用户名: 密码: 验证码:
TGF-β1、wt-p53和RhoA基因在人前列腺癌组织中的表达及其意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨TGF-β1、wt-p53和RhoA基因在人前列腺癌组织中的表达及其意义。
     方法:本次实验采集标本42例,6例正常前列腺组织来自手术非正常死亡的人体,36例前列腺癌标本为吉林大学前列腺疾病防治研究中心应用经直肠超声引导下前列腺6点活检技术穿刺采集或手术采集。用HE染色确定前列腺标本的病理类型,采用免疫组织化学、RT-PCR、Western-blot等技术定性和定量检测各标本中TGF-β1、wt-p53和RhoA基因在正常前列腺组织和前列腺癌组织中的表达。采用免疫组织化学方法检测了体外培养的人前列腺癌细胞系PC3细胞的TGF-β1、和RhoA蛋白的表达,并采用明胶酶谱法检测了PC3细胞培养上清中MMP-2和MMP-9的表达。
     结果:①正常前列腺外腺和癌旁组织间的TGF-β1、wt-p53和RhoA表达无差异(P>0.05),均未发现wt-p53基因突变;②与正常前列腺组织和癌旁组织相比,TGF-β1和RhoA在前列腺癌组织中高表达(P<0.01),wt-p53低表达(P<0.01),且部分基因突变为mt-p53;③免疫组织化学结果显示,随着前列腺癌分化程度的降低,TGF-β1、和RhoA的表达都增高,呈负相关关系(r =-0.7884,P=0.0023;r =-0.6758,P=0.0158);④随着前列腺癌分化程度的降低,mt-p53表达逐渐增强,呈负相关关系(r =-0.7662,P=0.0037),说明wt-p53基因的突变率增加,mt-P53蛋白在细胞内积聚;⑤RT-PCR和Western-blot结果显示,已发生远处转移的前列腺癌组织中TGF-β1、wt-p53和RhoA的mRNA转录和蛋白表达,与无转移灶者相比差异有统计学意义(P<0.01);⑥光学显微镜下可以见到在PC3细胞的细胞核和细胞质中均有棕黄色颗粒,表明TGF-β1、和RhoA的表达均呈阳性;⑦PC3细胞培养上清中有MMP-2和MMP-9的表达。
     结论:无论是临床标本还是体外培养的细胞系检测结果均表明TGF-β1、wt-p53和RhoA基因与前列腺癌的发生和进展相关,并在前列腺癌的浸润转移中起重要作用,利用联合检测TGF-β1、wt-p53和RhoA基因的表达可有助于对前列腺癌进行早期诊断,评估肿瘤的浸润性进展过程,评价化疗治疗效果和预后。
Prostate cancer is the most common malignancy generated from the male reproductive system. In the United States and Europe, it has the highest incidence among the cancer-related deseases and is ranked as the second cause of mortality which is only less than lung cancer. In China, previously its incidence and mortality rates were relatively low but they have shown a rapid upward tendency in recent years, while the age structure, lifestyle and living standard of the society changes. Most cases of the prostate cancer are currently diagnosed at the terminal stage because the location of the prostate is hidden and the clinical symptoms appear later, and many men has lost the opportunity to treat.
     Since 1989, an application of the serum PSA screening has been conducted nation-widely for prostate cancer in the United States and early detection and early treatment for prostate cancer have been achieved. Since 2000, both serum prostate-specific antigen and B-ultrasound-guided transrectal prostate biopsy were applied to screen prostate cancer for men over the age of 50 in Changchun City by Jilin University Research Center for the Control and Prevention Prostate Disease. The prostate cancer detection rate was 1.7%, and approximately 42% of advanced cases, of which 18% of patients associated with bone metastasis. As a result, the early detection of patients with initial inspection rate(from 28% to 58%)greatly improved. Men currently diagnosed at the early stages of prostate cancer can, in many cases, be effectively treated by surgery or radiation and survive for 10 years. However, androgen deprivation therapy is only a palliative treatment for one third of the patients. About 12-18 months later, the disease will recur and ultimately develop into hormone-refractory prostate cancer and metastatic prostate cancers that are essentially incurable and not sensitive to either chemotherapy or radiation therapy. These patients always lead lives of poor quality because of urinary tract obstruction and spinal metastasis, and their prognosis is poor. Therefore, it is very important for us to improve the Group screening project to raise the early detection rate, to study the factors which affect the tumor metastasis, and to further explore the ways to reverse or slow down the process. Thus, it is being received increasing attention to diagnose and treat prostate carcinoma by the method of tumor gene.
     TGF-β1 (transforming growth factor beta 1) has a wide range of biological activity in vivo or in vitro, including the regulation of cell growth, differentiation, apoptosis and extracellular matrix protein synthesis. Under normal physiological conditions, TGF-β1 can induce the apoptosis of both body cells and tumor cells.
     When TGF-β1 mediated signal transduction pathway mutates in the tumor progression, TGF-β1 is over-expressed and increases tumor proliferation, migration and invasion. As TGF-β1 can promote tumor angiogenesis, cell spread, immune suppression and synthesis of extracellular matrix, etc, it can provide an appropriate micro-environment for the proliferation, migration and invasion of human tumor.
     Wt-p53 gene is the most relevant to a variety of human tumors among the genes discovered so far. The mutation of wt-p53 is the most common change of tumor genetics, and it is necessary for mt-p53 to maintain the proliferation of human carcinoma cells. Not wt-P53 but mt-P53 is detected by the routine immunohistochemical methods. The intracellular concentration of mt-P53 is a general resultant to the extent of wt-p53 mutations. p53 gene in the normal cells is wild-type p53 gene without mutations, whose function is monitoring the integrity of the genome, controlling the cell division cycle, and inducing cell apoptosis. Therefore it can inhibit the genesis and proliferation of the tumor cell. Either the reactivation of wt-p53 or the inactivation of mt-p53 in the tumor cells can lead the tumor cells to apoptosis. RhoA (Ras homology A) is an important member of the intracellular signaling transducers. It can mediate actin polymerization, actomyosin contraction and microtubule dynamics, so its function is to maintain the cytoskeleton, basic movement, mitosis and directional differentiation of stem cells. Therefore, RhoA is very important in the biological developmental process. RhoA is highly expressed and actived in tumor cells during tumor development and progression, which can regulate the expression and activity of cell cycle-related gene or protein to promote the division and clonal expansion of the undifferentiated cell and increase the tumor grade. It also induces the changes of skeleton, morphology and adhesion of the tumor cell in order to facilitate cell migration movement. It may regulate TGF-β1, VEGF expression, etc to promote tumor angiogenesis, too. On the other hand, we can partially reverse the malignant phenotype of cancer cells and inhibit the proliferation of tumor cells by reducing the expression of RhoA.
     Matrix metalloproteinases (MMPs) are a large family in the protease category. They are a kind of endo-protease which depend on Zn~(2+) and Ca~(2+) and they can completely degrade the extracellular matrix(ECM)and basement membrane(BM), which provide a premise for the tumor to invade and metastasize in the body. TGF-β1 and RhoA can regulate the extracellular matrix and basement membrane degradation and reconstructionby by regulating MMPs and TIMP level and thus promote the local tumor infiltration.
     In this paper, we select TGF-β1, wt-P53, and RhoA as the experiment target genes because they are closely related to the genesis and development of the majority of human tumors. To investigate their relationship with the malignant degree and metastasis of prostate cancer, we first adopt immunohistochemistry, RT-PCR, Western-blot methods to observe their expressions and changes in human prostate normal, carcinomatous and paraneoplastic tissues; then we adopt immunohistochemistry to observe the expressions of TGF-β1 and RhoA protein in cultured human prostate cancer cell lines PC3 in vitro; finally, we use gelatin zymography to detect the MMP-2 and MMP-9 expressions in the supernatant of PC3 cell culture. Thus, we can find some new valuable reference indexes for the early diagnosis of prostate cancer and assess the tumorous invasive power, therapeutic effect and prognosis, and even provide some new valuable ideas for the treatment of prostate cancer.
     Objective:
     ①To detect the mRNA and protein expressions of TGF-β1, wt-p53 and the RhoA genes in prostate normal tissues and prostate cancerous tissues;
     ②To analyse the relationship between expressions and changes of the TGF-β1, wt-p53, RhoA genes and the malignant degree of the prostate cancer;
     ③To analysis the relationship between expressions and changes of the TGF-β1, wt-p53, RhoA genes and the metastasis of the prostate cancer;
     ④To discuss the association of TGF-β1, wt-p53, RhoA and their roles to determine the progression and prognosis of prostate cancer.
     Methods:
     ①The pathological classification of all specimens was determined by HE staining methods.
     ②Immunohistochemistry, RT-PCR and Western-blot techniques were used to qualitatively and quantitatively detect the protein and mRNA expressed by TGF-β1, wt-P53 and RhoA genes in normal prostatic, cancerous and paraneoplastic tissues.
     ③The method of Immunohistochemistry was used to detect the expressions of TGF-β1 and RhoA protein in PC3 cells cultured in vitro.
     ④Gelatin zymography was performed to examine the presence of MMP-9 and MMP-2 in the culture supernatants from PC3 cells.
     Results:
     ①It is similar for TGF-β1, wt-p53, and RhoA genes to be expressed between in the prostate normal external gland and in the prostatic paraneoplastic tissues(P>0.05), and wt-p53 gene isn’t found to have mutated.
     ②TGF-β1, wt-p53 and RhoA genes were more expressed in the prostate cancer tissues than in prostate normal and paraneoplastic tissues (P<0.01). On the contrary, wt-p53 gene was less expressed(P<0.01), and a part of it has mutated into mt-p53 gene.
     ③The immunohistochemistry results shown that the expressions of TGF-β1 and RhoA protein increased along with the degree of differentiation of prostate cancer decreasing. There is a negative correlationship between them(r =-0.7884,P=0.0023;r =-0.6758,P=0.0158).
     ④With the degree of differentiation of prostate cancer decreasing, the expressions of mt-p53 gradually increased(r =-0.7662,P=0.0037). This indicated that the mutation rate of wt-p53 gene increased and mt-P53 protein accumulated in the cancerous cell.
     ⑤RT-PCR and Western-blot results showed that the mRNA transcriptions and protein expressions of TGF-β1, wt-p53 and RhoA genes were statistically different in the prostate cancerous cell when distant metastasis had occurred and when metastasis had not happened(P<0.01)and such a diffrence is statistically meaningful.
     ⑥It was shown that TGF-β1 and RhoA protein were expressed in the PC3 cells from the results of immunohistochemistry.
     ⑦We could see that two electrophoretic bands of MMP-9 and MMP-2 were showed significantly in the Gelatin zymography for the culture supernatants of PC3 cells.
     Conclusions:
     In this experiment, we used immunohistochemistry, RT-PCR, Western-blot techniques to detect the expressions of TGF-β1, wt-p53 and RhoA genes in human normal prostate tissues, carcinomatous and paraneoplastic tissues, adopted immunohistochemistry methods to observe the expressions of TGF-β1 and RhoA protein in PC3 cells in vitro,and also usesd gelatin zymography to detect the MMP-2 and MMP-9 expressions in the supernatant of PC3 cells’culture supernatant. From the results, we find them relative to the incidence and metastasis of human prostate cancer and we can conclude that these genes play important roles in the progression of prostate cancer. Therefore, the joint detection of TGF-β1, wt-p53 and RhoA genes is helpful to the early diagnosis of prostate cancer or assessment of neoplastic invasive power, therapeutic effect and prognosis.
引文
[1] Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2007[R]. CA Cancer J Clin, 2007, 57(1):43-66.
    [2]赵雪俭,孔祥波,王伟华.前列腺特异性抗原集团普查是前列腺癌早期诊治的最佳途径[J].中华男科学, 2003, 9(8): 563-566.
    [3]计国义,张灵,赵薇,等.超声引导下前列腺6点活检诊断早期前列腺癌[J].中国男科学杂志, 2005, 19(4): 22-24.
    [4]黄甫初,钟惟德,刘建平.前列腺癌130例治疗分析[J].中华泌尿外科杂志, 1997, 18(4): 231-232.
    [5]张灵,计国义,李晓萌,等.前列腺癌集团检诊对临床前列腺癌诊断的影响[J].中华泌尿外科学杂志,2004, 25(2): 103-105.
    [6]王尧,王伟华,计国义,等.吉林地区超声引导经直肠前列腺活检513例报告[J].中国老年学杂志, 2008, 28(19): 1926-1927.
    [7] Sasaki T, Nakamura K, Ogawa K, et al. Radiotherapy for patients with localized hormone-refractory prostate cancer: results of the Patterns of Care Study in Japan[J]. BJU Int, 2009, 104(10):1462-1466.
    [8] Wu H, Sun L, Moul JW, et al. Watchful waiting and factors predictive of secondary treatment of localized prostate cancer[J]. J Urol, 2004,171(3): 1111-1116.
    [9] Lin DW, Porter M, Montgomery B. Treatment and survival outcomes in young men diagnosed with prostate cancer: a Population-based Cohort Study[J]. Cancer, 2009, 115(13): 2863-2871.
    [10] Pardali K, Moustakas A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer[J]. Biochim Biophys Acta, 2007, 1775(1): 21-62.
    [11] Kappler M, Taubert H, Bartel F, et al. Radiosensitization, after a combined treatment of survivin siRNA and irradiation, is correlated with the activation of caspases 3 and 7 in a wt-p53 sarcoma cell line, but not in a mt-p53 sarcoma cell line[J]. Oncol Repa, 2005, 13(1): 167-172.
    [12] Faried A, Faried LS, Kimura H, et al. RhoA and RhoC proteins promote both cell proliferation and cell invasion of human oesophageal squamous cell carcinoma cell lines in vitro and in vivo[J]. Eur J Cancer, 2006, 42(10):1455-1465.
    [13]谭龙益,孔宪涛.转化生长因子β受体的研究进展[J].国外医学临床生物化学与检验学分册, 1997, 8(2): 63-66.
    [14] Korehynskyi O, Landstrom M, Stoika R, et al. Expression of Smad Proteins in human colorectal cancer[J]. Int J Cancer, 1999, 82(2):197-202.
    [15] Massague J. TGF-βsignal transduction[J]. Annu Rev Biochem, 1998, 67(7): 753-791.
    [16] Piek E, Heldin CH, Dijke PT. Specificity, diversity, and regulation in TGF-βsuperfamily signaling[J]. FASEBJ, 1999, 13(15): 2105-2124.
    [17] Wrana JI, Attisano L, Wieser R, et al. Mechanism of activation of the activation of the TGF-beta receptor[J]. Nature, 1994, 370(6488): 341-347.
    [18] Massague I, Chen YG. Controlling TGF-beta signaling [J]. Genes, 2000, 14(6): 627-644.
    [19] Kretzschmar M, Liu F, Hata A, et al. The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase [J]. Genes Dev, 1997, 11(8): 984-995.
    [20] Wrana JL. Regulation of smad activity [J]. Cell, 2000, 100(2): 189-192.
    [21]牛秀珑,王越,梁国庆.转化生长因子β的研究进展[J].医学综述, 2004, 10(4): 209-210.
    [22]张志梅.转化生长因子-β与恶性肿瘤关系的研究进展[J].重庆医学, 2007, 36(2): 173-175.
    [23]李泽良,杨野,李振华,等.前列腺癌组织中TGF-β1 mRNA表达及其临床意义[J].中华男科学杂志, 2005, 11(7): 511-513.
    [24]宗瑞平,白冬雨,赵焕,等.前列腺良性增生、上皮内瘤及前列腺癌中TGFβ1、CD105与血管生成及预后关系的研究[J].江西医药, 2005, 40(9): 516-517.
    [25] Thompsm TC, Truong LD, Timme TL, et al. Transgsenic models for the study of prostate cancer[J]. Cancer, 1993, 71(3 SuppI): 1165-1171.
    [26] Truong LD, Kadmon D, McCune BK, et al. Association of transforming growth factor-beta 1 with prostate cancer: an immunohistochemical study[J]. Hum Pathol, 1993, 24(1): 4-9.
    [27] Widing G, Zgmeier, Knabbe c, et al. Differential effects of transforming growth factor beta on human prostate cancer cells in vitro[J]. Mol Cell Endocrinol. 1989, 62(1): 79-87.
    [28] Tu H, Jacobs SC, Borkowski A, et al. Incidence of apoptosis and cell proliferation in prostate cancer: relationship with TGF-beta1 and bcl-2 expression[J]. Int J Cancer, 1996, 69(5): 357-363.
    [29] Steiner M, Barrack ER. Transforming growth factor-beta 1 overproduction in prostate cancer: effects on growth in vivo and in vitro[J]. Mol Endocrinol, 1992 , 6(1): 15-25.
    [30] Arrick BA, Lopez AR, Elfman F, et al. Altered metabolic and adhesive properties and increased tumorigenesis associated with increased expression of transforming growth factor beta 1[J]. J Cell Biol, 1992, 118(3): 715-726.
    [31] Chang HL, Gillett N, Figari I, et al. Increased transforming growth factor beta expression inhibits cell proliferation in vitro, yet increases tumorigenicity and tumor growth of Meth A sarcoma cells[J]. Cancer Res, 1993, 53(18): 4391-4398.
    [32] Tuxhorn JA, Ayala GE, Smith MJ, et al. Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling[J]. Clin Cancer Res, 2002 ,8(9): 2912-2923.
    [33]丁国芳,徐银峰,杨最素,等. TGF-β1在前列腺癌中的表达及其与生存率关系的研究[J].浙江医学, 2006, 28(9): 709-711.
    [34] Cardillo MR, Petrangeli E, Perracchio L, et al. Transforminggrowth factor-beta expression in prostate neoplasia[J]. Anal Quant Cytol Histol, 2000, 22(1): 1-10.
    [35] Stravodimos K, Constantinides C, Manousakas T, et al. Immunohistochemical expression of transforming growth factor beta 1 an dnm-23H1 antioncogene in prostate cancer: divergent correlation with clinicopathological parameters[J]. Anticancer Res, 2000, 20(5C): 3823-3828.
    [36] Matuo Y, Nishi N, Takasuka H, et al. Production and significanceof TGF-βin AT3 metastatic cell line established from the dunning rat prostaticadenocarcinoma[J]. Biochem Biophys Res Commun, 1990, 166(2): 840-847.
    [37]刘少平,董卫国,罗和生,等.结直肠癌患者血清转化生长因子β1含量检测及临床意义[J].武汉大学学报(医学版), 2009, 30(5): 640-643.
    [38]赵国仁,朱凌冬,安纲.乳腺癌中转化生长因子TGFβ1mRNA及蛋白表达及意义[J].中国实用医药, 2008, 3(13): 15-17.
    [39] Krippl P, Langsenlehner U, Renner W, et al. The L10P polymorphism of the transforming growth factor-beta 1 gene is not associated with breast cancer risk[J]. Cancer Lett, 2003,201(2): 181-184.
    [40] Chod J, ZávadováE, Halaska M, et al. Transforming growth factor-beta 1 as amarker in patients with operable breast cancer[J]. Ceska Gynekol, 2007, 72(2): 112-115.
    [41]吴琦,张明,董巍,等.肺癌患者血清转化生长因子β1水平检测及临床意义[J].临床肺科杂志, 2006, 11(1): 31-32.
    [42]冯保印,刘章锁,于善法. TGF-β在非小细胞肺癌中的表达及意义[J].河南医学研究, 2008, 17(3): 212-214.
    [43]朱红,项锋钢. TGF-βmRNA在肺腺癌组织中的表达[J].青岛大学医学院学报, 2007, 43(5): 419-423.
    [44] Paduch R, Kandefer-SzerszeńM, Szuster-Ciesielska A, et al. Transforming growth factor-beta1 modulates metalloproteinase-2 and -9, nitric oxide, RhoA and alpha-smooth muscle actin expression in colon adenocarcinoma cells[J]. Cell Biol Int, 2010, 34(2): 213-223.
    [45] Lee J, Ko M, Joo CK. Rho plays a key role in TGF-beta1-induced cytoskeletal rearrangement in human retinal pigment epithelium[J]. J Cell Physiol. 2008, 216(2): 520-526.
    [46] Gorelik L, Flavell RA. Immune-mediated eradieation of tumors through the bloekade of transforming growth factor beta signaling in T cells[J]. NatMed, 2001, 7(10): 1118-1122.
    [47]王旭东. TGF-β及其受体与肿瘤关系的研究进展[J].中国肿瘤临床, 2005, 32(17): 1016-1020.
    [48] Cooper CR, Chay CH, Gendernalik JD, et al. Stromal factors involved in prostate carcinoma metastasis to bone[J]. Cancer, 2003, 97(3 Suppl): 739-747.
    [49] Chen A, Davis BH, Sitrin MD, Brasitus TA, et al. Transforming growth factor-beta 1 signaling contributes to Caco-2 cell growth inhibition induced by 1,25(OH)(2)D(3)[J]. Am J Physiol Gastrointest Liver Physiol, 2002, 283(4): G864-874.
    [50] Monkawa T, Hiromura K, Wolf G, et al. The hypertrophic effect oftransforming growth factor-beta is reduced in the absence of cyclin-de-pendent kinase-inhibitors p21 and p27[J]. J Am Soc Nephrol, 2002, 13(5): 1172-1178.
    [51] Jacks T, Weinberg RA. Cell-cycle control and its watchman[J]. Nature, 1996, 381(6584): 643-644.
    [52] Kastan MB, Bartek J. Cell-cycle checkpoints and cancer[J]. Nature, 2004, 432(7015): 316-323.
    [53]张常华,何裕隆,詹文华,等.多发性结直肠癌中抑癌基因p53的表达与突变[J].中华实验外科杂志, 2005, 3(22): 305-308.
    [54]王用金,杨建峰,汤鲁霞,等.结肠癌cerbB2, p53, CEA的表达及临床治疗的指导意义[J].临床医学, 2005, 25(5): 44-45.
    [55] Massague J. G1 cell-cycle control and cancer[J]. Nature, 2004, 432(7015): 298-306.
    [56] Chang F, Syrjanen S, Tervahauta A, et al. Tumourigenesis associated with the P53 tumor suppressor gene[J]. Br J Cancer, 1993, 68(4): 653-661.
    [57] Walker D, Bond J, Tarone R, et al. Evolutionary conservation and somatic mutation hotspot maps of p53: correlation with p53 protein structural and functional features[J]. Oncogene, 1999, 18(1): 211-218.
    [58] Hong SI, Hong WS, Jang JJ, et al. Alterations of p53 gene in primary gastric cancer tissues[J]. Anticancer Res, 1994, 14(3B): 1251-1255.
    [59] Tamura G, Kihana T, Nomura K. Detection of frequent p53 gene mutations in primary gastric cancer by cell sorting and polymerase chain reaction single-strand conformation polymorphism analysis[J]. Cancer Res, 1991, 51(11): 3056-3058.
    [60]夏建川.胃癌的细胞遗传学研究进展[J].国外医学:遗传学分册, 1994, 17(1): 27-31.
    [61]周鹏,罗志刚. P53在初发性、复发性膀胱肿瘤中的表达及其临床意义[J].南华大学学报, 2006, 34(2): 191-194.
    [62] Wang X, Jones TD. P53 expression in small cell carcinoma of the urinary bladder: biological and prognostic implications[J]. Anticancer Res, 2005, 25(3B): 2001-2004.
    [63] Piaton E, Faynel J. p53 immunodetection of liquid-based processed urinary samples helps toidentify bladder tumours with a higher risk of progression[J]. Br J Cancer, 2005, 93(2): 242-247.
    [64] Wei M, Wanibuchi H, Morimura K, et al. Carci-nogenicity of dimethylarsinic acid in male F334rats and genetic alterations ininduced urinarybladder tumors[J]. Cancino-genesis, 2002, 23(8):1387-1397.
    [65] Takahashi T, Carbone D, Takahashi T, et al. Wild-type but not mutant p53 suppresses the growth of human lung cancer cells bearing multiple genetic lesions[J]. Cancer Res, 1992, 52(8): 2340-2343.
    [66] Mechanic LE, Marrogi AJ, Welsh JA, et al. Polymorphisms in XPD and Tp53 and mutation in human lung cancer[J]. Carcinogenesis, 2005, 26(3): 597-604.
    [67] Park JK, Lee HJ, Kim JW, et al. Differences in p53 gene polymorphisms between korean schizophrenia and lung cancer patients[J]. Schizophr Res, 2004, 67(1): 71-74.
    [68] Mahasneh AA, Abdel-Hafiz SS. Polymorphism of p53 gene injordanian population and possible associations with breast cancer and lung adenocarcinoma[J]. Saudi Med J, 2004, 25(11): 1568-1573.
    [69]李琰,张健慧,王瑞,等. p53 PIN3基因多态性与食管癌及肺癌发病风险关系的研究[J].肿瘤, 2004, 24(2): 146-148.
    [70]陈刚. Clusterin、p53、bcl-2及FasL在前列腺癌中的表达及意义[D].重庆:重庆医科大学附属第一医院, 2005.
    [71]郑壬平,吴旭东,孙庭. C-met、p53基因在前列腺癌中的表达及意义[J].九江医学, 2007, 22(2): 4-7.
    [72]黄纲雄,陈碧芬,晋雯,等.前列腺癌p53基因的点突变[J].福建医科大学学报, 2000, 34(2): 135-137.
    [73]谷化平,尚培中,张正猛,等.抑癌基因蛋白表达与前列腺癌临床病理特征和转移的关系[J].山西医科大学学报, 2005, 36(1): 120-121.
    [74] Bauer JH, Helfand SL. New trieks of an old moleeule: lifespan regulation byp53[J]. Aging Cell, 2006(5): 437-440.
    [75] Downward J. Targeting RAS signaling Pathways in cancer therapy[J]. Nat ReV Cancer, 2003, 3(1): 11-22.
    [76] Madaule P, Axel R. A novel ras-related gene family[J]. Cell, 1985, 41(1): 31-40.
    [77] Takai Y, Sasaki T, Matozaki T. Small GTP-binding Proteins[J]. Physiol Rev, 2001, 81(1): 153-208.
    [78] Paduch M, Jelen F, Otlewski J. Strueture of small G proteins and their regulators[J]. Aeta Bioehim Pol, 2001, 48(4): 829-850.
    [79] Bishop AL, Hall A. Rho GTPases and their effector proteins[J]. Biochem J, 2000 , 348(Pt 2): 241–255.
    [80] Longeneeker K, Read P, Lin SK, et al. Surteture of a constitutively activated RhoA mutan(tQ63L) at 1.55A resolution[J]. Aeta Cyrstallogr D Biol Crystallogr, 2003, 59(Pts): 876-880.
    [81] Adelman J, Jeong Y, Liao JC, et al. Mechanochemistry of transcription termination factor Rho[J]. Mol Cell, 2006, 22(5): 611-621.
    [82] Laura M. Machesky and Alan Hall. Role of Actin Polymerization and Adhesion to Extracellular Matrix in Rac- and Rho-induced Cytoskeletal Reorganization[J]. J Cell Biol, 1997, 138(4): 913–926.
    [83]邵静,王红兵,杨力. Rho蛋白对肿瘤细胞骨架活动及生长调节的影响[J].生物医学工程学杂志, 2008, 25(6): 1462-1465.
    [84]王德盛,晋亮,孙辰猜. Rho蛋白在肿瘤发生发展中的作用[J].国际肿瘤学杂志, 2006, 33(12): 887-890.
    [85]薛妍,毕锋,刘娜,等. Rho GTPases对肿瘤血管生成相关分子的作用[J].中国生物化学与分子生物学报, 2004, 20(5): 664-669.
    [86] Liu CA, Wang MJ, Chi CW, et al. Overexpression of rho effector rhotekin confers increased survival in gastric adenocarcinoma[J]. J Biomed Sci, 2004, 11(5): 661-670.
    [87] Ullmannova V, Popescu NC. Inhibition of cell proliferation, induction of apoptosis, reactivation of DLC1 and modulation of other gene expression by dietary flavone in breast cancer cell lines[J]. Cancer Detect Prev, 2007, 31(2): 110-118.
    [88] Wherloek M, MelIor H. The Rho GTPase fami!y: a Racs to Wrchs story[J]. J Cell Scj, 2002, 115(Pt2): 239-240.
    [89]王江,李侠,章翔. Rho亚家族在肿瘤细胞增殖、侵袭和转移中的作用[J].中华神经外科疾病研究杂志, 2008, 7(6): 561-563.
    [90] Bement WM, Miller AL, von Dassow G. Rho GTPase activity zones and transient contractile arrays[J]. Bioessays, 2006, 28(10): 983-993.
    [91]贾雅丽,姚海雷,岳文,等.小G蛋白RhoA与细胞发育[J].中国生物化学与分子生物学报, 2009, 25(3): 199-205.
    [92] Wang G, Beier F. Rac1/Cdc42 and RhoA GTPases antagonistically regulate chondrocyte proliferation, hypertrophy, and apoptosis[J]. J Bone Miner Res, 2005, 20(6): 1022-1031.
    [93] Kaibuchi K, Kuroda S, Amano M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells[J]. Annu Rev Biochem, 1999, 68: 459-486.
    [94] Ridley AJ, Schwartz MA, Burridge K, et al. Cell imigration integrating signals from front to back[J]. Science, 2003, 302(5651): 1704-1709
    [95] Sah VP, Seasholtz TM, Sagil SA, et al. The role of Rho in G Protein-couple receptor signal transduction[J]. Annu Rev Parmacol Toxicol, 2000, 40: 459-489.
    [96] Zhuge Y, Xu J. Rac1 mediates type I collagen-dependent MMP-2activation: role in cell invasion across collagen barrier[ J]. Biol Chem, 2001, 276(19): 16248-16256.
    [97] Cohen LH, Pietemrna E, vnaLeeuwen RE, et al. lhnibitors of Pernylation of Ras and other G-Porteins and their application as therapeutics[J]. Bioehem Pharmacol, 2000, 60(8): 1061-1068.
    [98] Danen EH, Sonneveld P, Sonnenberg A, et al. Dual stimulation of Ras/花mitogen-activated protein kinase and RhoA by cell adhesion to fibronectin supports growth factor-stimulated cell cycle progression[J]. J Cell Biol, 2000, 151(7): 1413-1422.
    [99]王颢,陈玉霞. Rho家族在肿瘤组织的表达及临床意义[J].中国癌症杂志, 2005, 15(4) : 399-401.
    [100] Kamai T, Arai K, Sumi S, et al. The rho/rho-kinase pathway is involved inthe progression of testieular germ cell tumour[J]. BJU Int 2002, 89(4): 449-453.
    [101] Kamai T, Kawakami S, Koga F, et al. RhoA is assoeiated with invasion and lymph node m etastasis in upperurinary traet caneer[J]. BJU Int 2003, 91(3): 234-238
    [102]刘娜,毕锋,潘阳林,等. RhoA在胃癌细胞中的表达及其作用[J].中华肿瘤杂志, 2004, 26(1): 26-29.
    [103] Carnero A. Targeting the cell cycle for cancer therapy[J]. Br J Cancer, 2002, 87(2): 129-133.
    [104] Kunkawa K, Nakaniura T, Aoki K, et al. Mechanism and rule of lococalixed activation of Rho-family GTPases in growth factor-stimulanted ffibroblast and neuronal cells[J]. Biochem Soc Trans, 2005, 33(Pt4):631-634.
    [105] Medina DL, Rivas M, Cruz P, et al. RhoA aetivation promotes transformationand loss of thyroid cell differentiation interfering with thyroid transeription fector-1 activity[J]. Mol Endoerinol, 2002, 16(1): 33-44.
    [106] Rihet S, Vielh P, Camonis J, et al. Mutstion status of genes eneoding RhoA, Rac1,and Cdc42 GTPases in a panel of invasive human colorectal and breast tumors[J]. J Cancer ReS Clin Oncol, 2001, 127(12): 733-738.
    [107] Nakamoto M, Teramoto H, Matsumoto S, et al.–ras and rhoA mutations in malignant pleural effusion[J]. Int J Oneol, 2001, 19(5): 971-976.
    [108] Van Nieuw, Amerongen GP, Koolwijk P, et al. InvoIvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro[J]. Arterioseler Thromb Vase Biol, 2003, 23(2): 211-217
    [109]薛妍,毕锋,刘文超,等.缺氧状况下Rho GTPases的表达和活性变化及其与肿瘤血管生成关系的研究[J].中华肿瘤杂志, 2004, 26(9): 517-520.
    [110]樊利芳,刁路明,陈德基.缺氧诱导因子-1与肿瘤[J].中华病理学杂志, 2002, 31(2): 168-170.
    [111] Varker KA, Phelps SH, King MM, et al. The small GTPase RhoA has greater expression in small cell lung carcinoma and contributes to their unique morphologies[J]. Int J Oncol, 2003, 22(3): 671-681.
    [112] Collisson EA, Carranza DC, Chen IY, et al. Lsoprenylation is neeessary for the full invasive potential of RhoA over expression in human melanoma cells[J]. JInvest Dermatol, 2002, 119(5): 1172-1176.
    [113] Zhao X, Lu L, Pokhriyal N, et al. Overexpression of RhoA induces preneoplastic transformation of primary mammary epithelial cells[J]. Cancer Res. 2009, 69(2): 483-491.
    [114] Wettschureck N, Offermanns S. Rho/Rho-kinase mediated signaling in physiology and pathophysiology[ J]. JMoMl ed, 2002, 80(10): 629-638.
    [115] Bhadriraju K, Yang M, Alom Ruiz S, et al. Activation of ROCK by RhoA is regulated by cell adhesion, shape, and cytoskeletal tension[J]. Exp Cell Res. 2007 Oct 1;313(16): 3616-23.
    [116] Sallai E, Marshall CJ. Rho-GTPases and cancer[J]. Nat Rev cancer, 2002, 2(2): 133-142.
    [117] Olson MF, Paterson HF, Marshall CJ. Signals from Ras and Rho-GTPases interact to regulate expression of P21Waf1/Cip1[J]. Nature, 1998, 394(16): 295-299.
    [118] Liberto M, Cobrinik D, Minden A. Rho regulates p21(CIP1), cyclin D1, and checkpoint control in mammary epithelial cells[J]. Oncogene. 2002, 21(10):1590-9.
    [119] Croft DR, Olson MF. The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms[J]. Mol Cell Biol. 2006, 26(12): 4612-27.
    [120]任潇毅,张林,吴亚群.乳腺癌中Rho A蛋白表达及其与Cyclin D1和P21WAF1/CIP1蛋白表达的相关性[J].中国组织化学与细胞化学杂志, 2005, 14(6): 658-662.
    [121] Hodge J C, Bub J, Kaul S, et al. Requirement of RhoA activity for increased nuclear factor kappaB activity and PC3 human prostate cancer cell invasion[J]. Cancer Res, 2003, 63(6): 1359-1364.
    [122]段为钢,袁胜涛,廖红,等. Rho激酶及其抑制剂的研究进展[J].药学学报, 2007, 42(10): 1013-1022.
    [123] Schmidmaier R, Baumann P. ANTI-ADHESION evolves to a promising therapeutic concept in oncology[J]. Curr Med Chem, 2008, 15(10): 978-990.
    [124] Kusama T, Mukai M,Iwasaki T, et al. Inhibition of epidermal growthfactor-induced RhoA transloeation and invasion of human panereatic cancer cells by 3-hydroxy-3-methylglutaryl-coenzyme a reduetase inhibitors[J]. Cancer Res, 2001, 61(12): 4885-4891.
    [125] Qin LF, Lee TK, Ng IO. Gene expression profiling by cDNA array in human hepatoma cell line in response to cisplatin treatment[J]. Life Sci, 2002, 70(14): 1677-1690.
    [126] Dimjtroulakos J, Marhin WH, Tokunaga J, et al. Mieroarray and biochemical analysis of lovastatin-induced apoptosis of squamous cel1 carcinomas[J]. NeoPlasia, 2002, 4(4): 337-346.
    [127] Evelyn CR, Wade SM, Wang Q, et al. CCG-1423: a small-molecule inhibitor of RhoA transcriptional signaling[J]. Mol Cancer Ther, 2007, 6(8): 2249-2260.
    [128] Wyllie FS, Dawson T, Bond JA, et al. Correlated abnormalities of transforming growth factor-beta 1 response and p53 expression in thyroid epithelial cell transformation[J]. Mol. Cell. Endocrinol, 1991, 76(1-3): 13-21.
    [129] Cordenonsi M, Montagner M, Adorno M, et al. Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation[J]. Science, 2007, 315(5813):840-843.
    [130] Deepti S. Wilkinson, Stacey K. Ogden, Sabrina A. Stratton, et al. A Direct Intersection between p53 and Transforming Growth FactorβPathways Targets Chromatin Modification and Transcription Repression of theα-Fetoprotein Gene[J]. Mol Cell Biol, 2005, 25(3): 1200–1212.
    [131] Eyal Kalo, Yosef Buganim, Keren E. Shapira, et al. Mutant p53 Attenuates the SMAD-Dependent Transforming Growth Factor ?1 (TGF-?1) Signaling Pathway by Repressing the Expression of TGF-? Receptor Type II[J]. Molecular and Cellular Biology, 2007, 27(23): 8228-8242.
    [132] Wiegman EM, Blaese MA, Loeffler H, et al. TGFbeta-1 dependent fast stimulation of ATM and p53 phosphorylation following exposure to ionizing radiation does not involve TGFbeta-receptor I signalling[J]. Radiother Oncol, 2007, 83(3): 289-295.
    [133] Wang SE, Narasanna A, Whitell CW, et al. Convergence of p53 and transforming growth factor beta (TGFbeta) signaling on activating expression of the tumor suppressor gene maspin in mammary epithelial cells[J]. J BiolChem, 2007, 282(8): 5661-5669.
    [134] Marine JC, Berx G. Transforming growth factor-beta and mutant p53 conspire to induce metastasis by antagonizing p63: a (ternary) complex affair[J]. Breast Cancer Res, 2009, 11(4): 304.
    [135] Adorno M, Cordenonsi M, Montagner M, et al. A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis[J]. Cell, 2009, 137(1): 87-98.
    [136] Vardouli L, Vasilaki E, Papadimitriou E, et al. A novel mechanism of TGFbeta-induced actin reorganization mediated by Smad proteins and Rho GTPases[J]. FEBS J, 2008, 275(16): 4074-4087.
    [137] Tsapara A, Luthert P, Greenwood J, et al. The RhoA activator GEF-H1/Lfc is a TGF-{beta} target gene and effector that regulates {alpha}-smooth muscle actin expression and cell migration[J]. Mol Biol Cell, 2010, 21(6):860-867.
    [138] Rosman DS, Phukan S, Huang CC, et al. TGFBR1*6A enhances the migration and invasion of MCF-7 breast cancer cells through RhoA activation[J]. Cancer Res, 2008 , 68(5):1319-1328.
    [139] Tumbarello DA, Turner CE. Hic-5 contributes to epithelial-mesenchymal transformation through a RhoA/ROCK-dependent pathway[J]. J Cell Physiol, 2007, 211(3):736-747.
    [140] Hutchison N, Hendry BM, Sharpe CC. Rho isoforms have distinct and specific functions in the process of epithelial to mesenchymal transition in renal proximal tubular cells[J]. Cell Signal, 2009, 21(10):1522-1531.
    [141] Samarin J, Wessel J, Cicha I, et al. FoxO Proteins Mediate Hypoxic Induction of Connective Tissue Growth Factor in Endothelial Cells[J]. J Biol Chem, 2010, 285(7): 4328-4336.
    [142] Chen W, Chu Y, Zhu D, et al. Perivascular gene transfer of dominant-negative N19RhoA attenuates neointimal formation via inhibition of TGF-beta1-Smad2 signaling in rats after carotid artery balloon injury[J]. Biochem Biophys Res Commun, 2009, 389(2): 217-223.
    [143] Guo F, Zheng Y. Rho family GTPases cooperate with p53 deletion to promote primary mouse embryonic fibroblast cell invasion[J]. Oncogene, 2004, 23(33):5577-5585.
    [144] Xia M, Land H. Tumor suppressor p53 restricts Ras stimulation of RhoA and cancer cell motility[J]. Nat Struct Mol Biol, 2007, 14(3): 215-223.
    [145] Gadea G, de Toledo M, Anguille C, et al. Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices [J]. J Cell Biol, 2007, 178(1): 23-30.
    [146] Stebel A, Brachetti C, Kunkel M, et al. Progression of breast tumors is accompanied by a decrease in expression of the Rho guanine exchange factor Tiam1[J]. Oncol Rep, 2009, 21(1): 217-222.
    [147] Mizuarai S, Yamanaka K, Kotani H. Mutant p53 induces the GEF-H1 oncogene, a guanine nucleotide exchange factor-H1 for RhoA, resulting in accelerated cell proliferation in tumor cells[J]. Cancer Res, 2006, 66(12): 6319-6326.
    [148] Guo H, Ray RM, Johnson LR. RhoA stimulates IEC-6 cell proliferation by increasing polyamine-dependent Cdk2 activity[J]. Am J Physiol Gastrointest Liver Physiol, 2003, 285(4): 704-713.
    [149] Del Re DP, Miyamoto S, Brown JH. RhoA/Rho kinase up-regulate Bax to activate a mitochondrial death pathway and induce cardiomyocyte apoptosis[J]. J Biol Chem, 2007, 282(11): 8069-8078.
    [150] Xiao L, Eto M, Kazanietz MG. ROCK mediates phorbol ester-induced apoptosis in prostate cancer cells via p21Cip1 up-regulation and JNK[J]. J Biol Chem, 2009, 284(43): 29365-29375.
    [151] Hartman HL, Hicks KA, Fierke CA. Peptide specificity of protein prenyltransferases is determined mainly by reactivity rather than binding affinity[J]. Biochemistry, 2005, 44(46): 15314-15324.
    [152] Nagayama Y, Shigematsu K, Namba H, et al. Inhibition of angiogenesis and tumorigenesis, and induction of dormancy by p53 in a p53-null thyroid carcinoma cell line in vivo[J]. Anticancer Res, 2000, 20(4): 2723-2728.
    [153] Turcotte S, Desrosiers RR, Béliveau R. HIF-1alpha mRNA and protein upregulation involves Rho GTPase expression during hypoxia in renal cell carcinoma[J]. J Cell Sci, 2003, 116(Pt 11): 2247-2260.
    [154]陈平圣.肿瘤侵袭转移机制及其防治对策[J].现代医药卫生, 2004, 20(8): 595.
    [155] Fujita MQ, Shin M, Yasunaga Y, et al. Incidence of prostatic intra-epithelial neoplasia in Osaka, Japan[J]. Int J Cancer, 1997, 73(6): 808-811.
    [156] Zhu ML, Partin JV, Bruckheimer EM, et al. TGF-beta signaling and androgen receptor status determine apoptotic cross-talk in human prostate cancer cells[J]. Prostate, 2008, 68(3): 287-295.
    [157] Wikstrum P, Danber J, Bergh A. Role of transforming growth factor-beta1 in prostate cancer[J]. Microse Res Tech, 2001, 52(4): 411-419.
    [158] Goodyear SM, Kheyfets SB, at al. Role of the VEGFR3/VEGFD receptor axis in TGFbeta1 activation of primary prostate cell lines[J]. Prostate. 2009, 69(9): 982-990.
    [159] Cordes C, Von Lingen J, G?r?gh T, et al. Molecular and immunological aspects of p53 and p53-autoantibodies in head and neck squamous cell carcinoma[J]. Oncol Rep, 2009, 22(6): 1299-1303.
    [160] R?kaeus N, Klein G, Wiman KG, et al. PRIMA-1(MET) induces nucleolar accumulation of mutant p53 and PML nuclear body-associated proteins[J]. Oncogene, 2007, 26(7): 982-992.
    [161] Giménez-BonaféP, Tortosa A, Pérez-Tomás R. Overcoming drug resistance by enhancing apoptosis of tumor cells[J]. Curr Cancer Drug Targets, 2009, 9(3): 320-340.
    [162] Hua-Wen Sun, Shi-Lun Tong, Jie He, et al. RhoA and RhoC-siRNA inhibit the proliferation and invasiveness activity of human gastric carcinoma by Rho/PI3K/Akt pathway[J]. World J Gastroenterol, 2007, 13(25): 3517-3522.
    [163] Narumiya S, Tanji M, Ishizaki T. Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion[J]. Cancer Metastasis Rev, 2009, 28(1-2): 65-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700