用户名: 密码: 验证码:
重型卡车AMT系统关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重型卡车挡位较多,换挡频繁,换挡疲劳强度较大,在路况较差的情况下对变速箱的损坏也较大。目前直接从国外进口的AT和AMT变速器价格昂贵,因此需要大量开发适合中国国情的重型卡车AMT产品。本文针对装配AMT系统的重型卡车起步和换挡控制等方面进行研究。
     1)利用多元线性回归法建立了发动机模型,首次对回归系数进行检验并剔除了对结果影响小的自变量的项,首次利用自由度修正的复相关系数检验拟合度,避免了计算过程中为追求拟合效果盲目增加自变量的现象。
     2)建立了离合器完全结合前、后的整车仿真模型,并利用准备装配AMT系统的某重型卡车进行试验,验证整车模型的有效性。首次建立了一汽某重型卡车AMT系统气动执行机构的数学模型,并利用离合器静态台架试验验证了离合器气动执行机构模型的正确性,并分析其控制难点,为控制策略的研究做好准备。
     3)分析了起步过程中的影响因素,设计了起步控制器,实现离合器分离轴承位移的精确控制,同时协调控制发动机转速,从而实现了平稳起步。针对空载和满载两种状态,分别对车辆的常规加速起步、5%坡度起步和10%坡度起步过程进行仿真研究。
     4)将两种不同特性的膜片弹簧离合器分别作为被控对象,通过仿真分析和静态台架试验比较二者的控制效果,为本文卡车AMT系统离合器的选型提供了理论依据。
     5)制定了动力性和经济性换挡规律,首次计算了换挡过程中的车速损失,并进行动态补偿;设置了换挡后的最小加速度阈值,确保了换挡后车辆具有足够的动力。设计了新型的选、换挡传感器精确检测选、换挡拨头位置。建立了换挡前、后的整车模型,换挡过程中协调了发动机、离合器执行机构和选、换挡执行机构的动作,仿真模拟了整车连续换挡工作过程,并进行整车试验验证,结果表明本文制定的动态换挡规律和设计的换挡策略是有效的,可以很好地满足重型卡车的行驶要求。
In recent years, AMT has become a new type of automatic transmission technologies, which plays an important role in the family of the automatic transmission and has been widely concerned in the world. AMT has lot of advantages, such as higher efficiency, lower manufacturing cost, higher cost performance and smaller equipment investment; in addition, its production can follow the existing manual transmission production lines. So, AMT is very suitable for the development of Chinese automobile industry, and it has very good industrialization prospects and wide applications range. Despite AMT technology of the heavy trucks has been researched in the worldwide and has achieved a product-promotion,system stability and reliability continues to be the key technologies and difficulty in its development process because of the strong compression of gas media, AMT system owner characteristics and technical complexity, the vehicle start, shift. The research in this paper is based on the focus project "Commercial Vehicle AMT" of China FAW Group Corporation R&D Center. The in-depth systematic theory and experimental research work have been done for a number of control technical problems of heavy truck AMT system and its pneumatic actuator, and the control strategy has been researched using the intelligent control theory and methods.
     This paper introduces three kinds of typical automatic transmission characteristics, development status and the main applications control method of the automatic mechanical transmission in the worldwide, besides, this paper describes the development prospects, technical problems and practical significance of heavy truck AMT system. So, the academic, practical application background and necessity of the research in this paper has been expounded.
     The model of the engine toque is based on the multiple linear regressions. What’s more, the regression coefficient is for the first time checked, and the independent variable, which plays a faint role in the result, is eliminated. It firstly tests the degree of fitting by means of multiple correlation coefficients, which is modified by the degree of freedom, and thus it avoids the phenomenon of blind increase of the independent variable, which is the result of the pursuit of the fitting effect. The vehicle model is based on the clutch slipping stage and fully combined stage, which has been tested the validity by vehicle experiment of the FAW heavy truck which preparing assembly AMT system.
     The manipulation in AMT of research truck is electric control-pneumatic actuator. The composition and working principle of clutch pneumatic actuator, selection pneumatic actuator and shift pneumatic actuator is described in this paper. The various pneumatic actuator mathematical models of FAW heavy truck AMT system has established firstly based on gas dynamics theory and its work process has been simulation. The model correctness of clutch pneumatic actuator has been proved using clutch static test bench, in addition, the control difficulties and existing problem have been analyzed, which determined the research direction and content for further in-depth study on the clutch Intelligent Control Method.
     The dynamics of vehicle starting has been analyzed in the paper. The subjective and external estimation method has also been introduced. The clutch control objectives of vehicle start has been confirmed with fully studying the influence on the heavy truck start based on the throttle, engine initial speed, clutch engagement speed and vehicle load. As the vehicle started will wear clutch, especially for heavy truck full loaded, so the clearance of the clutch driving disk and driven disk is dissimilar in each starting, in addition, the consistency of Diaphragm clutch is not Satisfactory because of clutch production process limits in our country. So there haven’t condition on measure the clearance of Diaphragm clutch driving and driven disk as clutch has been separated. But the synchronization time can been gained by speed sensor. So, the fast engage moment for eliminating the clearance of clutch driving and driven disk has not been considered and the fast engage moment after synchronization has been research. The control of heavy truck start has two modes. Before clutch driving and driven disk synchronization, the start controller has been designed for clutch engagement. After clutch driving and driven disk synchronization, the open loop control of clutch pneumatic actuator has been done for engaging clutch with the maximum speed.
     The start controller designed in this paper has three layers. In the first layer, choosing the accelerator pedal displacement and its rate of change as input variables, using intelligent fuzzy reasoning algorithm, the start intention of the driver can be gained. In the second layer, choosing the driver intentions and the speed difference of clutch driving and driven disk as input variables, choosing clutch engagement speed as output variable. In the third layer, the clutch bearing displacement has been chosen as the control objective of the clutch pneumatic actuator. The control of clutch bearing displacement achieves by the pneumatic actuator, which precise control is more difficult because of the non-linear of high-speed switching valve dead-zone, power supply voltage fluctuations, gas strong compression and diaphragm spring strong non-linear and so on. In the simulating and testing on the clutch pneumatic actuator, when the direct feedback control was used on the clutch solenoid valve, it can be found that if the clutch cylinder piston target displacement is smaller, the effect of piston displacement is better because of the cylinder pressure, piston speed and acceleration is smaller. And if the clutch cylinder piston target displacement is bigger, the system overshoot is bigger because of the clutch cylinder pressure, piston speed and acceleration is bigger. The section dynamic control method is designed to control the clutch pneumatic actuator. When the clutch bearing target displacement is small, the closed-loop control has been used to control the clutch pneumatic actuator. And if the clutch bearing target displacement is larger, the dynamic look-up table method has been used to compensate the intake and exhaust gas for clutch cylinder, and the simulation and test both confirms its validity. The Constant speed control strategy has been used on the engine, and set engine speed threshold and maximum target speed value. The fuzzy controller has been used on accelerator pedal, choosing engine speed and its rate of change as input variables, using intelligent fuzzy reasoning algorithm, the change of accelerator pedal displacement as output variable. The control strategy can reflect the intention of the driver and decrease the Friction power. The process of vehicle normal start, 5% and 10% initial slope start with empty and full load has been separately simulated by the simulation model in this paper. the smooth start of heavy truck also approved the start control method in this paper is validity and the section dynamic control method which in the bottom of the start controller can meet the control needs of the clutch bearing displacement, it is strong practical.
     The control effect of the control system is affected in a large extent because of the characteristics of controlled object. The different characteristics of two diaphragm spring clutches have been researched as controlled object, simulation and bench test results of following sine wave and Triangle wave were compared, which provides the theoretical guidance of selection of diaphragm spring clutch for the heavy truck AMT system.
     The shift process dynamics of heavy truck AMT system has been analyzed. The best dynamic and best economy shift rule has been calculated. For heavy-duty truck load large and shifting power interruption time is longer, the vehicle speed loss during shift process has been calculated for the first time based on the traction and driving resistance before shifting and dynamic corrected the shift rule by considering the vehicle speed dynamic loss compensation before shifting. The minimum acceleration thresholds after shifting has been set by calculating the driving force and driving resistance after shifting and make up the heavy trucks less power after shifting. The vehicle mathematic model of before and after shifting has been built and the shift strategy has been designed based on the research shift operate of skilled driver. In addition, a new type of gear detection sensors has been designed to detect selection and shift position. The operation of engine, clutch, selection and shift Pneumatic actuator has been coordinated during shifting. Truck continuance shift working process has been simulated by the best power and economy shift rule and truck test has been done by FAW AMT prototype to examine the result of theoretical studies. The result shows that the shift rule and the shift control system in this paper has achieved a more satisfactory result and the simulation model also has a strong practicality.
引文
[1]周云山,于秀敏编著.汽车电控系统理论与设计[M].北京:北京理工大学出版社,1999.
    [2]葛安林.车辆自动变速器理论与设计[M].北京:机械工业出版社,1993.
    [3]席军强,丁华荣等.ASCS与AMT的历史、现状及其在中国的发展趋势[J].汽车工程,2002,24(2):89-53.
    [4]葛安林.自动变速器(一)—自动变速综述[J].汽车技术,2001,(5):1-3.
    [5]郭彦颖,刘明树,周云山,孙中辉. CVT轿车发动机建模及PID速比控制器设计[J].汽车技术, 2007, vol(7):14-17
    [6]殷红幸,董玉梁.AMT自动变速技术的发展与国内现状[J].世界汽车.2002,(7):21-22.
    [7]雷雨龙,葛安林,李永军.离合器起步过程的控制策略.汽车工程,2000,22(4):266-269,281.
    [8] S.Tanaka. Electronically Controlled Mechanical Automatic Transmission for Heavy Duty Trucks and Buses[C]. SAE paper 861050,1986.
    [9]张洪坤,陈涛,陈伟.车辆自动变速器控制系统设计[J].微计算机信息.2007,(14):246-247.
    [10]葛舜,葛安林,武文治.自动变速器离合器的模糊控制[J].汽车技术,1996(6):7-12.
    [11]葛安林.自动变速器(十一)——变速器的自动控制系统(下)[J].汽车技术,2002,(3):1-4.
    [12]王丽芳.自动变速器换挡规律确定方法的研究[J].汽车技术,1998(6):7-9.
    [13]郭彦颖,孙中辉,孙中红,周云山,张国强。传动轴长度和角度的校核计算。汽车技术:2008,vol(5):34-37
    [14]秦贵和,范巨新,张宏坤等.机械式自动变速器微机控制系统[J].汽车工程,1999,21(1):21-25.
    [15]李焕松,葛安林,武文治等.汽车发动机与传动系联合操纵研究[J].汽车工程,1993,15(4):226-233.
    [16]张凤桐.汽车换挡过程数学模型的建立[J].上海汽车,1997(7):1-4.
    [17]程秀生,毕乾坤,杨建华.基于虚拟现实技术的AMT换挡特性仿真系统[J].汽车技术.2007,(9):1-4.
    [18]王洪亮,刘海鸥,关超华,陈慧岩.重型车辆AMT换挡过程控制方法的研究[J].汽车工程.2009,(6):540-544.
    [19]王洪亮,刘海鸥,张威,陈慧岩.越野车辆AMT消除意外换挡及频繁换挡策略研究[J].北京理工大学学报.2009,(8):681-685.
    [20]葛安林,雷雨龙,高义峰等.电控机械式自动变速器车辆坡上起步控制研究[J].汽车工程,1998,20(3):150-155.
    [21]雷雨龙,葛安林,秦贵和等.电控机械式自动变速器车辆起步控制品质的实验研究[J].农业工程学报,1998,14(3):143-147.
    [22]申水文,葛安林.基于二参数换挡规律的模糊换挡技术[J].汽车技术,1998(1):9-12.
    [23]王洪亮,赵熙俊,刘海鸥.重型汽车AMT电控气动坡起辅助控制[J].山东大学学报.2009,(10):79-83.
    [24]席军强,刘富庆,余建华,王阳.气压驱动式自动离合器控制技术研究[J].哈尔滨工业大学学报.2009,(1):122-125.
    [25]杨志刚,曹长修,黄建明.智能控制技术在汽车AMT中的应用[J].重庆交通学院学报,2002,21(4):110-113.
    [26] Guo Yanying,Sun Zhonghui, Sun Zhonghong. The Kinematics Analysis on Single Cross Universal Joint.IEEE Vehicle Power and Propulsion Conference(VPPC):2008.
    [27]何仁.汽车动力性燃料经济性模拟计算方法及应用[M].北京:机械工业出版社, 1996:18-21.
    [28] Guo Yanying,Sun Zhonghong. Optimization of Engine Torque Model Based on the Multiple Linear Regressions[C]. RECENT ADVANCE IN STATISTICS APPLICATION AND RELATED AREAS. 2008:1281-1286.
    [29]李忠范,高文森.数理统计与随机过程[M].长春:吉林大学出版社, 2000:222-227.
    [30]张启锐.实用回归分析[M].北京:地质出版社, 1988:67-69.
    [31]向东进.实用多元统计分析[M].武汉:中国地质大学出版社, 2005:41-49.
    [32]王文斌.机械设计手册[M].北京:机械工业出版社,2007,第四卷24-16.
    [33]王新月.气体动力学基础[M].西北工业大学出版社.2006, 70,122-124.
    [34]雷雨龙.提高电控机械式自动变速器性能的研究[D].长春:吉林工业大学,1999年.
    [35]刘巧伶.理论力学[M].吉林科学技术出版社.1997.
    [36]雷雨龙.基于智能公交系统的公共汽车自动变速技术研究[D].长春:吉林大学,2001年.
    [37]庄继德.汽车电子系统控制工程[M].北京:北京理工大学出版杜,1998年.
    [38] H.Tanaka,H.Wada. Fuzzy Control of Clutch Engagement for Automated Manual Transmission[J]. Vehicle System Dynamics. 1995,24:365-376.
    [39]黄建明.机械式自动变速器的控制策略研究[D].重庆:重庆大学,2004年.
    [40]席军强.无刷电机驱动的自动离合器及其控制策略研究[D].北京:北京理工大学,2001年.
    [41] A.Szadkowski, R.B.Morford. Clutch Engagement Simulation: Engagement without Throttle[C]. SAE Paper 920766,1992.
    [42] A.Szadkowski, R.B.Morford. Clutch Engagement Simulation: Engagement with Throttle[C]. SAE Paper 922483, 1992.
    [43]徐石安,江发潮.汽车离合器[M].清华大学出版社.2005年.
    [44] TSD2506_4_P_1自动变速器的变速冲击主观评价试验方法[S].
    [45]李君,冯金芝,雷雨龙等.电控机械式自动变速器的发展、现状和展望[J].汽车技术,2000. (3): 1-3.
    [46]雷雨龙,李永军,葛安林,牛铭奎.机械式自动变速器汽车过程控制[J].机械工程学报,2000,36(5):69-71.
    [47]葛安林,吴锦秋,郭万富.离合器最佳结合规律的探讨[J].汽车工程,1998,10(2):54-65.
    [48] G.L.Falzoni, E.Pellegrino,R.Troisi. Microprocessor Clutch Control[C]. SAE Paper 830628, 1983.
    [49]金伦.双离合器自动变速器建模与控制策略的研究[D].长春:吉林大学,2006年.
    [50]孙增昕.智能控制理论与技术[M].北京:清华大学出版社,1996.
    [51]刘有才.模糊信息优化处理及其应用[M].北京:北京航空航天大学出版社,1998.
    [52]李国勇.智能控制及其matlab实现[M].北京:电子工业出版社,2006.
    [53]卢延辉.双状态无级变速器综合控制策略研究[D].长春:吉林大学,2007年.
    [54]陈家瑞.汽车构造[M].北京:人民交通出版社,2000:142-143.
    [55]姜家吉,罗邦杰,葛安林.机械式自动变速器中离合器的自动控制[J].吉林工业大学学报,1992,22(2):32-38.
    [56]麻有良.电控自动变速器的结构与检修[M].北京:冶金工业出版社,机械工业出版社,2000年
    [57] J.M.Slicker,R.N.K.Loh.Design of Robust Vehicle Launch Control System[C].IEEE Transactions on Control Systems Technology,1996,4(4):326-335.
    [58]佐藤恭一など,乘用車用湿式發進クラッチのファジィ制御に関する研究[C],自動車技術会論文集9741333,Vol.28,No.4,October 1997.
    [59]带自动变速箱的车辆加速感试验方法[S].
    [60]余荣辉,孙冬野,秦大同.机械自动变速系统动力性换挡控制规律[J],农业机械学报,2006年4月,第37卷第4期,1-4页
    [61]刘振军.基于人—车—路环境下的汽车电控机械自动变速智能控制的研究[D].重庆:重庆大学,2005年.
    [62]葛安林,沈波.AMT换挡品质的研究[J].汽车技术,2003,(2):43-45.
    [63]葛安林,武文治,张天一等.自动换挡过程中的动态闭环控制[J].汽车工程,1994,16(5):276-282.
    [64]余志生.汽车理论[M].北京:机械工业出版社.2002年.
    [65] F.Garofalo, L.Glielmo, L.Iannelli, and F.Vasca, Smooth engagement for automotive dry clutch [C], Proc. of the 40th IEEE Conference on Decision and Control, Orlando, Florida, USA, 2001.
    [66] J.Daniels. The Case for Semi-automatic Transmissions[J]. Automotive Engineer 1997, 22(2): 28-31.
    [67]徐安石,肖德炳,刘惟信.离合器[M].北京:人民交通出版社,1981年.
    [68] Homes. Automatic Mechanical Transmission Control[C].SAE paper 831776,1983.
    [69] Gilmore. Digital Automatic Transmission Control[P]. United States Patent 3,961,546 June 8, 1976.
    [70] W.Hardtle. New Automated Mechanical Transmission Customer Consideration, Concept Comparisons and Experiences[C]. SAE paper 982796, 1998.
    [71] K.Eiichi.Progress on the Drivetrain Electronic Systems of the Japanese Trucks and Buses[C]. SAE paper 901161,1990.
    [72] C.Jess. Box of Delights[J]. Autnmotive Engineer. 1996, (6).
    [73]黄建明,曹长修.机械式自动变速器的挡位检测与控制[J].重庆大学学报(自然科学版),2003,26(2):68-71.
    [74] K.Kiipper, R.Seebacher, O.Werner. Think Systems-Software by LUK[R].the 6th LUK Symposium, 2002, 185-196.
    [75]司利增.汽车计算机控制[M].北京:人民交通出版社,2000年.
    [76]陈俐.汽车AMT自动离合器接合过程的动力学与控制研究[D].上海:上海交通大学,2000年.
    [77]阴晓峰,葛安林,雷雨龙等.基于神经网络的发动机动态模型的研究[J].汽车工程,2001,23(3): 145-151.
    [78]任传祥.汽车机械式自动变速器换挡规律评价方法的研究[D].长春:吉林大学,2001.
    [79]林世裕.膜片弹簧离合器的设计制造[M].福建:东南大学出版社,1995年.
    [80]申水文等.AMT离合器的综合模糊控制[J].汽车工程,1997 19(6): 347-351.
    [81]王云成等.机械式自动变速器系统的离合器起步模糊控制[J].农业机械学报,2000(11)
    [82]李士勇.模糊控制和智能控制理论与设计[M].哈尔滨:哈尔滨工业大学出版社,1990
    [83]李永军,葛安林,陈树星等.机械式自动变速器起车过程综合控制[J].汽车工程,2003,25(2): 178-181.
    [84] J.G Kuschewski, S.Hui. Application of Feedforward Neutral Networks to Dynamical System Identification and Control[C], IEEE Trans. On Control System Technology, 1993,(1):37-49.
    [85]杨清海,河合素直,曾祥荣.气动位置伺服系统的高精度控制[J].液压与气动,1994 (6): 11-14.
    [86]窦振中.模糊逻辑控制技术及其应用[M].北京:北京航空航天大学出版社,1995年.
    [87]诸静.模糊控制原理与应用[M].北京:机械工业出版社,1995年.
    [88]刘曙光等.模糊控制技术[M].北京:中国纺织出版社,2001年.
    [89] K.M.Passino, S.Yurkovich. Fuzzy Control[M]. Beijing: Tsinghua University Press, 2001.
    [90] Robert Bosch GmbH. Automotive Handbook[M]. Robert Bentley. Publishers, Fifth Edition, 2000.
    [91]周学建等.车辆自动变速器系统换挡规律的研究现状和展望[J].农业机械学报,2003,34(3): 139-141,145.
    [92]葛安林,吴锦秋,林明芳.汽车动力传动系统参数的最佳匹配[J].汽车工程,1991,13(1):35-42.
    [93]张凤桐.汽车机械有级传动系操纵规律的研究[J].上海汽车,1997(5):12-18.
    [94] P.R.Page. A Microprocessor Based Controller for a Dry Plate Clutch and Constant Mesh Gearbox[C]. SAE paper 850536, 1985.
    [95] H.D.Lee, S.K. Sul, H.S.Cho, et al. Advanced Gear-Shifting and Clutching Strategy for a Parallel-Hybrid Vehicle[C].IEEE IndustryApplication Magazine, 2000, (11/12): 26-32.
    [96] M.Pettersson, L.Nielsen. Gear Shifting by Engine Control[C]. IEEE Transactions on Control System Technology 2000, 8(3): 495-507.
    [97]汤霞光,侯朝桢.基于定量反馈理论的AMT离合器接合控制研究[J].北京理工大学学报,2002,22(1):94-97.
    [98]韦巍.智能控制技术[M].北京:机械工业出版社,2000.
    [99]韦巍.智能控制技术的研究现状和展望[J].机电工程,2000,17(6):4.
    [100]刘曙光,魏俊民,竺志超.模糊控制技术[M].北京:中国纺织出版社. 2001.
    [101]李少远,陈增强,杨鹏等.智能控制的新进展[J].信息-电子与自动化仪表,1997,(4):1-10.
    [102]孙增圻,张再兴,邓志东.智能控制理论与技术[M].北京:清华大学出版社,1997.
    [103]王俊普.智能控制[M].合肥:中国科学技术大学出版社,1996.
    [104] P. J. King, et. The Application of Fuzzy Control Systems to Industrial Processes[J]. Automatica.1977, 13(3): 235-242.
    [105] R. M.Tong. A Control Engineering Review of Fuzzy Systems[J]. Automatica.1977, 13(6):559-569.
    [106] Cai Zixing. Intelligent Control: Principles, Techniques and Applications[J]. Singapore, World Scientific. 1997.
    [107] Kwang W A and Passino K M. Dynamically focused fuzzy learning control[C]. IEEE Trans. Syst.,Man, and cybem.,1996, 26(1): 5374.
    [108]章卫国,卢京潮,吴方向.先进控制理论与方法导论[M].西安:西北土业大学出版社, 2000.
    [109]张景,李人厚.基十时一序规则的实时一控制令家系统结构及实现[M].智能控制与智能自动化(上卷),北京:科学出版社,1993,162-167.
    [110]袁南儿,王万良,苏宏业.计算机新型控制策略及其应用[M].北京:清华大学出版社,1998.
    [111]李祖枢.仿人智能控制研究20年[C].1999年中国智能自动化学术会议论文集.重庆1999.
    [112]李祖枢.智能控制理论研究[J].信息与控制,1991,(5).
    [113]邓志东,张再兴,孙增圻.学习控制系统[J].信息与控制,1996,25(2):92-102.
    [114]陈建安,戴冠中,徐乃平.学习控制技术、方法和应用的发展新动向[J].控制理论与应用.1999,16(1):1-5.
    [115]陈建安,徐乃平.智能控制的学习技术与其前景展望[J].电子科技.1998,(1):11-15.
    [116]李少远,席裕庚.模糊滑动模态控制系统的性质分析[J].控制理论与应用,2000,17(1):14-18.
    [117] Sang Rok, Zeungnam Bien. An iterative learning control method with application for the robot manipulator[J]. Automatic,1988,4(5):833-865.
    [118]刘振军,秦大同,胡建军.重型车辆自动变速技术及发展趋势[J].重庆大学学报. 2003,26(10):10-14.
    [119] Christan Bader. Powertrain Electronics-Progress on the Use and Development of the Computer Aided Gearshift Systems[C]. SAE Paper 901160.
    [120] Akira Watanabe. Microcomputer Mechanical Clutch and Transmission Control[C]. SAE Paper 840055.
    [121] H.Tanaka and H.Wada. Fuzzy Control of Electropenumatically Operated Clutch Engagement for Automated Manual Transmission[C]. JSAE Paper 930739.
    [122]梁珍.自动换挡机械式变速器(AMT)在欧洲5大品牌载货汽车上的应用[J].商用汽车.2002, (8):58-60.
    [123]朱振宇,许纯新,智国平.工程车辆自动变速智能控制系统开发与试验研究[J].机械工程学报. 2004, 40(10):97-101.
    [124]别秀梅,葛安林.机械式自动变速器车辆的模糊巡航控制[J].农业机械学报. 2004,35(5):16-19.
    [125]张迎军,周学建,周志立.概述AMT车辆起步的离合器控制方法[J].拖拉机与农用运输车. 2003,(3):3-6,12.
    [126]杨麟祥.岳继光汽车自动变速箱的模糊控制研究[J].控制工程. 2004,11(3):220-222.
    [127]何国旗,张麦秋.自动变速器平稳换挡控制方法[J].传动技术. 2004,(1):41-44.
    [128]龚捷,赵丁选,陈鹰.工程车辆自动变速器的节能换挡规律研究[J].机械工程学报.2004,40(3):84-87.
    [129]施利克J.M..自动离合器的闭环发动机与爬行控制[P].中国专利CN1072890A.
    [130]周大森,王利荣.汽车自动变速器原理与维修[M].北京:国防工业出版社.1998.
    [131] Fowler. Control for automated mechanical transmission system[P]. United States Patent 5,943,912.
    [132]任传祥,程秀生,范跃祖.汽车机械式自动变速器换挡规律的动态评价方法研究[J].公路交通科技. 2004, 21(3): 117-120.
    [133]赵健,迟瑞娟,曹正清等.机械式自动变速器控制电路系统的开发[J].拖拉机与农用运输车. 2004,(1): 24-26.
    [134]魏民祥,郭万林.数字信号处理器在汽车电子控制中的应用[J].汽车电器,2003,(1):11-13.
    [135]孙以则,王其明.车辆AMT中道路条件及驾驶意图的模糊识别[J].汽车工程.2001,23(6):419-422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700