用户名: 密码: 验证码:
高速公路交通事故现场区划安全测度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速公路发生交通事故以后,事故现场处部分或全部车道封闭,交通警察在事故现场进行勘查工作,事故现场的合理处置是交通警察和现场其他人员人身安全的基本保证。近年来频发的高速公路二次交通事故,一方面说明交通警察和现场其他人员缺乏安全意识,另一方面也说明事故现场处置规范还不够完善。为了提高交通事故现场区域安全性,预防二次交通事故,本文从分析二次交通事故的致因因素出发,调研事故现场区域的交通特性,进行事故现场危险区域划分,并研究交通事故现场路段限速方案和安全标志设置。
     应用系统动力学方法建立高速公路交通事故现场安全系统模型,得出模型中各因素的重要度。从系统安全性的角度分析驾驶员、交通警察和其他人员行为特性与事故现场安全性的关系。调研事故现场上游路段各特征点断面运行车速和车头时距,并确定各样本的分布函数,为事故现场区域划分提供数据支持。
     根据运行车速空间分布特征以及驾驶员行为特征对高速公路交通事故现场进行区域划分,建立各区域长度计算模型。基于交通事故现场的信息多维特征建立区域限速值计算模型,并开发了限速值辅助决策系统。为了验证限速值计算模型的可行性,利用微观交通流仿真软件将推荐的限速方案与不限速方案比对,考查影响交通事故现场安全性的指标,从而得到双向四车道、双向六车道和双向八车道高速公路典型交通事故现场划分区域的限速方案。
     基于驾驶员对交通标志的视认过程,建立高速公路交通事故现场标志设置前置距离和设置方式的计算模型,提出双向四车道、双向六车道和双向八车道高速公路典型交通事故现场以及特殊条件下的事故现场的限速标志、警示标志和指示标志等设置方案。
Freeway is a kind of main line of road with restricted entrances for automobile to run in different direction and in respective lane. And its mileage is a sign of national and regional economic development level. Freeway has outstanding advantages in transportation efficiency, convenience and comfort. But the growing transportation demand brings great traffic flow. In such background, traffic accidents would occur if mismanagement or lack of safty awareness for traffic participants. Traffic accidents result in accident scenes, which are the basis of accidents reconstruction and causations judgement.
     After traffic accidents occur, it is necessary to wait for traffic police coming to enclose the accident scenes. Due to sudden changes of traffic flow and speed dispersion, traffic police, irrelevant personnel, damaged vehicles and passing vehicles constitute an extremely complex and dangerous traffic environment. Sections around traffic accident scenes are most dangerous during accident scenes formation and rescission. In order to protect traffic police and irrelevant personnel, and avoid vehicles rushing into accident scenes, Ministry of Transport and Ministry of Public Security have formulated many laws and regulations,which regulate the behavior of scene investigation, equipments and scheme of scene disposal for traffic police. But owing to randomicity of accident locations and high speed of passing vehicles, secondary accidents frequently happen.
     Occurrence of secondary traffic accidents has single or various causations inluding unsuitable disposal of scenes, negligence of traffic police and hamartia of drivers. Compared with the initial accidents, the secondary accidents inducing more casualty and property loss are more preventable. This paper analyzes the safety factors in accident scenes, studies traffic characteristics around accident scenes, puts forward speed limitation suggestions and conducts reasonable setting of traffic signs in the scenes. Detailed descriptions are as follows.
     (1) Aiming at the statistical absence of secondary accidents, the concept of the secondary accidents is put forward in this paper, and characteristics factors are regulated. Based on the processes and results of the secondary accidents, classifications and forms of the secondary traffic accidents are proposed. The causations of the secondary traffic accidents including person factors, vehicle factors, road and environment factors and management factors are analyzed. And the relationship between state evolution of various factors and safety of traffic accident scenes is studied. In order to obtain the important degree of various factors and propose effective measurements, the initial traffic accident scenes are regarded as dynamics system. Casualty graph and dynamics flow graph involving variable definition, horizontal equation, auxiliary equation, rate equation, the initial value equation and constant equation, are established. After every parameter is defined, dynamics system model is simulated to analyze the importance of factors.
     (2) In order to divide the regions for traffic accident scenes and propose the suitable speed limits suggestion, personnel behavior characteristics in accident scenes, passing vehicles speed characteristics and traffic flow characteristics are analyzed. According to drivers cognitive pattern of SOR, drivers disposal information model is established, which is combined with information characteristics in accident scenes and utilized driving reliability theory. Behavior purpose, behavior approach and behavior contence of traffic police are investigated. In order to research onlooker psychology, realize onlooking time and onlooking region, questionnaires are made. The questions involve onlooking tendency, watching time and region. Investigation results are made to statistical graphs and charts. For obtaining speed distribution along accident scenes section, radar speed indicator and traffic flow capturing and processing equipment are applied to detect speed at certain points. Probability distribution of speed sample is achieved by means of maximum likelihood estimation. Time headway sample in normal section, single lane enclosing section and multi lanes enclosing section is analyzed to acquire distributed parameters. Based on the speed and time headway distribution, length model of confluence zone is established in different traffic flow.
     (3) According to speed distribution and relevant regulations, the regions of traffic accident scenes are divided, speed limits model and simulating models are established. Traffic accident scenes are divided into warning zone, confluence zone, buffering zone, accident zone, diffluence zone and termination zone. Vehicles speed charateristics in various zone and drivers behavior charateristics are helpful to calculate length of each zone. Considering large quantity of information and ability of drivers information disposal, speed limit value model in warning zone and confluence zone are established, which aid to develop the decision support system. The system includes modules according to information classification in accident scenes. To verify models and support system, microscopic simulation software of traffic flow is employed to check index involving standard deviation of speed sample, maximum queue length, traffic capacity and mean speed. Speed limits suggestions are proposed for typical accident scenes of four-lane double way, six-lane double way and eight-lane double way.
     (4) Based on the ergonomics, classifications and location of traffic signs in each zone are put forward according to analyzing the process of drivers reading signs. Means of traffic signs and characteristics of drivers behaviors are contributed to establish distance model of reading signs. Consequently, preposing distance of traffic sings locations and repeating distances are obtained. Referencing speed limits suggestions, setting locations of signs and proposal chemes are proposed for four-lane double way, six-lane double way, eight-lane double way and simple accident scenes. At the same time, full-lane enclosed accident scenes, special climate, special sections and accident scenes in night are anayzed and traffic signs setting schemes are proposed.
     Research results are valuable theoretically and practically for regulating disposal scheme of traffic accident scenes, ensuring personal safety of traffic police and irrelevant personnel in accident scenes.
引文
[1]公安部交通管理局.道路交通事故统计年报[M].无锡:公安部交通管理科学研究所,2009.
    [2]许洪国.道路交通事故分析与处理[M].北京:人民交通出版社,2004.
    [3] Jake Kononov, Zane Znamenacek. Risk Analysis of Freeway Lane Closure During Peak Hour[J].The 84th Annual Meeting Transportation Research Board, Washington,D.C. 2005:1351-1366.
    [4] http://news.xinhuanet.com/newscenter/2005-03/14/content_2694075.htm
    [5] http://tj.news.163.com/07/0808/13/3LCJNBG2003900BV.html
    [6] http://www.ynxxb.com/content/2009-4/26/N88515832993/
    [7] http://news.sohu.com/20090426/n263622499.shtml
    [8] http://news.qq.com/a/20091205/001416.htm
    [9] Sayed T, Navin F. Countermeasure.Based Approach for Identifying and Treating Accident Prone Locations[J].Canadian Journal of Civil Engineering, National Research Council Canada, 1997, 24(5):683-691.
    [10] Fouad A.Gharaybeh. Identification of Accident Prone Locations in Greater Amman[J]. Transportation Research Board No.1318,1991,70-74.
    [11] Agent K, Pigman J. Evaluation of Speed Limits in Kentucky[J]., Transportation Research Record, 2000, 99(8): 22-25.
    [12] Taniguchi H, Takahiro Nakamura. Methods of Traffic Flow Measurement Using Spatio Temporal Image[C]. Proceedings of Transaction on Pattern Analysis and Machine Intelligence, 1982: 398-406.
    [13] Kamijo S, Yasuyuki Matsushita, Katsushi Ikeuchi. Traffic Monitoring and Accident Detection at Intersections[C]. Proceedings of Transportation Safety and Artificial Intelligence, Cambridge, 1987:1023-1029.
    [14] Jung.Taek Lee. Incident Detection Algorithm Development on Signalized Urban Arterial Streets [D]. Michigan State University, 1997.
    [15] John N. Ivan. Neural Net Work Representations for Arterial Street Incident Detection Data Fusion [J]. Transportation Research Part C, 1997, 5: 245-254.
    [16] Jiuh.Biing Sheu, Stephen G. A new methodology for incident detection and characterization on surface streets [J]. TRB, National Research Council, Washington, 1998,6: 315-335.
    [17] Sanso B., Soumis F. Communication and Transportation Networks Reliability Using Routing Models[C]. Conference on Transportation Reliability, New York, 1991: 691– 698.
    [18] Milot L, Sabso B. Performability of a Congested Urban Transportation Network when Accident Information is Available[J]. Transportation Science.1999, 25(6):115-120.
    [19] Hollind D, Assent S, Buttler R. National Intelligent Transportation System Deployment Strategy[J]. Transportation Society of America, 1999: 121-123.
    [20] Lee Chris, Hellinga B, Frank Saccomanno. Evaluation of Variable Speed Limits to Improve Traffic Safety[J]. Transportation Research Part C: Emerging technologies, 2006, 14(3): 213-228.
    [21] Dial R. A Probabilitic Multipath Traffic Assignment Model[J]. Transportation Research, 1971: 83-111.
    [22] Michalopoulos P, Pishaody V. Derivation of Delays Based on Improved Macroscopic Traffic Models [J]. Transportation Research, 1981: 299-317.
    [23] G.F. Newell. A Simplified Theory of Kinematic Waves in Highway Traffic[J]. Transportation Research B, 1993, 27B (4): 281-287.
    [24] Lawson T, Lovell D and Daganzo C. Using the Input.Output Diagram to Determine the Spatial and Temporal Extents of a Queue Upstream of a Bottleneck[J]. Transportation Research Record TRB, National Research Council, 1997: 125-131.
    [25] Liping Fu. An Adaptive Model for Real Time Estimation of Overflow Queues on Congested Arterials[C]. Intelligent Transportation Systems Conference Proceedings, 2001: 219-226.
    [26] Sheu JB, Chou YH.Stochastic modeling and real.time prediction of incident effects on surface street traffic congestion [J]. Applied Mathematical Modeling, 2004: 445-468.
    [27]王建军,周伟.线性模型下高速公路交通事故和干涉车流波模拟理论研究[J].西安公路交通大学学报,1998,18(3):283-289.
    [28]王建军.交通事件和干预作用影响下的高速公路车流波分析[J].重庆交通学院学报,2006,25(6):104-108.
    [29]吴正,汪茂林.高速公路交通事故和干涉车流波的非线性数学模型[J].西安公路交通大学学报,2001,21(2):77-80.
    [30]汪茂林,吴正.高速公路交通事故和干涉车流波的数值模拟[J].水动力学研究与进展,2001,16(3):265-273.
    [31]臧华,彭国雄.城市快速道路异常事件下路段行程时间的研究[J].交通运输系统工程与信息,2003,3(2):57-59.
    [32]孔惠惠,秦超,李新波,李引珍.交通事故引起的排队长度及消散时间的估算[J].铁道运输与经济,2004,27(5):65-67.
    [33]贾顺平,唐祯敏.基于微观模拟的城市快速路交通事故影响评价系统[J].交通运输系统工程与信息,2006,6(1):55-59.
    [34]俞斌,陆建,陶小伢.道路交通事故的影响范围算法[J].城市交通,2008,6(3):82-86.
    [35]陈斌,魏朗.高速公路意外事件影响下的车辆跟驰模型[J].交通运输工程学报,2006,6(3):103-108.
    [36]吴正.高速交通中堵塞形成阶段的交通流模型[J].交通运输工程学报,2003,3(2):61-64.
    [37]裴玉龙,程国柱.高速公路车速离散性与交通事故的关系及车速管理研究[J].中国公路学报,2004,17(1):74-78.
    [38]干宏程,孙立军.高速公路可变限速控制技术研究[J].交通科技,2004,6:28.30.
    [39]吴晓周、余志、李喆、何兆成.基于围观交通仿真的限速控制方案的评价[C].第二届中国智能交通年会论文集,2006:334-337.
    [40]姜紫峰,刘小坤.基于神经网络的交通事件检测算法[J].西安公路交通大学学报,2000,20(3):67-73.
    [41]张秀媛,达庆东,张国伍.公路自动事件检测技术[J].系统工程理论与实践,2001,6:119-124.
    [42]李文江,荆便顺,杨光,王彦卿.基于小波分析的事件检测算法[J].西安公路交通大学学报,1997,17(2B):134-138.
    [43]张云伟,刘跃明.交通事件检测的一种滤波算法[J].云南工业大学学报,1998,14(4):17-23.
    [44]姜桂艳,温慧敏,杨兆升.高速公路交通事件自动检测系统与算法设计[J].交通运输工程学报,2001,1(1):77-81.
    [45]周伟,罗石贵.基于模糊综合识别的事件检测算法[J].西安公路交通大学学报,2001,21(2):70-73.
    [46]谭光莉,姜紫峰.高速公路事故自动检测算法的探讨[J].西安公路交通大学学报,1999,19(3):55-57.
    [47]郭艳玲,吴义虎,黄中祥.基于小波分析和SOM网络的交通事件检测算法[J].系统工程,2006,(10):100-104.
    [48]仝秋红,黄丽,刘宇.交通事故智能预测系统[J].公路,2006,4:189-192.
    [49]张良春,夏利民.基于Adaboost方法的高速公路事件检测[J].计算机工程与应用,2007,43(28):230-232.
    [50]张慧哲,王坚,梅宏标.基于FCM与模糊粗糙集理论的交通事件检测模型[J].计算机工程与应用,2008,44(23):4-7.
    [51]杨涛,张良春.基于Adaboost集成RBF神经网络的高速公路事件检测[J].计算机工程与应用,2008,44(32):223-229..
    [52]覃频频,牙韩高,黄大明.基于Logit模型的城市道路交通事件检测仿真[J].公路交通科技,2006,23(12):137-141.
    [53]梁大林.交通事故现场勘察车技术发展研究[J].专用汽车,2000,4:28-30.
    [54]中国农业大学.道路交通事故现场快速勘察处理系统[P]:中国,92214985.2[P]. 2002.12.15.
    [55] http://www.lygnews.com/www/news/sjbt/webinfo/2008/03/04/1204169519585134.htm
    [56]范亚非.高速、高等级公路交通事故现场勘查模具[P]:中国,G01C15/00.2003.04.09.
    [57]姜华平.道路交通事故社会经济损失评价理论研究[D].长春:吉林大学,2005.
    [58] Bener A et al. Strategy to Improve Road Safety in Developing Countries[J]. Saudi Medical Journal, 2003, 24: 447-452.
    [59] Christer Hyden. Modelling Accident Data and Looking for Alternatives of Duerease [C]. Proceeding of the Third Workshop of ICTCT, 1990:23-32.
    [60]徐丽丽,张兴强.道路交通事故中道路条件因素影响分析[J].道路交通与安全,2005,2: 35-38.
    [61]崔洪军,魏连雨,庞建勋.道路条件与交通安全的研究方法[J].西安公路交通大学学报,2001,21(4): 36-39.
    [62]魏庆曜,陈斌,金炜东等.基于分层关联解析的事故道路因素分析[J].长沙交通学院学报,2005,21(1): 82-86.
    [63]苑春苗,陈宝智,李畅.基于BP神经网络的事故致因分析方法[J].工业安全与环保,2005,31(10): 54-56.
    [64]席建锋等.基于粗糙集的道路交通事故成因层次分析方法[J].长春理工大学学报(自然科学版),2009,32(2):257-259.
    [65]李相勇,张南,张学尽,蒋葛夫.高速公路交通事故致因的人机工程学分析[J].公路,2003,8: 108-112.
    [66]林忠,宇仁德.基于主成分分析理论的交通事故成因研究[J].山东交通学院学报,2006,14(1):55-57.
    [67]李嘉,朱顺应,张启明,向红艳.用改进的灰色关联度分析交通事故成因[J].公路交通技术,2006,1: 114-116.
    [68]姚智胜,邵春福,龙德璐.基于粗糙集理论的路段交通事故多发点成因分析[J].中国安全科学学报,2005,15(12): 107-109.
    [69]肖慎,过秀成,徐建东.模糊聚类法在公路交通事故黑点成因分析中的应用[J].交通运输系统工程与信息,2002,2(3): 40-43.
    [70]张林峰,范炳全,严广乐,吕智林.交通影响下的城市中心演化系统动力学模型及仿真研究[J].系统工程,2004,22(5):61-65.
    [71]张波等.基于系统动力学模型的松花江水污染事故水质模拟[J].中国环境科学,2007,27(6):811-815.
    [72]丁松滨,石荣,施和平.基于系统动力学的空中交通系统安全管理研究[J].交通运输工程与信息学报,2006,4(4):1-6.
    [73]林晓飞,曹庆贵,张鹏.我国煤矿安全形势的系统动力学模型分析[J].矿业安全与环保,2008,35(1):83-87.
    [74]王云鹏等.基于系统动力学的道路运输量预测模型[J].吉林大学学报(工学版),2005,35(4):426-430.
    [75]李俊玲,袁连冲,钱自立.系统动力学在需水量预测中的应用[J].人民长江,2008,39(2):20-22.
    [76]王莲芬,许树柏.层次分析法引论[M].北京:中国人民大学出版社,1990.
    [77] Herbert Federer. Geometric Measure Theory[M].北京:世界图书出版公司,2004.
    [78] Benhard Schlag. Elderly Drivers in Germany-fitness and Driving Behavior[J]. Accident Analysis and Prevention, 1993, 25: 47-55.
    [79] Castillo J, Pintado P, Benitez F. The Reaction Time of Drivers and the Stability of Traffic Flow[J]. Transportation Research.B, 1993, 28B: 35-60.
    [80] Naatanen R, Summala H. Road User Behavior and Traffic Accident[J]. Oxford, North.Holland, 1976.
    [81] Dianni Parker. Driving Errors, Driving Violations and Accident Involvement[J]. Ergonomics, 1995: 38-45.
    [82] Hohn M, Kay Fitzpatrick, Deborah L. Identification of Inappropriate Driving Behaviors[J]. Journal of Transportatiom Engineering, 1992,118(2): 281-298.
    [83] Alan D. Human Reliability Analysis: Need, Status, Trend and Limitations[J]. Reliability Engineering and System Safety, 1990, 29: 301-313.
    [84]许洪国.汽车事故工程[M].北京:人民交通出版社,2004.
    [85]李忠范,高文森.应用数理统计[M].北京:高等教育出版社,2009.
    [86]高文森,张魁元.概率统计教程[M].长春:东北师范大学出版社,1999.
    [87]阎莹,王晓飞,张宇辉,郭忠印.高速公路断面运行车速分布特征研究[J].中国安全科学学报,2008,18(7):171-176.
    [88]王殿海.交通流理论[M].北京:人民交通出版社,2002.
    [89] Michael Haag, Hans-Hellmut Nagel. Tracking of Complex Driving Maneuvers in Traffic Image Sequences[J]. Image and Vision Computing, 1998, 16: 517-527.
    [90]李江等.交通工程学[M].北京:人民交通出版社,2002.
    [91]李铁柱等.高速公路加减速车道合流分流特征分析[J].公路交通科技,2001,18(4):89-91.
    [92]李文权,王炜,周荣贵.高速公路合流区1车道车头时距分布特征[J].公路交通科技,2003,20(1):114-117.
    [93]张小东,郭忠印,高建平,蒋锐.高速公路入口合流区域安全性理论分析[J].重庆交通学院学报,2006,25(1):99-106.
    [94] Garber Nicholas, Gadiraju R. Impact of Differentials Speed Limits on the Speed of Traffic and the Rate of accidents[J].Transportation Research Record1, 1995: 17-22.
    [95] Liu G, Popoff A. Provincial Wide Travel Speed and Traffic Safety Study in Saskatchewan [J]. Transportatio Research Record 1595, 1997: 8-13.
    [96]陈俊.驾驶人对交通标志视认的短时记忆衰减研究[D].西安:长安大学,2009.
    [97]常华.高速公路互通式立交分、合流区辅助车道设置长度的研究[D].南京:东南大学,2000.
    [98]罗霞.混合车流合流运行模式研究[J].西南交通大学学报,2000,35(4): 36-39.
    [99]吴兵,刘开平,王一如.公路养护安全作业规程[M].人民交通出版社,2004.
    [100] Simmala, H. Driver/Vehicle Steering Response Latencies[J]. Human Factors, 1981, 23: 638-692.
    [101]周一呜,毛恩荣.车辆人机工程学[M].北京:北京理工大学出版社,1999.
    [102]中交第一公路勘测设计院.公路线形设计规范[M].北京:人民交通出版社,2006.
    [103]丁玉兰,郭钢,赵江洪.人机工程学[M].北京:北京理工大学出版社,1991.
    [104] Singleton W. Body at Work-Biological Ergonomics[M]. London, UK: Cambridge University Press, 1982.
    [105]罗良鑫,李相勇,段力.基于信息处理的道路限速设置探讨[J].人类工效学,2004,10(4):42-44.
    [106]戴彤宇,裴于龙,陈瑜.基于驾驶员信息处理能力的高速公路作业区限速值计算方法[J].公路交通科技,2007,24(9):127-130.
    [107] Loom R. Individual Differences and the Perception of Traffic Sign[J]. Human Factors, 1978, 20(1): 65-74.
    [108] Solomon D. Accidents on main rural highways related to speed, drivers, and vehichle[R]. Washington: Bureau of Public Roads, 1964.
    [109] Fildes B, Rum Bold G, Leening A. Speed Behavior and Drivers Attitude to Speeding[R]. Sydney: Monash University, 1991.
    [110] GarethMillar,RoderiekTudge,ChristopherWilson. Micro Simulation Evaluation of the Benefit of Scats Coordinated Traffic Control Signals [R]. Shang.hai China: Citytrans Conferenee, 2004.
    [111]隽志才,曹鹏,吴文静.基于认知心理学的驾驶员交通标志视认性理论分析[J].中国安全科学学报,2005,15(8):8-11.
    [112] Balbir S, Dhillon. Human Error Identificatiom in Human Reliability Assecement[J]. Applied Ergonomics, 1992, 23: 299-305.
    [113]李文权,王炜.高速公路路侧标志设置问题[J].东南大学学报(自然科学版),2007,37(1):164-169.
    [114] Steinfeld P. Green. Driver Responses to Navigation Information of Full.Windshield, Head.up Displays[J]. International Journal of Vehicle Desing, 1998,19(2): 135-149.
    [115]王武宏,孙逢春,曹琦,刘淑艳.道路交通系统中驾驶行为理论与方法[M].北京:科学出版社,2001.
    [116]司银霞.限速标志对驾驶行为影响研究[D].长春:吉林大学交通学院,2006.
    [117]余志生.汽车理论[M].北京:机械工业出版社,2004.
    [118] Jeanne M.Purduski, Malgorzata J.Rys. Evaluations of a New Advance Flagger Traffic Sign[J]. International Journal of Industrial Ergonomics, 1999, 24: 107-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700