用户名: 密码: 验证码:
乙烯诱导伏令夏橙果实脱落过程中重要功能基因的克隆、表达与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘果实发育过程中若受到过度胁迫会导致大量落果,从而造成大幅度减产,特别是晚熟品种在越冬时常会遇到低温,导致采前落果,造成巨大损失。另外,目前柑橘的采收方式主要为人工采摘,成本很高,在美国甚至超过柑橘生产成本的总和。因此,能实现果实的可控脱落成为柑橘生产者和科研工作者追求的主要目标之一。
     本研究利用柑橘基因组芯片(Citrus Genome Array)研究乙烯诱导柑橘果实脱落并探讨其分子机理。研究中使用浓度为20μL/L的乙烯分别处理带叶的伏令夏橙(Citrus sinensis cv. Valencia)果实4 h、12 h和24 h,然后提取果实离层RNA进行芯片检测。聚类分析结果表明,芯片数据具有较好的重复性。12条典型基因的Real Time-PCR分析结果也表明这些基因表达的变化趋势与芯片数据基本一致。对乙烯诱导的差异表达基因进行分析,发现乙烯处理3个时间点上均表达的基因有510条(P<0.01)。对差异表达基因进行功能分析,发现乙烯诱导下上调表达的主要有编码膜类蛋白、能量代谢相关蛋白、胁迫相关蛋白、转录因子、丝氨酸/苏氨酸激酶类、磷酸酶类、钙离子结合蛋白类、水解酶类、乙烯代谢途径相关蛋白、转移酶类、受体蛋白类等基因,下调表达的主要包括编码核糖体类蛋白、水解酶类、水通道蛋白、细胞色素P450、金属离子结合蛋白、光合系统相关蛋白、ABC转运蛋白、脂酶类等基因。进一步分析发现,编码乙烯代谢途径相关蛋白的基因、伤害诱导基因和编码低氧胁迫蛋白的基因之间存在着关联表达,因而筛选出ETR2、低氧应答基因和伤害诱导基因进行深入研究。主要结果如下:
     克隆了乙烯诱导表达的低氧应答基因(CsHRP)并进行表达分析。采用RACE技术克隆了CsHRP的全长cDNA并测序分析。结果表明,CsHRP的cDNA全长为795 bp, ORF编码98个氨基酸。序列比对分析结果显示CsHRP与甜橙低氧应答基因的同源性达97%。对蛋白质二级结构的预测结果推测CsHRP可能与抗病有关。采用Real-time PCR方法检测了CsHRP在外源乙烯诱导下的表达情况,结果显示CsHRP在乙烯处理前期(4 h)高度表达,12 h后减低到原来的水平。
     乙烯可诱导伤害诱导蛋白(Wound induced proteins, WIPs)的表达。本研究克隆了柑橘的4条伤害诱导基因CsWIP1、CsWIP2、CsWIP3和CsWIP4,序列分析结果表明这4个伤害诱导基因分为两类,其中CsWIP1、CsWIP2和CsWIP3聚为一类,而CsWIP4与前三者在结构上差异较大故聚为另一类。WIP蛋白在C-端有一个非常保守的α-螺旋,在N-端也有一个α-螺旋,CsWIP1、CsWIP2和CsWIP3在两个α-螺旋处都保守,而CsWIP4只在C-端α-螺旋处保守。Real-time PCR结果显示:CsWIP1仅在外源乙烯处理下表达,受乙烯诱导;CsWIP1无论是在伤害处理还是在乙烯处理条件下,仅在叶片中表达,说明CsWIP2的表达具有组织特异性;CsWIP3在乙烯或伤害处理的叶片和离层中均表达,说明CsWIP3的表达没有组织特异性;CsWIP4仅在伤害处理下表达,基本上不受乙烯调控。
     ETR2是乙烯受体基因之一。为深入了解乙烯受体基因(ETR2)在伏令夏橙果实脱落过程中的作用,本研究克隆了ETR2基因并研究了其表达。通过RACE技术得到ETR2的cDNA序列为1800 bp。序列比对分析表明伏令夏橙ETR2与其它甜橙ETR2的同源性达98%。ETR2蛋白质包含了3个结构域,分别为GAF结构域、组氨酸蛋白激酶(HPK)同源二聚体结合区域和类似CheY结构域。通过Real-time PCR检测了ETR2在外源乙烯诱导4 h、12 h和24 h时的表达量。结果显示,ETR2在乙烯诱导4 h、12 h和24 h的表达量分别是对照的2倍、4倍和1倍。
     为进一步验证CsHRP和CsWIP1在柑橘果实脱落中的作用,本研究以转基因技术分别培育了CsHRP和CsWIP1的过量表达和RNAi转基因柑橘苗。目前已获得转基因抗性芽,现正在对转基因植株进行鉴定。
Developing citrus fruit will absciss under severe stresses, resulting in yield loses. Low winter temperature frequently causes pre-harvest fruit dropping and heavy loses. Citrus fruit are harvested by hands, which is very costly. For example, the harvesting cost has even surpassed the total production cost recently in USA. Therefore, achieving controllable fruit abscission is one of the main objectives being pursued by citrus growers and researchers.
     This study used citrus genome array to probe ethylene-induced fruit abscission and and the underlying molecular mechanism. Ethylene at the concentration of 20μL/L was used to treat citrus mature fruit (Citrus sinensis cv. Valencia) for 4 h,12h and 24 h. Fruit abscission zones were collected and extracted for total RNA that was later analyzed by microarrays. Clustering analysis demonstrated that the replicability of the chip data were acceptable. qRT-PCR studies on 12 genes showed that their expression trends were similar to those showed by chip data. Results from analysis of chip data showed that there were 510 genes that were co-induced by ethylene at all the three sampling times (P<0.01). Gene function assignment showed that the genes up-regulated by ethylene encode mostly membrane proteins, energy metabolism related proteins, stress-related proteins, transcription factors, serine/threonine kinases, phosphorylation enzymes, calcium-binding proteins, hydrolases, ethylene metabolic pathway proteins, transfer enzymes, and receptor proteins while those down-regulated encode ribosomal protein, hydrolytic enzymes, aquaporins, cytochrome P450, metal ion binding proteins, ABC transporters, lipase and so on. Further clustering showed that the genes encoding proteins involved in ethylene biosynthesis and signal transduction, in hypoxia stress and wounding responses were coordinately induced by ethylene. Therefore, ETR2, hypoxia responsive gene and wounding induced genes were selected for further study. The major results are as follows:
     Hypoxia responsive gene CsHRP was cloned and analyzed for its expression. RACE was used to clone the full-lenth cDNA of the gene. The cloned cDNA was sequenced. Results showed that the full-length cDNA was 795 bp with an ORF encoding a peptide of 98 amino-acid residues. Sequence comparision showed that it shares 97%of similarity with a sweet orangen hypoxia responsive gene. Prediciton of the protein secondary structure suggested it might be related to plant resistance. Real-time PCR was used to quantify the gene's expression levels under exogenous ethylene treatment,and the results showed that that CsHRP was highly induced only at the early stage of ethylene treatment (4h), and treatment longer than 12h and 24h reversed its expression to the basal level.
     Ethylene induced the expression of wounding-induced protein genes (WIPs). In this study 4 wounding-induced protein genes were cloned and designated as CsWIP1, CsWIP2, CsWIP3 and CsWIP4. Sequence comparison showed that they were strucuraly classified into two groups:group 1 contains CsWIP1, CsWIP2, CsWIP3 and group 2 contains only CsWIP4. WIPs generally contain two a-helices, a N-terninalα-helix and a C-ternimal a-helix. Simulation of these citrus wounding induced proteins demonstrated that CsWIP1, CsWIP2 and CsWIP3 are conservative in both helices while CsWIP4 is only conserved in its C-termianl helix. Real-time PCR results showed that CsWIP1 was expressed only under ethylene induction, indicating its ethylene dependence. CsWIP 2 was expressed only in leaves under both ethylene and wounding treatments, indicating its expression was tissue-specific. CsWIP 3 was universly expressed both in leaves and abscission zones either under ethylene treatment or under wounding treatment, indicating its expression was tissue-specific. CsWIP4 was only induced by wounding but not by ethylene.
     ETR2 is a member of ethylene receptor gene family. To better understand the role of ETR2 in ethylene-induced fruit abscission, ETR2 was cloned and its expression was analyzed. Full-length cDNA of ETR2 was obtained by using RACE technology. The cloned cDNA was 1800bp in length. Sequence alignment analysis revealed that ETR2 of Valencia shares 98%homology with the same gene from other sweet orange(Citrus sinensis). Real-time PCR was used to detect the expression of ETR2 under exogenous ethylene treatment. The results showed that ETR2 was up-regulated by 2-folds and 4-folds after treatement with ethylene for 4h, and 12h, respectively, was reduced to its basal expression level after 24h of treatment.
     To further characterize the CsHRP and CsWIP1, transgenic plants over expressing CsHRP and CsWIP1 have been obtained. Their RNAi transgenic plants have been alsoe obtained. Characterization of the transgenic plants is under way.
引文
[1]Southern E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis, J Mol Biol.1975,98:503-517
    [2]Schena M, Shalon D, Davis R.W, Brown P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray.science,1995,5235 (270):467-470
    [3]Fodor S.P., Read J.L., Pirrung M.C., Stryer L., Lu A.T., and Solas D. Light-directed, spatially add ressable parallel chemical synthesis, Science,1991,251(4995):767-773
    [4]吴明煜,郭晓红,王万贤,柯文山,杨毅,吴燕.生物芯片研究现状及应用前景.科学技术与工程,2005,7(5):34-37
    [5]刘云建,汪谦,陈强谱.组织芯片技术在医学研究中的应用进展.2006,29(6):115-117
    [6]Huang XC, Quesada MA, Mathies RA. DNA sequencing using capillary array electrophoresis[J]. Anal Chem, 1992,64(18):2149-2154
    [7]李凌,马文丽.DNA芯片技术:新一代基因诊断技术.第一军医大学学报,2001,21(4):309-311
    [8]王升启.基因芯片技术及应用研究进展.生物工程进展,1999,19(4):45-51
    [9]安利峰,胜利.基因芯片及其应用进展.西北民族学院学报(自然科学版),2002,44(6):40-42
    [10]Joseph W. From DNA biosensors to gene chips. Nucleic Acids Res.2000,28(16):3011-3016.
    [11]Wodicka L, Dong H, Mittmann M,.Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnology,1997,15:1359
    [12]DeRisi J, Penland L, Brown P O, Bittner M L, Meltzer P S, Michael R, Chen Y D, Su Y A, Trent J M. Use of a cDNA microarray to analysis gene expression patterns in human cancer. Nature Genetics,1996,14:457-460
    [13]Golub T, Slonim D, Tamayo P, Huard C, Gaasenbeek M, Mesirov P, Coller H, Loh M L, Downing J R, Caligiuri M. A, Bloom(?)eld C. D, Lander E. S. Molecular Classification of cancer: Class Discovery and Prediction by Gene Expression Monitoring. Science,1999,286:531-548
    [14]David W G, Fan J B, Siao C. J, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris M S., Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Thomas J. H, Lipshutz R, Chee M, Lander.E S. Large-Scale Identification, Mapping, and Genotyping of Single-Nucleotide Polymorphisms in the Human Genome. Science, 1998,280:1077-1082
    [15]Lipshutz RJ, Morris D, Chee M, Hubbell E, Kozal M J, Shah N, Shen N, Yang R, Fodor S P A. Using oligonucleotide probe arrays to access genetic diversity. Bio Feature,1999,19(3):442-257
    [16]孙薇,贺福初.差异蛋白质组学研究技术新进展.化学通报,2005,6:401-408
    [17]高志贤.蛋白芯片技术研究进展及其应用.2004,3:1-6
    [18]霍金龙,苗永旺,曾养志.基因芯片技术及其应用[J].生物技术通讯,2007,18(2):329-332
    [19]谭镜明.纳米生物技术研究进展[J].化工技术与开发,2007,36(7):23-26
    [20]Marshall A Hodgson J.DNA chips:an array of possibilities. Nature Biotechnology,1998,16(1):27
    [21]李军,刘镭,李青.组织芯片技术及其在医学研究中的应用.肿瘤防治杂志,2003,8:15-17
    [22]Maarit Barlund, Monni O, Kononen J, Cornelison R, Torhorst J, Sauter G, Kallioniemi O. P. and Kallioniemi A. Multiple Genes at 17q23 Undergo Amplification and Overexpression in Breast Cancer. Cancer Research,2000, 60:5340-5344
    [23]Schraml P, Kononen J, Bubendorf L, Moch H, Bissig H, Nocito A, Mihatsch M J., Kallioniemi Olli-P. Guido Sauter Tissue Microarrays for Gene Amplification Surveys in Many Different Tumor Types. Clinical Cancer Research,1999,5:1966-1975
    [24]滕猛,王翠芳.组织芯片技术.沈阳医学院学报,2003,5(4):256-258
    [25]Zhang Y Z, Price B D., Sotirios Tetradis, Subrata Chakrabarti, Gautam Maulik, and G Mike Makrigiorgos. Reproducible and inexpensive probe preparation for oligonucleotide arrays. Nucleic Acids Res,2001, 29(13):66-75
    [26]胡娜,许杨.基因芯片技术及其在食品检测中的应用.中华预防医学杂志,2005,39(2):140-142
    [27]Gautier L, Cope L, Bolstad B M., Irizarry R A., affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics,2004,20(3):307-315
    [28]Mecham B H., Wetmore D Z., Szallasi Z, Sadovsky Y, Kohane I, Marianil T J.. Increased measurement accuracy for sequence-verified microarray probes. Physiol Genomics,2004,18:308-315
    [29]许树成.生物芯片技术研究的现状与进展.阜阳师范学院学报(自然科学版),2003,20(3):43-45
    [30]Seki M., Ishida J., Narusaka M., Fujita M., Nanjo T., Umezawa T., Kamiya A., Nakajima M., Enju A., Sakurai T., Satou M., Akiyama K.J., Yamaguchi-Shinozaki K., Carninci.P., Kawai J., Hayashizaki Y., and Shinozaki K. Monitoring the expression pattern of around 7000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Functional& Integrative Genomics,2002,2:282-291
    [31]Bevan M., Bancroft I., Bent E., Love K., Goodman H., Dean C.,Bergkamp R., Dirkse W., van Staveren M., Stiekema W.,Drost L., Ridley P., Hudson S.A., Patel K., Murphy G., piffanellip.wedlerh. Wedler E.,Wambutt R.,Weitzenegger T.,Pohl T.M., Terryn N., Gielen J., Villarroel R., De Clerck R.,van Montagu M., Lecharny A., Auborg S., Gy I., Kreis M.,Lao N., Kavanagh T., Hempel S., Kotter P., Entian K.D.,RiegerM., SchaefferM., Funk B.,Mueller-Auer S., SilveyM.,James R., Montfort A., Pons A., Puigdomenech P., Douka A.,Voukelatou E., Milioni D., Hatzopoulos P., Piravandi E.,Obermaier B., Hilbert H., Dusterhft A., Moores T., Jones J.D.,Eneva T., Palme K., Benes V., Rechman S., Ansorge W.,Cooke R., Berger C., Delseny M., Voet M., Volckaert G.,Mewes H.W., Klosterman S., Schueller C., Chalwatzis N. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana, nature,1998,391(6666):458-488
    [32]Schaffer R., Landgraf J., Accerbi M., Simon V., Larson M., and Wisman E.,2001, Microarray analysis of diurnal and circadian regulated genes in Arabidopsis. Plant Cell,13(1):113-123
    [33]赵宝存,赵芊,葛荣朝,沈银柱,黄占景.利用基因芯片研究小麦耐盐突变体盐胁迫条件下基因的表达图谱.中国农业科学,2007,40(10):2355-2360
    [34]Gutsche A, Heng-Moss T, Sarath G, Twigg P., Xia Y, Lu G, and Mornhinweg D. Gene expression pro_ling of tolerant barley in response to Diuraphis noxia (Hemiptera:Aphididae) feeding. Bulletin of Entomological Research,2009,99:163-173
    [35]高志勇.应用基因芯片检测水稻基因表达的研究.安徽农业科学,2007,35(10):3007-3008
    [36]Aharon I A, Keizer L C, Bouwmeester H J, Sun Z. Identification of the SAAT gene involved in straw berry flavor biogenesis by use of DNA microarrays [J]. Plant Cell,2000,12(5):647-662
    [37]Lee Y P, Yu G H, Seo Y S, Han S E, Choi Y O, Kim D, Mok I G, Kim W T, Sung S K. Microarray analysis of apple gene expression engaged in early fruit development. Plant Cell Reports,2007,26 (7):917-926.
    [38]Fonseca S, Laszlo Hackler, Jr., Agnes Zvara, S'tlvia Ferreira, Aladje Balde, Denes Dudits, Pais M S, Laszlo G. Puskas. Monitoring gene expression along pear fruit development, ripening and senescence using cDNA microarrays. Plant Science,2004, (167):457-469
    [39]Puthoff D P, Ehrenfried M L, V Bryan T, Tucker M L. GeneChip profiling of transcriptional responses to soybean cyst nematode, Heterodera glycines, colonization of soybean roots[J]. Journal of Experimental Botany, 2007,58(12):3407-3418
    [40]Javier Agusti, Merelo P, Manuel Cerco, Tadeo F R, Manuel Talon. Ethylene-induced differential gene expression during abscission of citrus leaves. Journal of Experimental Botany,2008,1093(10):138-155
    [41]Martinez-Godoy M A, Mauri N, Juarez J, Marques M C, Santiago J, Forment J, Gadea Jose. A genome-wide 20 K citrus microarray for gene expression analysis. BMC Genomics,2008,9:318-320
    [42]伍亚舟,张彦琦,黄明辉,杨梦苏,曾志雄,易东.基因芯片表达数据的标准化策略研究.第三军医大学学报,2004,26(7):594-598
    [43]翟鹏,童坦.基因科学的革命—基因芯片技术.生理科学进展,2000,31(2):135-140
    [44]李淼,周冬生.基因芯片技术及其在植物病害研究中的应用.植物保护,2003,19(1):5-9
    [45]Heid C A., Stevens J, Kenneth J, Livak P, Williams M. Real Time Quantitative PCR.Genome Research,1996, 6:986-994
    [46]Ding C M, Cantor C R. Direct molecular haplotyping of long-range genomic DNA with M1-PCR. PNAS,2003, 100(13):7449-7453
    [47]朱永芳.实时荧光聚合酶链反应(PCR)检测技术.中国计量出版社,2003.
    [48]张华,许叔祥.定量聚合酶链式反应的研究进展与临床应用.中华检验医学杂志,2000,23(2):120-121.
    [49]Peters I R, Helps C R, Hall E J, Day M J. Real-time RT-PCR: considerations for efficient and sensitive assay design. Journal of Immunological Methods,2004,286:203-217
    [50]Ruiz-Ruiz S, Moreno P, Guerri J. A real-time RT-PCR assay for detection and absolute quantitation of citrus virus in different plant tissues. Journal of Virology Methods,2007,5:1-10
    [51]Saponari M, Manjunath K, Yokomi R K. Quantitative detection of Citrus tristeza virus in citrus and aphids by real-time reverse transcription PCR(TaqMan). Journal of Virology Methods,2007,7:1-11
    [52]秘彩莉,温小杰,张学勇,刘旭.小麦类CTR1基因的克隆和特性分析.中国农业科学,2009,42(11):3785-3794
    [53]蒋春燕,王泰健,王琴,范学政.实时荧光定量PCR技术.动物医学进展,2005,26(12):97-101
    [54]Tyagi S, Kramer F R. Molecular beacons: probes that f;uoresce upon hybridization. Nature biotechnology,1996, 14:306-309
    [55]Tan W H, Wang K M, Drake T J. Molecular beacons. Current Opinion in Chemical Biology,2004,8:547-553
    [56]李玉昌,林俊堂,张会勇,李文强,魏明旭,沈萍,韩鸿鹏,徐存拴.全长cDNA克隆的三种方法的比较研究.生物技术,2003,13(2):18-19
    [57]Jiang H P, Serrero G. Isolation and characterization of a full-length cDNA coding for an adipose differentiation-related protein. Cell Biology,1992,89:7856-7860
    [58]王少丽,盛承发,乔传令.cDNA末端快速扩增技术及其应用.遗传,2004,26(3):419-423
    [59]Maruyama K, Sugano S. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene,1994, (138):171-174
    [60]Zhu Y Y, Machleder E M, Chenchik A, Li R, Siebert P D. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques,2001,30(4):892-897
    [61]Spirin K S, Ljubimov A V, Castellon R, Wiedoeft O, Marano M, Sheppard D, Kenney M C, Brown D J. Analysis of Gene Expression in Human Bullous Keratopathy Corneas Containing Limiting Amounts of RNA. Investigative Ophthalmology and Visual Science,1999,40:3108-3115
    [62]Edery I, Chu L L, Sonenberg N, Pelletier J. An Efficient Strategy To Isolate Full-Length cDNAs Based on an mRNA Cap Retention Procedure (CAPture). Molecular And Cellular Biology,1995,15(6):3363-3371
    [63]Saiki R K, Scharf S J, Faloona F, Mullis K B, Horn G T, Erlich H A, Arnheim N. Enzymatic amplification of /~-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science,1985, 230:1350-1354
    [64]Frohman M A, Dush M K, Martin G R. Rapid production of full-length cDNAs from rare transcripts: Amplification using a single gene-specific oligonucleotide primer. Biochemistry,1988,85:8998-9002
    [65]邢桂春,张成岗,魏汉东,贺福.采用RACE技术获得全长人新基因MAGE-D1.中国生物化学与分子生物学报,2001,17(2):203-208
    [66]Adams M D, Kelley J M, Gocayne J D, Dubnick M, Polymeropoulos M H, Hong X, Merril C R, Wu A, Olde B, Moreno R F, Kerlavage A R, Combie W R M, J Venter C. Complementary DNA sequencing: expressed sequence tags and human genome project. Science,1991,252(5013):1951-1656
    [67]Adams M D., Soares M. B, Kerlavage A R., Fields C, Venter C. Rapid cDNA sequencing (expressed sequence tags) from a directionally cloned human infant brain cDNA library. Nature Genetics,1993,4:373-380
    [68]Butler J, Callum I M, Kleber M, Shlyakhter I A, Belmonte M K., Lander E S., Nusbaum C, Jaffe D B. Allpaths: De novo assembly of whole-genome shotgun microreads. Genome Res,2008.18:810-820
    [69]Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science,1992,257:967-971
    [70]Feuerstein G Z, Wang X. Use of differential display reverse transcription polymerase chain reaction for discovery of induced adrenomedullin gene expression in focal stroke. Can. J. Physiol. Pharmacol,1997,75(6):731-734
    [71]Yang G P, Ross D T, Kuang W W, Brown P O, Weigel R J. Combining SSH and cDNA microarrays for rapid identification of differentially experssed genes. Nucleic Acids Research,1999,27(6):1517-1523
    [72]Fowler M.R, Ong L.M., Russinova E., Atanassov A I., Scott N W, Slater A, Elliott M C. Early changes in gene expression during direct somatic embryogenesis in alfalfa revealed by RAP-PCR. Journal of Experimental Botany,1998,49(319):249-253
    [73]马琳琳,傅松滨.RNA干涉.国外医学遗传学分册,2003,26:4
    [74]Napoli C, Lemieux C, Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. The Plant Cell,1990,2:279-289
    [75]Hannon G J. RNA interference. NATURE,2002,418:244-252
    [76]Fire A, Xu S Q, Montgomery M K, Kostas S A, Driver S E, Mello C C. Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. Nature,1998,391:806-811
    [77]Craig F. The rde-1 Gene, RNA Interference, and Transposon Silencing in C. elegans. Cell,1999,99:123-132
    [78]Ketting R F, Haverkamp T H A, Luenen H G., Plasterk R H. mut-7 of C. elegans, Required for Transposon Silencing and RNA Interference, Is a Homolog of Werner Syndrome Helicase and RnaseD. Cell,1999, 99(2):133-141
    [79]吴元明,陈苏民.RNA干涉的最新研究进展.中国生物化学与分子生物学报,2003,19(4):411-417
    [80]Baulcombe D. review article RNA silencing in plants. Nature,2004,431:356-363
    [81]Carthew R W. Gene silencing by double-stranded RNA. Cell Biology,2001,13:244-248
    [82]吴大利,候岁稳.干扰RNA(RNAi)作用机理及其在植物细胞工程中的应用进展.中国生物工程杂志China Biotechnology,2006,26(9):84-90
    [83]黄丹莹.RNAi技术在植物基因功能研究中的应用.现代农业科技,2007,18:45-47
    [84]魏绍冲,陈昆松,罗云波.乙烯受体与果实成熟调控.园艺学报,2004,31(4):543-548
    [85]刘敏,曹毅,蒋彦.利用RNAi技术大规模分析基因功能的研究.植物学通报,2002,19(4):491-49
    [86]Lee H, Bien C M, Hughes A L, Espenshade P J, Kwon-Chung K J, Chang Y C. Cobalt chloride, a hypoxia-mimicking agent, targets sterol synthesis in the pathogenic fungus Cryptococcus neoformans. Molecular Microbiology,2007,65(4):1018-1033
    [87]Rajeev Q Ting J T L, Sokolov L N, Johnson S A, Luan S. A Tumor Suppressor Homolog, AtPTEN1, Is Essential for Pollen Development in Arabidopsis. The Plant Cell,2002,14:2495-2507
    [88]Miyoshi K, Ito Y, Serizawa A, Kurata N. OsHAP3 genes regulate chloroplast biogenesis in rice. The Plant Journal,2003,36:532-540
    [89]刘乐承,向殉,曹家树.白菜雄性不育相关基因BcMF4基因功能的RNAi验证.遗传学报,2006,28(11):1428-1434
    [90]Bachem C W B, Speckmann G J, Linde P C G, Verheggen F T M, Hunt M D, Steffens J C, Zabeau M. Antisense Expression of Polyphenol Oxidase Genes Inhibits Enzymatic Browning in Potato Tubers. Nature Biotechnology, 1994,12:1101-1105
    [91]曹艳红.苹果多酚氧化酶双链RNA干扰(dsRNAi)研究.南京农业大学硕士学位论文,2004,15-56
    [92]Kinney A J, Jung R, Herman E M. Cosuppression of the a-Subunits of β-Conglycinin in Transgenic Soybean Seeds Induces the Formation of Endoplasmic Reticulum-Derived Protein Bodies. Plant Cell,2001, 13:1165-1178
    [93]Segal G, Song R, Messing J. A new opaque variant of maize by single dominant RNAi-inducing transgene. Genet.2003,165:387-397
    [94]Davuluri G R, Tuinen A V, Fraser P D, Manfredonial A, Newman R, Burgess D, Brummell D A, Kng S R, Palys J, Uhlig J, Bramley P M, Pennings H M J, Bowler C. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nature Biotechnology,2005,23:889-895
    [95]郭新梅,张晓东,梁荣奇,杨凤萍,陈耀锋.玉米淀粉分支酶基因的克隆与RNAi表达载体的构建.西北植物学报,2007,27(11):2175-2180
    [96]徐亚维,柴晓杰,王丕武,左艳亭,吕品,张宇.玉米淀粉分支酶sbeⅡb基因启动子的克隆和表达载体构建.玉米科学,2006,4(2):84-87
    [97]陈忠斌,于乐成,王升启.RNA干扰作用(RNAi)研究进展.中国生物化学与分子生物学报,2002,18(5):525-528
    [98]Reid M S. Ethylene and abscission. HortScience,1985,20(1):45-51
    [99]Sagee O, Goren R, Riov J. Abscission of Citrus Leaf Explants. Plant Physiol,1980,66:750-753
    [100]Ludwig A A., Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones J D G., Romeis T. Ethylene-mediated. cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. PNAS,2005,102(30):10736-10741
    [101]翁宇,戴小枫.农作物乙烯合成和信号转导途径及其对抗病反应的调控.分子植物育种,2008,6(4):739-748
    [102]李明亮,韩一凡.乙烯在植物生长发育和抗病反应中的作用及其生物合成的反义抑制.林业科学,2000,36(4):77-84
    [103]Ohme-Takagi M, Shinshi H. Ethylene-lnducible DNA Binding Proteins That Interact with an Ethylene-Responsive Element. Plant Cell,1995,7:173-182
    [104]殷学仁,张波,李鲜,陈昆松.乙烯信号转导与果实成熟衰老的研究进展.园艺学报,2009,36(1):133-140
    [105]Wu H, Han R Y, Zhang B, Cao W H, Ma B, Lei G, Yun-Feng Liu W W, Wu H J, Chen L J, Chen H W, Cao Y R, He S J, Zhang W K, Wang X J, Chen S Y, Zhang J S. The Ethylene Receptor ETR2 Delays Floral Transition and Affects Starch Accumulation in Rice. The Plant Cell,2009,21:1473-1494
    [106]Alonso J M, Hirayama T, Roman G, Nourizadeh S, Ecker J R. EIN2, a Bifunctional Transducer of Ethylene and Stress Responses in Arabidopsis. Science,1999,284(5423):2148-2152
    [107]杨静慧,张伟玉,刘艳军,罗云波,柳树梧.低温、乙烯逆境下的番茄舰基因表达及相关反应.中国农业大学学报,2003,8(3):56-62
    [108]Drew M C. Oxygen deficiency and root metabolism:injury and acclimatio under hypoxia and anoxia. Plant Physiol. Plant Mol. Biol.1997,48:223-250
    [109]Wang Z F, Ying T J. Research Progress of Ethylene Signal Transduction in Plants. Journal of Plant Physiology and Molecular Biology,2004,30(6):601-608
    [110]Harris N, Taylor J E, Jeremy A R. Characterization and expression of an mRNA encoding a wound-induced (Win) protein from ethylene-treated tomato leaf abscission zone tissue. Journal of Experimental Botany,1997, 311(48):1223-1227
    [111]Riov J, Yang S F. Autoinhibition of Ethylene Production in Citrus Peel Discs', Suppression Of I-Aminocyclopropane-1-Carboxylic acid synthesis. Plant Physiol,1982,69:687-690
    [112]Rivarola M, McClellan C A, Resnick J S, Chang C. ETR1-Specific Mutations Distinguish ETR1 from Other Arabidopsis Ethylene Receptors as Revealed by Genetic Interaction with RTE1. Plant Physiology,2009, (150):547-551
    [113]陈涛,张劲松.乙烯的生物合成与信号传递.植物学通报,2006,23:5
    [114]Taylor J E., Whitelaw C A. Signals in Abscission. JSTOR,2001,127:323-325
    [115]Roberts J A, Elliott K A, Gonzalez-Carranza Z H. Abscission, Dehiscence And Other Cell Separation Processes. Annual Review of Plant Biology,2002,53:131-158
    [116]Osborne C. K, Coronado E B, Kitten L J, Arteaga C I, Fuqua S A W, Ramasharma K, Marshall Milton, Li C H. Insulin-Like Growth Factor-11 (IGF-II):A Potential Autocrine/Paracrine Growth Factor for Human Breast Cancer Acting via the IGF-I Receptor. Molecular Endocrinology,1989,3(11):1701-1709
    [117]Patterson S E. Loose C. Abscission and Dehiscence in Arabidopsis. Plant Physiology,2001,126:494-500
    [118]Wu Z C, Burns J K. Isolation and characterization of a cDNA encoding a lipid transfer protein expressed in 'Valencia'orange during abscission. Journal of Experimental Botany,2003,385(541):1183-1191
    [119]Yuan R C, Wu Z C, Kostenyuk I A., Burns J K. G-protein-coupled a 2A-adrenoreceptor agonists differentially alter citrus leaf and fruit abscission by affecting expression of ACC synthase and ACC oxidase. Journal of Experimental Botany,2005,417(56):1867-1875
    [120]Coleman C D, Baiiados M P, Chen T H H. Poplar bark storage protein and a related wound-Induced gene are differentially induced by nitrogen. Plant Physiol,1994,106:211-215
    [121]Stanford A, Bevan M, Northcote D.Differential expression within a family of novel wound-induced genes in potato. Mol Gen Genet.1989,215(2):200-208
    [122]Ponstein A S., Bres-Vloemans S A, Sela-Buurlage M B, Peter J M, Elzen V D, Melchers L S., Cornelissen B J C. A Novel Pathogen-and Wound-lnducible Tobacco (Nicotiana tabacum) Protein with Antifungal Activity. Plant Physiol,1994,104:109-118
    [123]Leon J, Rojo E, Sanchez-Serrano J J. Wound signalling in plants[J]. Journal of Experimental Botany,2001, 52(354):1-9
    [124]Bleecker A B, Schaller C. E. The Mechanism of Ethylene Perception. Plant Physiol,1996, 11(1):653-660
    [125]Hua J, Sakai H, Nourizadeh S, Chen Q H, Bleecker A B, Ecker J R, Elliot M. Meyerowitz EIN4 and ERS2 Are Members of the Putative Ethylene Receptor Gene Family in Arabidopsis. The Plant Cell,1998,10:1321-1332
    [126]Bleecker A B, Kende H. ETHYLENE:A Gaseous Signal Molecule in Plants. Annual Review of Cell and Developmental Biology,2000,16:1-18
    [127]Qu X, Schaller G. E. Requirement of the Histidine Kinase Domain for Signal Transduction by the Ethylene Receptor ETR1. Plant Physiology,2004,136:2961-2970
    [128]Zhao X C, Qu X, Mathews D E, Schaller G E. Effect of Ethylene Pathway Mutations upon Expression of the Ethylene Receptor ETR1 from Arabidopsis. Plant Physiology,2002,130:1983-1991
    [129]Stenvik G E, Butenko M A, Urbanowicz B R, Rose J K C, Aalen R B. Overexpression of Inflorescence Deficient In Abscission Activates Cell Separation in Vestigial Abscission Zones in Arabidopsis. The Plant Cell, 2006,18:1467-1476
    [130]Yong W D, Link B, O'Malley R, Tewari J, Hunter C T, Lu C A, Li X M, Bleecker A B, Koch K E, McCann M C, McCarty D R, Patterson S E, Reiter W D, Staiger C, Thomas S R, Vermerris W, Nicholas C. Carpita. Genomics of plant cell wall biogenesis. Planta,2005,221:747-751
    [131]Zhong G Y, Burns J K. Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis. Plant Molecular Biology,2003,53:117-131
    [132]Gawadi A G, Avery G S. Leaf Abscission and the So-Called "Abscission Layer". Botanical Society of America, 1950,172-174
    [133]Burns J K, Buker R S, Roka F M. Mechanical harvesting capacity in sweet orange is increased with an abscission agent. HorlTechnology,2005,15(4):758-765
    [134]Iwai N, Emerson R D, Roka F M. Harvest Cost and Value of Citrus Operations with Alternative Technology: Real Options Approach. Agricultural & Applied Economics Association,2009,7:26-28
    [135]Roka F M., Burns J K, Syvertsen J, Spann T, Hyman B. Improving the economic viability of florida citrus by enhancing mechanical harvesting with the abscission agent CMNP.University of Florida Institute of Food and Agricultural Sciences,2009
    [136]Duncan J H. Mechanical harvesting and handling of citrus fruits. Proc.Int.Citriculture,1978,87-91
    [137]Mao L, Begum D, Chuang H W, Budiman M A, Szymkowiak E J, Irish E E, Wing R A. Jointless is Amads-box gene controlling tomato flower abscission zone development. Nature,2000,24(406):910-913
    [138]Yuan R C, Burns J K. Temperature Factor Affecting the Abscission Response of Mature Fruit and Leaves to CMN-Pyrazole and Ethephon in'Hamlin'Oranges J.Amer.Soc.Hort.Scl.2004,129(3):287-293
    [139]Woo Y, Affourtit J, Daigle S, Viale A, Johnson K, Naggert J, Churchill G. A Comparison of cDNA, Oligonucleotide, and Affymetrix GeneChip Gene Expression Microarray Platforms. Journal of Biomolecular Techniques,2004,15:276-284
    [140]Kolosova N, Miller B, Ralph S, Ellis B E, Douglas C, Ritland K, Bohlmann J. Isolation of high-quality RNA from gymnosperm and an giosperm trees. BioTechniques,2004,36(5):821-825
    [141]Augustson J. G, Minker J. An Analysis of Some Graph Theoretical Cluster Techniques. Journal of the Association for Computing Machinery,1970,17(4):571-588.
    [142]Eisen M B, Spellman P T, Brown P O, David Botstein. Cluster analysis and display of genome-wide expression patterns. PNAS,1998,95(25):14863-14868
    [143]Schilling C H, Schuster S, Palsson B O, Heinrich R. Metabolic Pathway Analysis:Basic Concepts and Scientific Applications in the Post-genomic Era. Biotechnol Prog,1999,15:296-303
    [144]Eisenberg D, Marcotte E M, Xenarios I, Yeates T O. Protein function in the post-genomic era. NATURE,2000, 405:823-826
    [145]Liu H B, Lin D Y, Yates J R. Multidimensional Separations for Protein/Peptide Analysis in the Post-Genomic Era. BioTechniques,2002,32(4):898-905
    [146]滕晓坤,肖华胜.基因芯片与高通量DNA测序技术前景分析.中国科学,2008,38(10):891-899
    [147]Sutter C H, Laughner E, Semenza G L. Hypoxia-inducible factor la protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. PNAS,2000, 97(9):4748-4753
    [148]Mez-Cadenas A G, Verhey S D, Holappa L D, Shen Q X, David T H, Walker-simmons M. K. An abscisic acid-induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone layers. Plant Biology,1999,96:1767-1772
    [149]Kamaluddin M, Zwiazek J J. Ethylene Enhances Water Transport in Hypoxic Aspen. Plant Physiology, 2002(128):962-969
    [150]Mignone F, Gissi C, Liuni S, Pesole G Untranslated regions of mRNAs. Genome Biology,2002,3(3):1-10
    [151]Chen D H, Ronald P C. A Rapid DNA Minipreparation Method Suitable for AFLP and Other PCR Applications. Plant Molecular Biology Reporter,1999,17:53-57
    [152]Zhong G Y, Goren R, Riov J, Sisler E C, Holland D. Characterization of an ethylene-induced esterase gene isolated from Citrus sinensis by competitive hybridization. Physiologia Plantarum Physiologia Plantarum,2001, 113:267-274
    [153]任亮,朱宝芹,张轶博,王海燕,李尘远,苏玉虹,巴彩凤.利用软件Primer Premier 5.0进行PCR引物设计的研究.2004,25(6):43-46
    [154]Jacobs W P. Studies on Abscission:The Physiological Basis of the Abscission-Speeding Effect of Intact Leaves. American Journal of Botany,1955,42(7):594-604
    [155]Gallie D R. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes & Development,1991,5:2108-2116
    [156]Imataka H, Gradi A, Sonenberg N. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. The EMBO Journal,1998,17(24): 7480-7489
    [157]Caponigro G, Parker R. Multiple functions for the poly(A)-binding protein in mRNA decapping and deadenylation in yeast. Genes & Development,1995,9:2421-2432
    [158]Boucheix C, Benoit P, Frachetli P, Billard M, Worthington R E, Gagnonil J, Uzanll G. Molecular Cloning of the CD9 Antigen. The Journal of Biological Chemistry,1991,266(1):117-122
    [159]Tong Z G, Gao Z H, Wang F, Zhou J, Zhang Z. Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Molecular Biology,2009,10(71):1-13
    [160]贺立红,陈建业,于伟民,王勇,陆旺金.香蕉果实乙烯受体基因克隆及其表达特性.中国农业科学,2009,42(4):1359-1364
    [161]Tieman D M, Taylor M G, Ciardi J A, Klee H J. The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. PNAS,2000, 97(10):5663-5668
    [162]朱玉贤,李毅.现代分子生物学.北京:高等教育出版社,2002,2:88-91
    [163]Nishiyama T, Fujita T, Shin T, Seki M, Nishide H, Uchiyama I, Kamiya A, Carninci P, Hayashizaki Y, Shinozaki K, Kohara Y J, Hasebe M. Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: Implication for land plant evolution. PNAS,2003,100(13):8007-8012
    [164]Stock A M, Robinson V L, Goudreau P N. Two-Component Signal Transduction.Annual Review of Biochemistry, July 2000,69:183-215
    [165]Gao Z, Wen C K, Binder B M, Chen Y F, Chang J, Chiang Y H, Kerris R J, Chang C, Schaller G E. Heteromeric interactions among ethylene receptors mediate signaling in Arabidopsis. J. Biol. Chem,2008,283(35):23801-10
    [166]Mulder N J, Apweiler R, Attwood T K, Bairoch A, Bateman A, Binns D, Bork P, Buillard V, Cerutti L, Copley R, Courcelle E, Das U, Daugherty L, Dibley M, Finn R, Fleischmann W, Gough J, Haft D, Hulo N, Hunter S, Kahn D, Kanapin A, Kejariwal A, Labarga A, Langendijk-Genevaux P S, Lonsdale D, Lopez R, Letunic I, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Nikolskaya A N, Orchard S, Orengo C, Petryszak R, Selengut J D, Sigrist C J A, Thomas P D, Valentin F, Wilson D, Wu C H, Yeats C. New developments in the InterPro database. Nucleic Acids Research,2007,35:D224-D228
    [167]Bilwes A M, Alex L A, Crane B R, Simon M I. Structure of CheA, a signal-transducing histidine kinase. Cell, 1999,(96):25-34
    [168]Vierstra R D, Davis S J Bacteriophytochromes: new tools for understanding phytochrome signal transduction. Seminars in cell & developmental biology,2000, (11):511-21
    [169]Parkinson J S, Kofoid E C. Communication Modules in Bacterial Signaling Proteins. Annual Review of Genetics,1992,26:71-112
    [170]Wolanin P M, Webre D J, Stock J B. Mechanism of phosphatase activity in the chemotaxis response regulator CheY. Biochemistry,2003,42:14075-82
    [171]Muller-Dieckmann H J, Grantz A A, Kim S H. The structure of the signal receiver domain of the Arabidopsis thaliana ethylene receptor ETR1.Structure,1999,7:1547-56
    [172]Korzhnev D M, Salvatella X, Vendruscolo M, Nardo A A D, Davidson A R, Dobson C M, Kay L E. Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Natur,2004, 430:586-590
    [173]Norris M L, Millhorn D E. Hypoxia-induced Protein Binding to O_2-responsive Sequences on the Tyrosine Hydroxylase Gene. The Journal of Biological Chemistry,1995,270(40):23774-23779
    [174]Shoshani T, Faerman A, Mett I, Zelin E, Tenne T, Gorodin S, Moshel Y, Elbaz S, Budanov A, Chajut A, Kalinski H, Kamer I, Rozen A, Mor O, Keshet E, Leshkowitz D, Einat P, Skaliter R, Feinstein E. Identification of a Novel Hypoxia-Inducible Factor 1-Responsive Gene, RTP801, Involved in Apoptosis. Mol Cell Biol,2002, 22(7):2283-2293
    [175]张鹏华,陈兰英.低氧诱导因子-1的转录活性调控及其信号传导.生物化学与生物物理进展,2002, 29(6):863-86
    [176]Bruick R K. McKnight S L.A Conserved Family of Prolyl-4-Hydroxylases that Modify HIF. Science,2001, 294(9):1337-1340
    [177]Jimenez-Zurdo J I, Frugier F, Crespi M D., Kondorosi A. Expression Profiles of 22 Novel Molecular Markers for Organogenetic Pathways Acting in Alfalfa Nodule Development. Molecular Plant-Microbe Interactions. 2000,13(1):96-106
    [178]郭晓强.跨膜丝氨酸蛋白酶研究进展.生理科学进展,2009,20(4):182-185
    [179]刘长锁,陈乃宏.桩蛋白的结构与功能.生命的化学,2005,25(3):208-210
    [180]杨卫华,周建新,钟小林.PR-39,一种多功能的抗菌肽.生命的化学,2002,22(3):285-290
    [181]Yen S, Chung M C, Chen P C, Yen H E. Environmental and Developmental Regulation of the Wound-Induced Cell Wall Protein WI12 in the Halophyte Ice Plant. Plant Physiology,2001,127:517-528
    [182]Che P C, Yen H C E. Tissue-specific characterization of a wound-induced protein WI12 in Mesembryanthemum crystallinum. National Chung Hsing University Institutional Repository,2009,11
    [183]Marilley M, Pasero P. Common DNA structural features exhibited by eukaryotic ribosomal gene promoters. Nucleic Acids Research,1996,24(12):2204-2211
    [184]韩继成,方宣钧.五种热带水果乙烯受体基因的SNP分析.分子植物育种,2003,1(1):72-81
    [185]朱海生,温庆放,林义章,张志忠,潘东明.草莓乙烯受体FaEtr2基因的克隆及其反义表达载体的构建.园艺园林科学,2007,23(6):442-447
    [186]朱海生,潘东明,温庆放,林义章.反义乙烯受体FaEtr2基因对草莓的转化.园艺学报,2008,35(11):1587-1594
    [187]刘元风,李晓方,李玲.乙烯受体与信号转导成员的研究进展.生命科学研究,2003,7(2):70-74
    [188]Anatomical G R, physiological and hormonal aspect s of abscission in citrus. Hortic Rev,1993,15:145-182
    [189]Brummell D A, Hall B D, Bennett A B. Antisense suppression of tomato endo-β-1,4-glucanase Ce12 mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening. Plant Molecular Biology,1999,40:615-622
    [190]http://www.ncbi.nlm.nih.gov/gorf/gorf.html [191]http://blast.ncbi.nlm.nih.gov/
    [192]http://www.expasy.org/tools/#primary
    [193]http://www.sbg.bio.ic.ac.uk/-phyre/
    [194]Koichiro Tamura, Joel Dudley, Masatoshi Nei, Sudhir Kumar. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution 2007, 24(8):1596-1599
    [195]http://plantsp.genomics.purdue.edu/cgi-bin/fscan/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700