]. Biochemistry (Mosc), 2005, 70 (2) :200-214.
    [22] Martin Ott, Vladimir Gogvadze, Sten Orrenius, et al. Mitochondria, oxidative stress and cell death[J]. Apoptosis, 2007, 12 (5) :913-922.
    [23] Fariss MW, Chan CB, Patel M, et al. Role of mitochondria in toxic oxidative stress[J]. Mol Interven, 2005, 5 (2) : 94-111.
    [24] Wolter KG, Hsu YT, Smith CL, et al. Movement of Bax from the cytosol to mitochondria during apoptosis[J]. J Cell Biol, 1997, 139 (5) :1281-1292.
    [25] Chen Z, Chua CC, Ho YS, et al. Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice[J]. Am J Physiol Heart Circ Physiol, 2001, 280 (5) : H2313-2320.
    [26] Yaoita H, Ogawa K, Maehara K, et al. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor[J]. Circulation, 1998, 97 (3) :276-281.
    [27] Saikumar P, Dong Z, Mikhailov V, et al. Apoptosis: definition, mechanisms, and relevance to disease[J]. Am J Med, 1999, 107 (5) :489-506.
    [28] Rich T, Allen RL, Wyllie AH. Defying death after DNA damage[J]. Nature, 2000, 407 (6805) : 777-783.
    [29] Schwartzman RA, Cidlowski JA. Apoptosis: The biochemistry and molecutar biology of programmed cell death[J]. Endocr Rev, 1993,14 (2) :133-151.
    [30] Gruss HJ, Dower SK. Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas[J]. Blood, 1995, 85 (12) :3378-3404.
    [31] Ashkenazi A, Dixit VM. Death receptors:signaling and modulation[J]. Science, 1998, 281 (5381) :1305-1313.
    [32] Krammer PH. CD95 (APO-1/Fas) -mediated apoptosis:live and let die[J]. Adv Immunol, 1999, 71:163-210.
    [33] Muzio M, Chinnaiyan AM, Kischkel FC, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/Apo-1) death-inducing signaling complex[J]. Cell, 1996, 85 (6) : 817-827.
    [34] Zha J, Weiler S, Oh KJ, et al. Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis[J].Science,2000,290(5497):1761-1765.
    [35] Stephanou A, Scarabelli TM, Brar BK, et al. Induction of apoptosis and Fas receptor/Fas ligand expression by ischemia/reperfusion in cardiac myocytes requires Serine 727 of the STAT-1 transcription factor but not tyrosine 701[J]. J Biol Chem, 2001, 276 (30): 28340-28347.
    [36] Hsu H, Shu HB, Pan MG, et al. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor1 signal transduction pathways[J]. Cell, 1996, 84 (2) : 299-308.
    [37] Wang CY, Mayo MW, Korneluk RG, et al. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation[J]. Science, 1998, 281 (5383) : 1680-1683.
    [38] Crow MT, Mani K, Nam YJ, et al. The mitochondrial death pathway and cardiac myocyte apoptosis[J]. Circ Res, 2004, 95 (10) : 957-970.
    [39] Weiss J N, Korge P, Honda HM, et al. Role of the mitochondrial permeability transition in myocardial disease[J]. Circ Res, 2003, 93 (4) : 292-301.
    [40] Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion–a target for cardioprotection[J]. Cardiovasc Res, 2004, 61 (3) : 372-385.
    [41] Ott M, Robertson JD, Gogvadze V, et al. Cytochrome c release from mitochondria proceeds by a two-step process[J]. Proc Natl Acad Sci USA, 2002, 99 (3) : 1259-1263.
    [42] Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade[J]. Cell, 1997, 91 (4) : 479-489.
    [43] Han Z, Li G, Bremner T A, et al. A cytosolic factor is required for mitochondrial cytochrome c efflux during apoptosis[J]. Cell Death Differ, 1998, 5 (6) : 469-479.
    [44] Susin S A, Lorenzo H K, Zamzami N, et al. Molecular characteriztion of mitochondrial apoptosis-inducing factor[J]. Nature, 1999, 397 (6718) : 441-446.
    [45] CandéC, Cohen I, Daugas E, et al. Apoptosis-inducing factor (AIF) : a novel caspase-independent death effector released from mitochondria[J]. Biochimie, 2002, 84 (2-3) : 215-222.
    [46] Susin SA, Zamzami N, Castedo M, et al. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease[J]. J Exp Med, 1996, 184 (4) : 1331-1341.
    [47] Chai J, Du C, Wu JW, et al. Structure and biochemical basis of apoptotic activation by Smac/DIABLO[J]. Nature, 2000, 406 (6798) : 855-862.
    [48] Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome-c dependent caspase activation by eliminating IAP inhibition[J]. Cell, 2000,102 (1): 33-42.
    [49] Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNAse when released from mitochondria[J]. Nature, 2001,412 (6842) : 95-99.
    [50] Suzuki Y, Imai Y, Nakayama H, et al. A serine protease, HtrA2, is released from the mitochondria and in teracts with XIAP, inducing cell death[J]. Mol Cell, 2001, 8 (3) : 613-621.
    [51] Susin SA, Lorenzo HK, Zamzami N, et al. Mitochondrial release of caspase-2 and-9 during the apoptotic process[J]. J Exp Med, 1999, 189 (2) : 381-394.
    [52] Cory S, Adams JM. The Bcl-2 family: regulators of the cellular life-or-death switch[J]. Nature Reviews Cancer, 2002, 2 (9) : 647-656.
    [53] Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC[J]. Nature, 1999, 399 (6735): 483-487.
    [54] Huang X, Zhai D, Huang Y. Study on the relationship between chacium-induced calcium release from mitochondria and PTP opening[J]. Mol Cell Biochem, 2000, 213 (1-2) : 29-35.
    [55] Chen EH, Kirsch DG, Clem RJ, et al. Conversion of Bcl-2 to a Bax-like death effector by caspase[J]. Science, 1997, 278 (5345) : 1966-1968.
    [56] Luo X, Budihardjo I, Zou H, et al. Bid, a Bcl-2 interacting protein, mediates cytochrome c release from mitochondria in response toactivation of cell surface death receptors[J]. Cell, 1998, 94 (4) : 481-490.
    [57] Degterev A, Boyce M, Yuan J. A decade of caspases[J]. Oncogene, 2003, 22 (53): 8543-8567.
    [58] Cohen GM. Caspases: the executioners of apoptosis[J]. Biochem J, 1997, 326 (pt1): 1-16.
    [59] Boatright KM, Salvesen GS. Mechanisms of caspase activation[J]. Curr Opin Cell Biol, 2003, 15 (6) : 725-731.
    [60] Shi Yigong. Caspase activation, inhibition, and reactivation: A mechanistic view[J]. Protein Sci, 2004, 13 (8) : 1979-1987.
    [61] Tamm I, Wang Y, Sausville E, et al. IAP-family protein surviving inhibits caspase activity and apoptosis induced by Fas(CD95), Bax, caspases, and anticancer drugs[J]. Cancer Res, 1998, 58 (23) : 5315-5320.
    [62] Huang Y, Park YC, Rich RL, et al. Structrual basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain[J]. Cell, 2001, 104 (5) : 781-790.
    [63] Schuler M, Green DR. Mechanisms of p53-dependent apoptosis[J]. Biochem Soc Trans, 2001, 29 (pt 6) : 684-688.
    [64] Shen JG, Quo XS, Jiang B, et al. Chinonin, a novel drug against cardiomyocyte apoptosis induced by hypoxia and reoxygenation[J]. Biochim Biophys Acta, 2000, 1500 (2):217-226.
    [65] Xie Z, Koyama T, Abe K, et al. Upregulation of p53 protein in rat heart subjected to a transient occlusion of the coronary artery followed by reperfusion[J]. Jpn J Physiol, 2000, 50 (1) :159-162.
    [66] Zhuang S, Demirs JT, Kochevar IE. p38 mitogen-activated protein kinase mediated bid cleavage, mitochondrial dysfunction, and caspase-3 activation during apoptosis induced by singlet oxygen but not by hydrogen peroxide[J]. J Bio Chem, 2000, 275 (34) : 25939-25948.
    [67] Steenbergen C. The role of p38 mitogen-activated protein kinase in myocardial ischemia/reperfusion injury; relationship to ischemic preconditioning[J]. Basic Res Cardiol, 2002, 97 (4) : 276-285.
    [68] Davis RJ. Signal transduction by the JNK group of MAP kinases[J]. Cell, 2000, 103 (2): 239-252.
    [69] Yue TL, Wang C, Gu JL, et al. Inhibition of extracellular signal–regulated kinase enhances ischemia/reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart[J]. Circ Res, 2000, 86 (6): 692-699.
    [70] Wang X, Martindale JL, Liu Y, et al. The cellular response to oxidative stress: influences of mitogen-activated protein protein kinase signalling pathways on cell survival[J]. Biochem J, 1998, 333 (pt 2) : 291-300.
    [71] Ferrer I, Friguls B, DalfóE, et al. Early modifications in the expression of mitogen activated protein kinase (MAPK/ERK), stress activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia[J]. Acta Neuropathol, 2003, 105 (5) : 425-427.
    [72] Ma XL, Kumar S, Gao F, et al. Inhibition of p38 mitogen-actvated protein kinases decreases cardiomyocyte apoptosis and improve cardiac function after myocardial ischemia and reperfusion[J]. Circulation, 1999, 99 (13) : 1685-1691.
    [73] Ferrandi C, Ballerio R, Gaillard P, et al. Inhibition of c-Jun N-terminal kinase decreases cardiomyocyte apoptosis and infarct size after myocardial ischemia and reperfusion in anaesthetized rats[J]. Br J Pharmacol, 2004, 142 (6) : 953-960.
    [74] Cheng CK, Fan QW, Weiss WA. PI3K signaling in glioma-animal models and therapeutic challenges[J]. Brian Pathol, 2009, 19 (1) : 112-120.
    [75] Cantley LC. The Phosphoinositide 3-kinase pathway[J]. Science, 2002, 296 (5573): 1655-1657.
    [76] Kandel ES, Hay N. The regulation and activities of the multifunctional serine/ threonine kinase AKT/PKB[J]. Exp Cell Res, 1999, 253 (1) : 210-229.
    [77] Song G, Ouyang G, Bao S. The activation of AKT/PKB signaling pathway and cell survival[J]. J Cell Mol Med, 2005, 9 (1) : 59-71.
    [78] Gu Xiang, Feng Yibai, Shi Chunzhi, et al. Antiapoptotic mechanism of Insulin on Reoxygenation-induced Injury in Cultured Cardiomyocytes of Neonatal Rats[J]. Journal of Huazhong University of Science and technology (Medical Sciences), 2005, 25 (6) : 632-635.
    [79] Kim EC, Yun BS, Ryoo IJ, et al. Complestatin prevents apoptotic cell death: inhibition of a mitochondrial caspase pathway through AKT/PKB activation[J]. Biochem Biophys Res Commun, 2004, 313 (1): 193-204.
    [80] Bopassa JC, Ferrera R, Gateau-Roesch O, et al. PI3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning[J]. Cardiovasc Res, 2006, 69 (1): 178-185.
    [81] Jiang W, Li W, Han L, et al. Biologically active triterpenoid saponins from Acanthopanax senticosus[J]. Journal of Natural Products, 2006, 69 (11): 1577-1581.
    [82]黄桂香.刺五加药理研究及临床应用概况[J].时珍国医国药, 2002,13 (8) : 496-497.
    [83]张喜旺,杨亚平.中药刺五加化学成分研究的最新进展[J].时珍国医国药, 2002, 13 (1): 45.
    [84] Shao CJ, Ryoji K, Xu JD, et al. Saponins from Leaves of Acanthopanax Senticosus Harms,Ciwujia. Structures of Ciwujia nosides B,C1,C2,C3,C4,Dl,D2 and E[J]. Chem Pharm Bull, 1988, 36 (2): 601-606.
    [85] Shao CJ, Ryoji K, Xu JD, et al. Saponins from Leaves of Acanthopanax Senticosus Harms, Ciwujia. Structures of Ciwujia nosides B,A1,A2,A3,A4 and D3[J]. Chem Pharm Bull, 1989, 37 (1) : 42-46.
    [86]睢大筼,曲绍春,于小风,等.刺五加叶皂苷对大鼠心肌缺血再灌注损伤的保护作用[J].中国中药杂志, 2004, 29 (1): 71-74.
    [87]睢大筼,于小风,曲绍春,等.刺五加叶皂苷对大鼠心肌缺血再灌注心律失常的影响[J].吉林大学学报(医学版), 2004, 30 (4): 530-533.
    [88]于大海.刺五加总皂苷对大鼠心肌缺血性再灌注的保护作用及机制研究[J].药学实践杂志, 2008, 26 (3): 197-199.
    [89]张玉华,韩丛成,曲绍春,等.刺五加叶皂苷对大鼠实验性心肌梗死的保护作用[J].中国新药杂志, 2002, 11 (9): 695-697.
    [90]刘冷,睢大筼,曲绍春,等.刺五加叶皂苷对急性心肌缺血大鼠心室重构的作用[J].吉林大学学报(医学版), 2004, 30 (1): 66-70.
    [91]翟玉荣,于晓风,曲绍春,等.刺五加叶皂苷对阿霉素诱导大鼠心肌损伤的抗氧化作用[J].人参研究, 2003, 15 (4): 2-4.
    [92]周逸,唐其柱,史锡腾,等.刺五加叶皂苷对心肌ATP敏感性钾通道的作用[J].中国临床药理学与治疗学, 2004, 129 (12): 1369-1373.
    [93]刘兵,杨春梅,睢大筼,等.刺五加叶皂苷对急性血瘀模型大鼠血液流变学的影响[J].武警医学, 2004, 15 (7): 498-501.
    [94]睢大筼,于晓风,曲绍春,等.刺五加叶皂昔对实验性脑缺血大鼠的保护作用[J].中草药, 2005, 36 (4): 561-563.
    [95]李洋,曲绍春,于晓风,等.刺五加叶皂苷对麻醉犬器官血流的影响[J].吉林大学学报(医学版), 2006, 32 (6): 1009-1011.
    [96]于大海,毛士龙.刺五加总皂苷对家兔血小板、凝血功能及血液流变性的影响[J].药学实践杂志, 2008, 26 (4): 272-273.
    [97]睢大筼,韩丛成,于晓风,等.刺五加叶皂昔对高脂血症大鼠血脂代谢的影响及其抗氧化作用[J].吉林大学学报(医学版), 2004, 30 (1): 56-59.
    [98]姜红玉,睢大筼,于晓风,等.刺五加叶皂苷对实验性脑缺血大鼠血液流变学及血小板功能的影响[J].吉林大学学报(医学版), 2004, 30 (3): 384-386.
    [99]陈应柱,顾永建,吴小梅.刺五加皂苷对缺血性脑损伤的保护作用[J].中国急救医学, 2004, 24 (8): 583-584.
    [100]陈建,朱俐,潘永进.刺五加皂甙诱导PC12细胞对缺血的耐受与缺氧诱导因子-1α的表达[J].实用儿科临床杂志, 2006, 21 (24): 1727-1729.
    [101]季秋虹,顾永健,朱俐.刺五加皂甙保护PC12细胞活性与缺氧诱导因子1α的表达[J].中国临床康复, 2006, 10 (43): 92-95.
    [102]刘萍,杨坦,丁玉琴.刺五加皂苷对外周刺激诱发的海马长时程增强效应的影响[J].世界中西医结合杂志, 2008, 3 (7): 390-392.
    [103]吕冬霞,杜爱林,吕学诜,等.刺五加皂苷对肝癌SMMC-7721细胞凋亡的影响[J].中国老年学杂志, 2005, 25 (7): 822-823.
    [104]吴远,叶红军,王俊萍,等.刺五加皂苷脂质体的制备及对肝癌移植瘤的抑制作用[J].中医药学刊, 2006, 24 (6): 1029-1030.
    [105]丰俊东,林代华,刘希琴,等.刺五加皂苷对人肝癌细胞株血管内皮生长因子表达的抑制作用[J].中药新药与临床药理, 2007, 18 (5): 339-341.
    [106]李颖璐,王留兴,樊青霞.刺五加叶皂苷在EC9706裸鼠模型中的抑瘤作用[J].山东医药, 2008, 48 (9): 49-50.
    [107]陈月,王宝贵,张桂英,等.刺五加皂苷的抗辐射损伤作用[J].吉林大学学报(医学版), 2005, 31(3): 423-425.
    [108]周逸,唐其柱,史锡腾,等.刺五加皂甙B对心肌ATP敏感性钾通道的作用[J].中华心律失常学杂志, 2005, 9 (5): 378-380.
    [109]张迪.刺五加皂苷单体B对大鼠急性心肌缺血的保护作用[D].吉林:东北师范大学生理学专业, 2006.
    [110] Kessler-Icekson G, Sperling O, Rotem C, et al. Cardiomyocytes cultured in serum free medium. Growth and creatine kinase activity[J]. Exp Cell Res, 1984, 155 (1): 113-120.
    [111] Suzuki T, Tsuruda A, Katoh S, et al. Purification of endothelin from a conditioned medium of cardiac fibroblastic cells using beating rate assay of myocytes cultured in a serum-free medium[J]. J Mol Cell Cardiol, 1997, 29 (8): 2087-2093.
    [112] Dr?ge W. Free radicals in the physiological control of cell function[J]. Physiol Rev, 2002, 82 (1): 47-95.
    [113] Chen QM, Tu VC , Wu Y, et al. Hydrogen peroxide dose dependent induction of cell death or hypertrophy in cardiomyocytes[J]. Arch Biochem Biophys, 2000, 373 (1): 242-248.
    [114] Von Harsdorf R, Li PF, Dietz R. Signaling pathways in reactive oxygen species- induced cardiomyocyte apoptosis[J]. Circulation, 1999, 99 (22): 2934-2941.
    [115] Wang GW, Schuschke DA. Kang YJ. Metallothionein-overexpressing neonatal mousecardiomyocytes are resistant to H2O2 toxicity[J]. Am J Physiol Heart Circ Physiol, 1999, 276 (pt 2): H167-175.
    [116] Gasz B, Rácz B, Roth E, et al. Pituitary adenylate cyclase activating polypeptide protects cardiomyocytes against oxidative stress-induced apoptosis[J]. Peptides, 2006, 27 (1): 87-94.
    [117] Akao M, O’Rourke B, Kusuoka H, et al. Differential Actions of Cardioprotective Agents on the Mitochondrial Death Pathway[J]. Circ Res, 2003, 92 (2): 195-202.
    [118] Akao M, Takeda T, Kita T, et al.Serfendic acid, a substance extracted from fetal calf serum, as a novel drug for cardioprotection[J]. Cardiovasc Drug Rev, 2007, 25 (4):333-341.
    [119] Cho MH., Niles A, Huang R, et al. A bioluminescent cytotoxicity assay for assessment of membrane integrity using a proteolytic biomarker[J]. Toxicol In Vitro, 2008, 22 (4):1099-1106.
    [120] Corey MJ, Kinders RJ, Brown, LG, et al. A very sensitive coupled luminescent assay for cytotoxicity and complement-mediated lysis[J]. J Immunol Methods, 1997, 207 (1) : 43-51.
    [121] Kim H, Yoon SC, Lee TY, et al. Discriminative cytotoxicity assessment based on various cellular damages[J]. Toxicol Lett, 2009, 184 (1): 13-17.
    [122] Ormerod MG. The study of apoptotic cells by flow cytometry[J]. Leukemia, 1998, 12 (7): 1013-1025.
    [123]彭黎明,王曾礼.细胞凋亡的基础与临床[M].北京:人民卫生出版社, 2000: 16–18, 38-46, 161-166.
    [124] Krysko DV, Vanden Berghe T, D’Herde K, et al. Apoptosis and necrosis: Detection, discrimination and phagocytosis[J]. Methods, 2008, 44 (3): 205-221.
    [125]商玲.常见血清酶学测定在急性心肌梗塞诊断中的应用[J].实用医学检验杂志, 1994, 1 (1): 43.
    [126] Mylonas C, Kouretas D. Lipid peroxidation and tissue damage[J]. In Vivo, 1999, 13 (3): 295-309.
    [127] Milaeva ER. The role of radical reactions in organomercurials impact on lipid peroxidation [J]. J Inorg Biochem, 2006, 100 (5-6): 905-915.
    [128]王秋林,王浩毅,王树人.氧化应激状态的评价[J].中国病理生理杂志, 2005, 21 (10): 2069-2071.
    [129] Karthikeyan K, Bai BR, Gauthaman K, et.al. Cardioprotective effect of the alcoholic extract of Terminalia arjuna bark in an in vivo model of myocardial ischemic reperfusion injury[J]. Life Sciences, 2003, 73 (21): 2727-2739.
    [130] Meldrum DR, Cleveland JC Jr, Cain BS, et al. Increased myocardial tumor necrosis factor alpha in a crystalloid perfused model of cardiac ischemia reperfusion injury [J]. Ann Thrac Surg, 1998, 65 (2): 439-443.
    [131] Stangl V, Baumann G, Stangl K, et al. Negative inotropic mediators released from the heart after myocardial idchemia-reperfusion[J]. Cardiaovasc Res, 2002, 53 (1): 12-30.
    [132] Bellisarii FI, Gallina S, De Caterina R. Tumor necrosis factor-alpha and cardiovascular disease[J]. Ital Heart J, 2001, 2 (6): 408-417.
    [133] Vollmar AM, Kiemer AK. Immunomodulatory and cytoprotective function of atrial natriuretic peptide[J]. Crit Rev Immunol, 2001, 21 (6): 473-485.
    [134] Shono M, Yoshimura M, Nakayama M, et al. Predominant effect of A-type natriuretic peptide on reduction of oxidative stress during the treatment of patients with heart failure[J]. Circ J, 2007, 71 (7): 1040-1046.
    [135] Craig EA, Stevens MV, Vaillancourt RR, et al. MAP3Ks as central regulators of rell fate during development[J]. Developmental dynamics, 2008, 237 (11): 3102-3114.
    [136] Raman M, Chen W and Cobb MH. Differential regulation and properties of MAPKs[J]. Oncogene, 2007, 26 (22): 3100-3112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700