用户名: 密码: 验证码:
重型汽车振动问题研究及传动轴性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一汽某重型牵引车是解放品牌的畅销主打车型,其整车振动问题始终困扰着工程技术人员。本文针对一汽某重型牵引车的整车振动问题,探索一些切实可行的解决办法。文中运用振动理论,分别分析了悬架刚度,传动轴的工艺误差、装配误差,簧载质量,后桥速比等参数变化对整车振动的影响。在历经三年的课题研究过程中,主要工作内容有以下几个方面:
     首次通过等效变换的方式对常规振动模型进行改进,将前、后桥的加速度信号作为模型的输入信号。由于此信号是路面经过轮胎过滤后的测量信号,更加真实、准确,非常具有工程实用价值。
     首次利用近似等效的方式,使振动模型输入信号具有可移植性,探讨了两个典型问题:1)悬架刚度优化模型中的输入信号随着悬架刚度的变化而变化;2)载货汽车使用中,簧载质量是在一定载荷范围内随机变化的,簧载质量的变化导致模型输入信号的变化。
     首次利用矢量方法分析传动轴的运动过程,用简单方法解决了复杂问题。考虑后桥跳动的前提下,针对不同路面分别进行了传动轴的运动学仿真研究。
     建立了包含传动轴离心力的整车振动模型。通过正交试验方法,利用改进的车辆振动模型,对传动轴的多个参数分别进行仿真研究。
     应用遗传算法,对问题车辆的悬架刚度参数进行优化。
     在悬架刚度不变的条件下,通过优化匹配鞍座载质量、后桥速比和鞍座前置距等参数,降低了整车振动。
It has been found in the present process of production that many vehicles’vibrations are caused by unbalance of transmission shaft. During the vehicle design, designers closely concern the vibrations of transmission shaft, and hope to acquire the quantitative relationship about vibrations between transmission shaft and vehicle.
     In this paper, in conjunction with FAW Group Corporation R&D Center-related research carried out, the FAW vehicle vibrations are conducted in-depth explorations. The content of this paper is the basis of vibration theory, and dual-axis of heavy vehicles’vibrations and their transmission shaft’s optimal matching are studied. The corresponding vibration in the vehicle modeling, dynamics analysis of rear axle shaft, transmission shaft’s optimal matching and fault vehicle’s optimal matching the four aspects carried out with a certain depth of exploration and study, and obtained some useful conclusions.
     1. Improvement of the Vehicle Vibrant Model
     It is very important for us to establish reasonable vehicle vibrant model, while vehicle vibration is considered. The main relevant research method of the vehicle vibrant model both in China and abroad is taking terrain displacement signal as the input signal of multi-degree of freedom vehicle model, which needs to build complex terrain model and tire model,but it is very difficult to build them till now.
     Accelerometer has the advantage of small volume and high precision, and it is convenient to use as engineering survey, so it is frequently used to analyze the vibration problem of vehicle. The traditional vehicle vibrant model is improved by the method of coordinate transform, by which the acceleration signal of the front axle and rear drive axle is used as the model input signal. Because of the input signal which is measured after being filtered by tires and bears tire enveloping properties, it will be more authentic and practical.
     Approximate equivalent and coordinate transform are firstly used to resolving the transplantation difficulty about the input signal of automobile dependent suspension optimization model. Two types of problems are discussed: 1) the input signal is changed by changing with suspension stiffness in the suspension optimization model; 2) the input signal is changed by changing with sprung mass during sprung mass randomly varied in certain extent. Without losing the accuracy of the input signal, the model can be used into not only the suspension optimization model, but also all kinds of deforming vehicles’calculation models which have identical suspension and different sprung mass. Thus, the improved vibration model is more practical in engineering. Compared with the traditional automobile dependent suspension optimization model,not only the input signal is convenient to attain, but also the input signal is changed by changing with suspension stiffness. Thus, the comparison between simulation and test shows that not only the calculation accuracy of model is improved, but also the model is more practical in engineering.
     2. Kinematics Characteristics of Rear-axle Transmission Shaft
     A new method of space analytic geometry is presented, by which the kinematics characteristics of single cross universal joint is analyzed and the dynamic model of the rotate speed, the angular acceleration and the torque about driven shaft are built. This method is clear, uncomplicated and lucid, which offers a more convenient way to analyze mechanism’s kinematics characteristic so that it is suitable for project designs. By means of resolving the vehicle abnormal vibration, it can prove that the model in this paper is correct, and it draws the conclusion about the main reason for abnormal vibration induce by the angle ? between drive shaft and driven shaft. The driven shaft’s periodicity on rotate speed, angle acceleration and torque find by matlab simulation, which breadth increasing with angle? . So it provides theory for reasonable disposal and reliability analysis on transmission shaft.
     A method of vector analysis is presented, which is used to building the rear-axle flouncing model. This method is clear, uncomplicated and lucid. Through comparing with the traditional diagram of transmission shaft, the result of the rear-axle flouncing model is accurate, and it can completely replace the traditional diagram of transmission shaft. The Matlab software is used to making the simulation and the variation curve of transmission shaft’s length and angle is gained during rear axle flouncing, which will provide theoretic reference for the disposal of the transmission shaft, and which is more practical in engineering.
     On the basis of the rear-axle flouncing, the kinematics emulational characteristics of the transmission shaft are done on the different pavement. The conclusion can be drawn as follow: 1) Root mean square will increase with increasing of transmission shaft initial angle, 5 ~ 7°in the angle between the root mean square value of the trend slowing down;2)For the influence of root mean square value,transmission shaft initial angle changes more rapidly than amplitude of pavement., thus affecting the acceleration root mean square value change in the major factor in transmission shaft initial angle. So it provides theoretical basis for the design of transmission shaft.
     3. Research on Transmission Shaft’s Optimal Matching
     Firstly,the transmission shaft’s centrifugal force is analyzed, and the vehicle vibration model including the transmission shaft’s centrifugal force is built.
     Secondly,multiple parameters of the transmission shaft are analyzed and researched on the basis of the improved vibration model by means of orthogonal test,which will provide the theoretical basis for the reasonable matching of the transmission shaft’s parameters.
     Thirdly,It can be drawn from the orthogonal test that assembly errors and ratio of rear axle are important factors for influencing test index from vibration level’s point of view, and that errors , ratio of rear axle and carrying-capacity of saddle are important factors for influencing test index from comfort performance’s point of view.
     4. Research on Fault Vehicle’s Optimal Matching
     On the basis of genetic algorithm, optimization analysis of the fault vehicle’s suspension has been done, and it will provide the reference for optimal matching of suspension. By optimal matching of the fault vehicle’s suspension, it can be drawn the conclusion that suspension stiffness is so large that vehicle vibration aggravates.
     With fixed suspension stiffness of the fault vehicle, by optimal matching of saddle’s carrying-capacity, it can decrease the fault vehicle’s vibration. By means of orthogonal test, It can be found that carrying-capacity of saddle is fluctuant and important factors for influencing the fault vehicle’s vibration. The original design carrying-capacity of saddle is 10 tons, but its corresponding root mean square is too large from curve, so design value is unreasonable. It is a suggestion that the design carrying-capacity of saddle should be 11 tons.
     With fixed suspension stiffness of the fault vehicle, by optimal matching of ratio of rear axle and distance of towing attachment, it can decrease the fault vehicle’s vibration. By means of orthogonal test, multiple parameters of the transmission shaft are analyzed and researched, which will provide some solutions and methods for the improvement vibration level of the fault vehicle. Through the vehicle road test, it verifies the correctness of the simulation results, and the improved vehicle vibrates perfectly.
引文
[1]孙中辉;刘蕴博;郭彦颖;李幼德。传动轴和轮胎不平衡量导致整车异常振动问题的解决方法[J]。汽车技术,2007(9)。
    [2]陈家瑞等.汽车构造[M].人民交通出版社,2000,103~107
    [3]张树强.汽车理论[M].合肥:安徽科学技术出版社,2000.114~126
    [4]张铁柱,霍伟.汽车原理教程[M].北京:国防工业出版社,2003. 225~232
    [5]刘大维.汽车工程概论[M].北京:机械工业出版社,2004. 171~178
    [6] N.J.Leighton. The Application of Advanced Modelling Techniques to Reduce Prototyping Time for a Novel Active Suspension System[C]. The IEE, Savoy Place, London WC2ROBL, UK, 1994. 1~4
    [7] A.S.Cherry, R.P.Jones. Fuzzy Logic Control of an Automotive Suspension System[C]. IEE Proc.--Control Theory Appl.,Vo1.142,No.2, March 1995.149~160
    [8] Andrew Alleyne,J.Karl lIedrick. Nonlinear Adaptive Control of Active Suspensions[C]. IEEE Transactions on Control Systems Technology, Vol.3, No.l March 1995.94~101
    [9] Dae Sung Joo, Nizar Al-Holou. Development and Evaluation of Fuzzy Logic Controller for Vehicle Suspension Systems[C]. IEEE, 1995.295~299
    [10] A.W.Burton, A.J.Truscott, P.E.Wellstead. Analysis, Modeling and Control of an Advanced Automotive Self-levelling Suspension System[C]. IEE Proc.-Control Theory Appl., Vol.142, No.2, March 1995.129~139
    [11] Rolf Isermann. On the Design and Control of Mechatronic Systems-A Survey[C]. IEEE Transactions on Industrial Electronics, Vo1.43, No.l,February 1996.4~15
    [12] B.Mohan,S.B.Phadke. Variable Structure Active Suspension System[C]. IEEE, 1996.1945~1948
    [13] Andrew J.Barr, Jeffrey L.Ray. Control of an Active Suspension using Fuzzy Logic[C]. IEEE, 1996.42~48
    [14] Huei Peng, Ryan Strathearn, A.Galip Ulsoy. A Novel Active Suspension Design Technique一Simulation and Experimental Results. Proceedings of the American Control Conference[C], Albuquerque, New Mexico, June 1997.709~713
    [15] Shih-Lang Chang, Chi-haur Wu. Design of an Active Suspension System Based on a Biological Model. Proceedings of the American Control Conference[C], Albuquerque, New Mexico, June 1997.2915~2919
    [16] Han-Shue Tan, Thomas Bradshaw. Model Identification of an Automotive Hydraulic Active Suspension System. Proceedings of the American Control Conference[C], Albuquerque, New Mexico, June 1997.2920~2924
    [17] Nizar Al-Holou, Jonathan Weaver, Dae Sung Joo. Adaptive Fuzzy Logic Based Controller for an Active Suspension System[C]. IEEE,1997.583~586
    [18] C.F.Nicolas, J.Landaluze, E.Castrillo et al. Application of Fuzzy Logic Control to the Design of Semi-Active Suspension Systems[C]. FUZZ-IEEE,1997.987~993
    [19] Jung-Shan Lin, Ioannis Kanellakopoulos. Modular Adaptive Design for Active Suspensions. Proceedings of the 36a' IEEE Conference on Decision and Control[C], San Diego, California, December 1997.3626~3631
    [20]孙建民,陈玉强.现代控制理论在汽车悬架控制中的应用现状[J].汽车研究与开发,2000, C 5 ): 19~21
    [21]于翔,汽车悬挂参数的多级优化[J],汽车技术,1994 (7): 10~12
    [22]孟光.转子动力学的回顾与展望[J].振动工程学报,2002,15(1):1~9.
    [23]虞烈,刘恒.轴承-转子系统动力学[M].西安:西安交通大学出版社,2001,1~15.
    [24]顾家柳,丁奎元,刘启洲,等.转子动力学[M].北京:国防工业出版社,1985,6~10.
    [25] Gasch R.转子动力学导论(周仁睦译) [M].北京:机械工业出版社,1986.
    [26]邬惠乐,邵成,冯振东.汽车动力传动系统扭转振动的研究[J].汽车工程,1983,4:21~29
    [27]方传流,冯振东,吕振华.汽车动力传动系扭振的固有特性和结构修改控制措施分析[J].汽车工程,1993,15(1):9~18.
    [28]陈奎孚,彭红涛,焦群英.复杂传动轴系扭振的递归传递矩阵法[J].农业工程学报,1999,15(2):42~45.
    [29] Chen D W. An exact solution for free torsional vibration of a uniform circular shaft carrying multiple concentrated elements[J]. Journal of Sound and Vibration,2001,245(2):303~328.
    [30]何献忠、李萍等著,优化技术及其应用[M],北京:北京理工大学出版社.1995
    [31]龚微寒主编,现代汽车设计制造[M],人民交通出版社.1995
    [32]鹏程.存在振动的传动轴模糊可靠性优化设计[J].机械研究与应用,2006,19(1): 82~85.
    [33]曾立平,江建文.汽车双万向传动中间轴的模糊优化设计[J].机械研究与应用,2005,18(2): 88~90.
    [34]曾立平,唐进元,江波.汽车万向传动中间轴的模糊优化设计[J].机床与液压,2006,1: 36~38.
    [35]康团结.汽车传动轴布置优化设计软件研究[J].客车技术与研究,2007,3: 30~31.
    [36]宋传学,蔡章林,安晓鹃.车辆平顺性的虚拟仿真及试验[J].长春:吉林大学学报(工学版), 2007,37(2):259~262.
    [37]郭孔辉等.轮胎包容特性分析及其在汽车振动系统建模中的应用[J].汽车工程,1999, 21(2):65~80.
    [38]余志生.汽车理论[M].机械工业出版社,2000,4:173~178.
    [39]陈燕虹,刘宏伟,黄治国,张宝生.基于空气悬架客车1/2模型的模糊控制仿真[J].长春:吉林大学学报(工学版), 2005,35(3):254~257.
    [40]王岩松,段敏,耿艾莉,李章明.车辆-人体系统振动的时域模拟及频谱分析[J].长春:吉林大学学报(工学版), 2004,34(3):373~377.
    [41]陈燕虹,刘宏伟,雷海蓉.半主动空气悬架的参数自调整模糊控制仿真[J].长春:吉林大学学报(工学版),2003,33(3):5~8.
    [42]孙中辉,李幼德,孙中红,郭彦颖。改进的车辆平顺性模型[J]。吉林大学学报(工学版):2008,vol38(3)
    [43]孙中辉,郭彦颖。车辆非独立悬架优化模型的研究[C]。第四届中外汽车设计与研发工程师大会:2008
    [44]羊拯民,传动轴和万向节[U],北京:人民交通出版社,1986:4~14。
    [45]夏新念,万向节两传动轴转角关系的三元复数推证方法[J],机械设计与制造,2007(1):1~3。
    [46]任少云,等。双十字轴万向节传动力学建模与仿真[J],上海交通大学学报,2004(38):1922~1927。
    [47]王智华,汽车传动轴跳动图解析计算法[J],汽车技术,1994(9):7~10。
    [48]长春汽车研究所,汽车设计手册-整车。底盘卷[U],长春汽车研究所,1998:31~35。
    [49]郭孔辉,板簧变形运动学分析及其应用[J] ,汽车工程,1990(2):7~15。
    [50]刘文卿,实验设计。清华大学出版社[M],2007:64~76.
    [51]中国国家标准化管理委员会.GB/T 13441.1-2007机械振动与冲击人体暴露于全身振动的评价第1部分:一般要求[S]//全国机械振动与冲击标准化技术委员会.北京:中国标准出版社,2007(4).
    [52]范永法,牵引车——半挂车乘坐舒适性的优化与分析[J]。汽车工程,1989(01):53~63.
    [53]国家技术监督局. GB/T 4970-1996汽车平顺性随机输入行驶试验方法[S]//长春汽车研究所.北京:中国标准出版社,1996.
    [54]张洪欣.汽车设计[M],北京:机械工业出版社,1999. 149~171
    [55]王望予.汽车设计[M].北京:机械工业出版社,2002.133~148
    [56]刘惟信.汽车设计[M].北京:清华大学出版社,2001.431~483
    [57]余强,郑慕侨.汽车悬架控制技术的发展[J].汽车技术,1994, (9): 1~6
    [58]钱瑜.汽车悬架分类及半主动悬架[J].江南学院学报,1999, 14 (4):73~76
    [59]孙中辉,双轴载货汽车整车振动与轮胎性能的研究[D].长春:吉林大学汽车工程学院,2006,5~6
    [60]郭孔辉著,汽车操纵动力学[M],长春:吉林科学技术出版社,1991
    [61] Xiao Pei Lu, Heng Lung Li and Papalambros, A design procedure for the optimization of vehicle suspension[J].Int.J.Vehicle Design 1984 Vol.5, no.1/2: 129~142
    [62]林逸,张洪欣等,改善大客车行驶平顺性的研究[J],汽车工程。1987 (2): 52~62
    [63]江浩斌,车辆悬架特性参数的动态优化研究[D].江苏理工大学博士论文.2000.6
    [64] M.Demic,A contribution to the optimization of characteristics of elso-damping elements passenger cars[J], Vehicle System Dynamics, 1990(19):3~18
    [65]章一鸣,车辆悬挂系统优化设计[J],汽车工程,1984 (3): 17~27
    [66] Wu J S,Yang I H. Computer method for torsion-and-flexure-coupled forced vibration of shafting system with damping [J]. Journal of Sound and Vibration,2001,245(2):303~328.
    [67]初日德,材料力学[M]。吉林科学技术出版社,1995:124~132.
    [68]小林明,汽车振动学[M]。机械工业出版社,1976:171~177.
    [69]苏宝军,等。十字轴刚性万向节从动轴的Matlab仿真研究[J],传动技术,2004(18):37~38。
    [70]李文君,等。双横臂独立悬架空间运动学分析[J],汽车工程,2006(28):558~529。
    [71]韩瑞,等。矢量代数在双横臂独立悬架运动分析中的应用[J]。公路交通科技,2003(6)。
    [72]李文君,等。双横臂独立悬架空间运动学分析[J],汽车工程,2006(28):558~529。
    [73]候永坤,空气悬架系统的干涉应力分析[J],汽车技术,2006(10):9~10。
    [74]黄鼎友,传动轴的振动原因分析[J],机械科学与技术,1996(25):17~19.
    [75]张晓林,十字万向节从动轴转速变化的计算机仿真[J],青海科技,1998(5):42~45.
    [76]洪嘉振,计算多体系统动力学[M],北京:高等教育出版社,1999:108~120。
    [77]庄继德著.汽车轮胎学[U].北京理工大学出版社,1997: 105~155
    [78]李静,车辆悬架阻尼控制与可调减振器的研制[D],硕士论文,2000:14~22
    [79]欧进萍,王光远.结构随机振动[M].高等教育出版社,1995:131~213
    [80]檀润华,陈鹰,路甬祥.路面对汽车激励的时域模型建立及计算机仿真[J].中国公路学报,1998, 11(3):96~102
    [81]徐天安. BJ1045轻型载货汽车行驶平顺性分析[J].北京汽车,1996(4):17~21
    [82]韩忠浩,符朝兴,张立军.汽车多工况平顺性优化初探[J].现代机械,2001(2):90~93
    [83]江浩斌,周孔亢.农用运输车钢板弹簧选型与计算机辅助参数设计[J].江苏理工大学学报(自然科学版),2000, 21 (1): 19~23
    [84]裴永志,王建宾.车用少片变截面弹簧的刚度计算(上) [J].北京汽车,1994,(1):9~20
    [85]步一鸣.车用少片变截面弹簧[J].当代汽车,1989, (3): 16~25
    [86] P.Pintado> F.G.Benitez, Optimization for vehicle suspension I[J]:Time Domain, Vehicle System Dynamics, 1990(19):273~288
    [87] J.M.D.Castillo,P.Pintado,F.G.Benitez,Optimization for vehicle suspension II[J]: Freguency Domain,Vehicle System Dynamics, 1990(19):331~352
    [88]章一鸣、曾志华、金达锋,车辆悬挂阻尼的微机控制[J],汽车工程,1990 (3): 58~65
    [89]喻凡、郭孔辉,自适应悬架对车辆性能改进的潜力[J],中国机械工程,1998 (6): 6~10
    [90]陈无畏等,汽车半主动悬架的神经网络自适应控制[J],汽车工程,1998 (1) 31~36
    [91]刘新亮、张建武、林忠饮,主动汽车悬架的非线性控制[J],汽车工程,1997 ( 3 ): 175~179
    [92]贺海留.轮胎振动研究综述[M].轮胎工业,1994年3月1日
    [93]张义民.机械振动力学[M].吉林科学技术出版社,2000年9月
    [94]周云山,于秀敏.汽车电控系统理论与设计[M].北京理工大学,1999
    [95]徐涛.数值计算方法[M].吉林科学技术出版社,1998
    [96]张志涌等.精通Matlab 6.5[M].北京航空航天大学
    [97]张思编.振动测试与分析技术[M].清华大学出版社,1992年
    [98]孙隆庆著.频谱分析与频谱测量[M].人民邮电出版社,1982年
    [99]欧进萍,王光远.结构随机振动[M].高等教育出版社,1995年
    [100]张荣竹,蔡邦维,杨春林,许乔,顾元元.功率谱密度的数值计算方法[M].强激光与粒子束,2000, 12(6)
    [101]徐芳,魏全忠,伍凡.功率谱密度函数评价方法探讨[M].光学仪器,2000, 22(3)
    [102]韩振宇,张晓明,石章林.加窗付里叶变换用于非线性模型的分析[J].四川联合大学学报,1998, 2(4)
    [103]徐镇,江浩斌,陈步达,周孔亢.车辆行驶平顺性的计算机辅助分析[J].江苏理工大学学报,1999, 20(2)
    [104]陈步达,江浩斌等.农用运输车行驶平顺性的模拟计算与分析[J].农业机械学报,1997, 28(4)
    [105]金睿臣,宋健.路面不平度的模拟与汽车非线性随机振动的研究[J].清华大学学报(自然科学版),1999, 39(8)
    [106]吴涛,过学迅.重型越野车辆油气悬架的设计[J].专用汽车,2000:8-11
    [107]刘明树,彭巧励,王志中.拖挂车辆挂接装置参数对测量平顺性影响的试验研究[J].农业工程学报,1999, 15(1)
    [108]李丽莉,李玉峰,王杏华,王海.汽车行驶平顺性的预测及优化设计[J].天津大学学报,1999,32(4)
    [109]王连明,宋宝玉,周岩,郑胜军.汽车平顺性建模及其仿真研究[J].哈尔滨工业大学学报,1998, 30(5)
    [110]祁建城,李若新,徐新喜,刘志国,高延令.救护车担架-卧位人体系统振动的最优主动控制研究[J].公路交通科技,1998, 15(4)
    [111]徐天安. BJ1045轻型载货汽车行驶平顺性分析[J].北京汽车,1996(4):17~21
    [112]宋希庚,薛冬新,韩松,于长吉.悬挂式座椅与重型车的平顺性[J].大连理工大学学报,1995, 35(3)
    [113]王秉纲.我国汽车平顺性试验研究工作概况及展望[J].汽车工程,1989(6)
    [114]陈宪忠.时域内轿车行驶平顺行建模及仿真研究[D].吉林大学硕士论文,2002年
    [115]檀润华,陈鹰,路甬祥.路面对汽车激励的时域模型建立及计算机仿真[J].中国公路学报,1998, 11(3)
    [116]檀润华,陈鹰,姚东方,路甬祥.路面随机激励下的汽车振动仿真[J].振动、测试与诊断,2000, 20(2)
    [117]毕凤荣,郝志勇,谢庆森,西洪杰.汽车悬架系统非线性阻尼的优化设计[J].天津大学学报,2002, 35(1)
    [118]盛骤等.概率论与数理统计[M].高等教育出版社,1979年
    [119]魏朗,陈荫三,龚国庆.公路卧铺客车的车-铺-人系统平顺性模拟计算[J].中国公路学报,1999, 12(1)
    [120]韩忠浩,符朝兴,张立军.汽车多工况平顺性优化初探[J].现代机械,2001(2):90~93
    [121]丁川.鉴定汽车平顺性测试系统的一种方法[J].洛阳工学院学报,1994, 15(3)
    [122]李土松,高荫峰,潘文军.考虑阻尼非线性的汽车平顺性预测[J].北方交通大学学报,1997, 21(4)
    [123]贺岩松,赵仲辉.载货汽车的平顺性预测[J].中南林学院学报,1996, 16(2)
    [124]郑军,钟志华.非线性汽车行驶平顺性模型的神经网络优化[J].汽车工程,2001, 23(3)
    [125]杜子学,李明.乘用车平顺性预测与分析软件的开发[J].中国公路学报,2000, 13(4)
    [126]周孔亢.农用客车及其性能评价指标[J].农业机械学报,1996, 27(2)
    [127]田得培.制定载货汽车货厢振动极限值的方法[J].振动与噪声控制,1998(3)
    [128]丁玉庆.汽车振动系统的简化及数学模型的建立[J].南京理工大学学报,2001, 25(4)
    [129]刘成,王仲范.两自由度非线性汽车模型平顺性评价[J].武汉汽车工业大学,1996, 18(2)
    [130]雷雨成,陈昌明.汽车平顺性与操纵稳定性优化的对策论方法[J].同济大学学报,1997, 25(4)
    [131]杜子学.基于乘用车型平顺性分析的新指标——汽车综合振动舒适度Cgv[J].西南交通大学学报,2000, 35(2)
    [132]刘岩,丁玉兰,林逸.汽车高速振动仿真与实验研究[J].公路交通科技,2000, 17(3)
    [133]李军岩,牛鸣昌,郑恒银.载货汽车行驶平顺性试验数据处理系统的软件设计[J].林业机械与木工设备,1996(1):13~14
    [134]万里翔,徐明恒.汽车行驶平顺性评价方法的研究[J].西南交通大学学报,2001, 36(1)
    [135]郑勋.汽车振动舒适性的测量与评价[J].客车技术与研究,2000, 22(4)
    [136]唐雪松.汽车行驶平顺性的计算机模拟计算[J].中南汽车运输,1996(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700