用户名: 密码: 验证码:
黑河流域陆地水循环模式及其对人类活动的响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑河流域作为我国西北地区典型的内陆河流域,以其特殊的寒区水文过程、复杂的陆地水文循环过程、省际水事矛盾、脆弱的生态环境等诸多科学与热点问题受到广泛关注。其水资源形成于上游山区,开发利用于中游灌溉绿洲,耗散于下游巨大的蒸发中,具有鲜明的分区特征。由于大规模的、长时期的水资源开发,黑河流域已经成为人类干预再造地表水、土壤水和地下水的综合试验场,形成自然-人工复合型的水循环系统。本文从黑河流域上游、中游、下游的特点出发,通过模型设计和数值模拟分别阐述了上、中、下游的水循环模式及其对人类活动的响应。
     上游祁连山区是黑河流域的产流区。除黑河干流研究程度较高外,仍有众多子流域因观测资料缺乏而进展微弱。本文在对祁连山区数字地形识别的基础上,运用流域水量平衡原理,对祁连山黑河流域20多个子流域的降水-径流关系进行了统计,提出多年平均状态下估算出山径流量的统计模型。该统计模型中,各子流域的年蒸发系数与其年降水量成幂函数关系;进一步研究表明,年蒸发系数从统计意义上又可表述为年降水量与年水面蒸发量比值的双曲函数。在假设月蒸发系数和年蒸发系数具有相同函数表达式的基础上,对黑河干流地区设计了TANK流域水文模型。通过模拟可知,黑河干流地区年降水量的38%用于产流,直接地表径流、融雪径流、地下径流对出山径流的贡献分别为52%、11%、37%。
     本文以黑河干流中游地区即张掖盆地为研究对象,在定性分析其地表水、地下水相互转化特征的基础上,提出张掖盆地年水均衡模型,定量解释了地表水与地下水之间的相互转化。年水均衡模型中包含一个非线性的河道渗漏模型,该模型充分考虑了河道水量适时变化条件下的河道渗漏行为以及灌溉引水对河道渗漏的影响。从地下水动力学角度出发,通过分析典型观测孔水位与高崖断面(黑河干流河道上的重要控制断面)基流量的关系,提出基于地下水观测的高崖断面月径流模型,模型参数少、精度较高,基本反映了高崖断面径流量的变化特征。张掖盆地地下水补给区的包气带厚度普遍较厚,厚层包气带的存在,影响地下水补给的时间和数量,通过简化的数值模拟得出张掖盆地厚层包气带中入渗-补给转化过程的总体特征,在此基础上提出简化的地下水补给模型,并将其应用到张掖盆地月水均衡模型的设计中。基于张掖盆地出口断面正义峡月径流过程的不同模拟方案,提出两种月水均衡模型,详细刻画了张掖盆地地表水-地下水相互转化的各个环节与细节。
     下游地区水循环特征以垂向的蒸发蒸腾为主。地下水位的高低决定着植被的生长状况与演替,而地下水则主要接受黑河河水的补给,构成了河流-地下水-植被相互反馈、相互制约的生态链条。结合黑河调水的新形势,在分析黑河下游地质、水文地质条件的基础上,采用Visual Modfolw 4.0建立黑河下游盆地地下水模型,模拟分析了调水前后生态耗水区的变化。结果显示,生态耗水区较调水前明显增大,生态状况趋于好转。
     根据中、下游模型结果,深入分析了人类活动对黑河流域中下游水循环过程的影响。灌溉回归水需要在厚层包气带中平均运移长达5个月之久,才能到达潜水面,会引起地下水的二次补给;灌溉引水量对中游水循环过程的影响具有双重性,表现为正义峡流量与灌溉引水比例(灌溉引水量与河流径流量之比)呈很强的负相关,而与灌溉引水量呈弱的正相关。在限制灌溉引水增加的条件下,采用渠系防渗能有效减少地表水的渗漏。黑河调水工程实施后,中游地区除黑河干流沿岸有局部区域地下水位呈上升趋势外,其他大部地区地下水位呈下降趋势;下游地区受入境河水量的增加,地下水位普遍呈上升趋势。
Heihe River Basin is the most typical inland river basin in northwest China. Extensive attentions have been paid to its so many scientific and hot research issues, such as its specific hydrological processes in cold regions, complicated terrestrial water cycle processes, water affairs conflicts between provinces, fragile eco-environment problems, and so on. Its water resources, characterized by distinct regional features, is generated in mountain areas of the upper reaches; and then it is developed and utilized in the irrigated oases of the middle reaches; finally it is disappeared in the huge evapotranspiration of the lower reaches. Due to the large-scale and long-term developments of water resources, Heihe River Basin has became to a synthetical test site where human activities intervene and transform the relationships between surface water, soil water and groundwater. Based on the different characters of the upper, middle, and lower reaches of Heihe River Basin, this paper separately explains their terrestrial water cycle schemes and their responses to human activities by designing several models and numerical simulations.
     The upper reach at Qilian Mountain is the only runoff generating area of Heihe River Bain. Enough attention is paid to the main stream; many sub-basins of Heihe River catchment at Qilian Mountain are lack of enough concern because of limited observation data. Based on identifying the digital terrain of Qilian Mountain, the relationship of precipitation and runoff at more than 20 sub-basins is statistically analyzed from the view of average water balance, and then a statistical model used to estimate the runoff at the basin outlet under long-term average conditions is put forward. In this statistic model, the ratio of evapotranspiration to evaporation can be described as a power function of precipitation. By further study, the annual evaporation coefficient can be statistically described as a hyperbolic function of the ratio of annual precipitation to annual evaporation. In this paper, it is assumed that the monthly evaporation coefficient has the same function format with the annual evaporation coefficient. Based on this assumption, a kind of TANK Model is designed to simulate the monthly runoff processes for mountainous region of Heihe Mainstream River. 38 percent of annual precipitation is used to generate runoff, which contains directly surface runoff, snowmelt runoff and sub-surface runoff and their contributions to runoff are separately 52 percent, 11 percent, and 37 percent through the simulation.
     By selecting Zhangye Basin as the study area and based on the qualitative analysis of the interactions between surface water and groundwater in Zhangye Basin, an annual water balance model is put forward to explain quantificationally the mutual transformation between all kinds of resource. This annual water balance model contains a non-linear stream channel leakage model which emphasizes the leakage behavior of stream channel under the condition of stream flow timely changing and human activities. From the principle of groundwater dynamics and according to analyzing the relationship between groundwater levels in typical observation wells and the base flow of Gaoya cross-section (very important cross-section on the Heihe Mainstream River), a kind of monthly runoff model based on the observed groundwater level for Gaoya cross-section is brought forward. This model has fewer parameters and higher model accuracy and basically represents the variation mechanism of Gaoya cross-section. In the recharge area of groundwater of Zhangye Basin, thick vadose zone is widespread distributed under the ground surface, which effects on the time and amount of the recharge of groundwater. Simplified numerical model are carried out to investigate the general behaviors of leakage-recharge conversion through a thick vadose zone, and then a simple groundwater recharge model is presented. Two different schemes for simulating the runoff of Zhengyi Gorge are taken into account, combining with above simple recharge model, two monthly water balance model for Zhangye Basin are proposed, which can describe every details of the transformation process between surface water and groundwater.
     The water cycle in the lower reaches is characterized by vertical evapotranspiration. The growth and succession of vegetation are controlled by the level of groundwater, and the leakage from Heihe River channel is the main recharge component for groundwater. So, river, groundwater, vegetation, which feedback and confine each other, compose an integral ecological chain. After analyzing the geological and hydrogeological conditions of the lower reaches, considering the new situation of water allocation of the Heihe River, a groundwater model is set up to simulate the variation of the ecological water consumption area before and after the implement of water allocation by the software Visual Modfolw 4.0. It is shown that the area of ecological water consumption is significantly enlarged after water allocation, which predicts the vegetation will turn to be better.
     Based on the results calculated by the models developed for the middle and lower reaches, the effects of human activities on the water cycle processes are analyzed deeply. Irrigation return water needs approximate 5 months to arrive the groundwater level, which can contribute to the second recharge event for groundwater. The effects of the irrigation water diversion on the water cycle processes in the middle reaches have double nature. On hand, the runoff of Zhengyi Gorge is strongly negatively correlated with the ratio of the amount of the irrigation water diversion to the runoff of Yingluo Gorge. On the other hand, it is weakly positively correlated with the amount of the irrigation water diversion. Under the condition of confining the amount of the irrigation water diversion, the increment of the conveyance efficiency of canal water can decrease the leakages from surface water efficiently. After the implement of the water allocate of the Heihe River, for the middle reaches, except some local areas having an uptrend in the groundwater levels, the rest areas have a downtrend in the groundwater levels. For the lower reaches, the groundwater levels rise widespread due to the increment of leakages from the Heihe River.
引文
Allen RG, Pereira LS, Raes D. Crop Evapotranspiration—Guide Lines for Computing Crop Water Requirements[R]. ROME: FAO Irrigation and Drainage Paper 56, 1998.
    Hu L. T., Chen C. X., Jiao J. J., et. al., 2007. Simulated groundwater interaction with rivers and springs in the Heihe River Basin. Hydrological Processes, in Press , DOI: 1.1002/hyp.6497.
    Hu L. T. and Chen C. X., 2006. Dynamical simulation for multilayer aquifer system at middle reaches of Heihe River Basin. Journal of System Simulation, 18(7): 1966-1975.
    Jia Y. W., Ni G., Kawahara Y. et. al. Development of WEP model and its application to an urban watershed, Hydrological Processes, 2001, 15(11): 2175-2194.
    Lan Yong-chao, Kang Er-si, Zhang Ji-shi et. al., Surface water resources in the Hexi inland arid regions [J]. Advance in Earth Sciences,2002,17(4):535-544.
    LAN Yong-chao, KANG Er-si, ZHANG Ji-shi, et. al. Study on the mutual transformation between groundwater and surface water resources in the Hexi inland arid regions [J]. Advance in Earth Sciences, 2002, 17(4): 546-545.
    L. Zhang, Dawes WR and Walker GR, 1999. Predicting the Effect of Vegetation Changes on Catchment Average Water Balance. Technical Report 99/12, Cooperative Research Center for Catchment Hydrology.
    Nash J E, J V Sutcliffe. River flow forecasting through conceptual models,Ⅰ, A discussion of principles [J]. J. Hydrol., 1970,10: 282-290.
    Wang X. S. Numerical Modeling of Groundwater Flow in Heihe River Basin at Middle Reaches: A Review. In: International training workshop on groundwater modelling for arid and semi-arid areas, G-WADI'07 Lanzhou, China, June 11-17, 2007.
    Wang X. S., M.-G. Ma, X. Li, et. al.,Groundwater response to leakage of surface water through a thick vadose zone in the middle reaches area of Heihe River Basin, in China [J]. Hydroloy and Earth System Science,2010,(14)639-650.
    曹建廷,谢悦波,陈志辉.甘肃省黑河干流细土平原区灌溉水入渗运移的初步研究[J].水文地质工程地质,2002,(4):1-4.
    曹生奎.近10a来黑河下游额济纳盆地水动态变化研究[D].青海,青海师范大学,2005.
    常学向,赵爱芬,王金叶等.祁连山区大气降水特征与森林对降水的截留作用[J].高原气象,2002,21(3):274-280.
    陈崇希.滞后补给权函数――降雨补给潜水滞后性处理方法[J].水文地质工程地质,1998,(6):22-24.
    陈仁升,康尔泗,杨建平等.水文模型研究综述[J].中国沙漠,2003,23(3):222-229.
    陈仁升,康尔泗,杨建平等.内陆河流域分布式水文模型[J].中国沙漠,2004,24(4):416-424.
    陈仁升,康尔泗,张济世.应用GRNN神经网络计算西北干旱区内陆河流域出山径流[J].水科学进展,2002,13(1):87-92.
    程国栋.黑河流域:水、生态、经济系统综合管理研究[M].北京:科学出版社,2009.
    程玉菲,王根绪,席海洋等.近35a年黑河干流中游平原区陆面蒸散发的变化研究[J].冰川冻土,2007,29(3):406-412.
    程玉菲.黑河干流中游平原作物蒸发蒸腾量时空分布研究[D].兰州:兰州大学,2006.
    程玉菲,王根绪,席海洋.干旱区集中蒸散发潜力计算模型的适应性分析-以张掖为例[J]. 兰州大学学报(自然科学版专辑),2006,42:23-26.
    David R. Maidment,张建云,李纪生.水文学手册[M].北京:科学出版社,2002.
    丁宏伟,崔振卿.黑河干流中游地区泉水资源衰减原因及趋势分析[J].甘肃地质学报,2001,10(1):69-74.
    丁宏伟,高玉卓,郭建荣等.甘肃省张掖市区域水文地质调查报告[R].兰州:甘肃地勘局第二水文地质工程地质队,1998.
    丁宏伟,高玉卓,何江海等.黑河过正义峡河川径流量减少的原因及对策分析[J].中国沙漠,2001,21(1):62-65.
    丁宏伟,张荷生.近50年来河西走廊地下水资源变化及对生态环境的影响[J].自然资源学报,2002,17(6):691-697.
    丁宏伟,张举.干旱区内陆平原地下水持续下降及引起的环境问题――以河西走廊黑河流域中游地区为例[J].水文地质工程地址,2002,(3):71-75.
    丁燕云,李占奎.银根-额济纳旗盆地航磁反映的构造特征[J].物探与化探,1999,23(3):191-194.
    丁永建,叶佰生,刘时银.祁连山中部地区40a来气候变化及其对径流的影响[J].冰川冻土,2002,22(3):193-199.
    丁永建,叶佰生,周文娟.黑河流域过去40a来降水时空分布特征[J].冰川冻土,1999,21(1):42-88.
    傅春,张强.流域水文模型综述[J].江西科技,2008,26(4):588-592.
    高前兆.河西内陆河流域的水循环特征[J].干旱区地理,2003,21(3):21-28.
    高前兆,李福兴.黑河流域水资源合理开发利用[M].兰州:甘肃科学技术出版社,1991.
    高前兆,李小雁,仵彦卿.河西内陆河流域水资源转化分析[J].冰川冻土,2004,26(1):48-54.
    高前兆,仵彦卿,刘发民.黑河流域水资源的统一管理与承载能力的提高[J].中国沙漠,2004,24(2):156-161.
    高桥浩一郎.根据月平均气温、月降水量推算蒸散量[J].天气,1979,26(12):759-763.
    耿雷华,黄永基,郦建强等.西北内陆河流水资源特点初析[J].水科学进展,2002,13(4):496-501.
    关志成,朱元生,段元胜等.水箱模型在北方寒冷湿润半湿润地区的应用探讨[J].水文,2001,21(4):25-29.
    郭晓寅.黑河流域蒸散发分布的遥感研究[J].自然科学进展,2005,15(10):1266-1270.
    韩杰,张万昌,赵登忠.基于TOPMODEL径流模拟的黑河水资源探讨[J].农村生态环境,2004,20(2):16-20.
    郝庆凡,楚永伟,陈吕平.黑河水量调度方案的编制[J].人民黄河,2001,23(2):37-38.
    胡立堂.干旱内陆河地区地表水和地下水集成模型及应用[J].水利学报,2008,39(4):410-418.
    胡立堂,陈崇希.黑河干流中游地区地下水多层含水系统动态仿真[J].系统仿真学报,2006,18(7):1966-1968.
    胡立堂,王忠静,赵建世等.地表水和地下水相互作用及集成模型研究[J].水利学报,2007,38(1):54-59.
    胡兴林.概化的Tank模型及其在龙羊峡水库汛期旬平均入库径流量预报中的应用[J].冰川冻土,2001,23(1):57-60.
    胡兴林.黑河流域径流演变规律及区域性水资源优化配置分析[J].水文,2003,23(1):32-36.
    黄清华,张万昌. SWAT分布式水文模型在黑河干流山区流域的改进及应用[J].南京林业大学学报(自然科学版),2004,28(2):22-26.
    黄锡荃.水文学[M].北京:高等教育出版社,1993.
    黄晓升.黑河草滩庄大坝枢纽工程实现信息化管理的初步方案[J].甘肃农业,2007,(10):85-86.
    吉喜斌,康尔泗,赵文智等.内陆绿洲灌溉农田SPAC系统土壤水分动态模拟研究[J].中国沙漠,2006,26(2):194-201.
    贾贵义,杨丽萍,黄纯立等.甘肃省临泽县地下水资源及其开发利用规划报告[R].兰州:甘肃地勘局第二水文地质工程地质队,1998.
    贾贵义,黄纯立,杨丽萍等.甘肃省高台县地下水资源及其开发利用规划报告[R].兰州:甘肃地勘局第二水文地质工程地质队,1997.
    贾永勤,段疆.张掖市节水型社会试点建设效果分析[J].水利规划与设计,2006(2):18-20.
    贾仰文,王浩,严登华.黑河流域水循环系统的分布式模拟(Ⅰ)--模型开发与验证[J].水利学报,2006,37(5):534-542.
    贾仰文,王浩,严登华.黑河流域水循环系统的分布式模拟(Ⅱ)--模型应用[J].水利学报,2006,37(6):655-660.
    康尔泗.天山冰川作用流域能量、水量和物质平衡及径流模型[J].中国科学(B辑),1994,24(9):983-991.
    康尔泗,程国栋,蓝永超等.西北干旱区内陆河流域出山口径流变化趋势对气候变化的响应模型[J].中国科学:D辑,1999,29(增):47-54.
    康尔泗,程国栋,蓝永超等.概念性水文模型在出山径流预报中的应用[J].地球科学进展,2002,17(1):18-26.
    蓝永超,胡兴林,肖洪浪等.全球变暖情境下黑河山区水循环要素变化研究[J].地球科学进展,2008,23(7):739-747.
    蓝永超,康尔泗,金会军等.黑河出山径流年际变化特征和趋势研究[J].冰川冻土,1999,21(1):49-53.
    雷志栋,杨诗秀,谢森传等.土壤水动力学[M].北京:清华大学出版社,1988.
    李栋梁,刘洪兰.黑河流量对祁连山气候年代际变化的响应[J].中国沙漠,2004,24(4):387-391.
    李鸣骥,石培基.黑河流域张掖市近38a以来气候变化特征分析[J].中国沙漠,2007,27(6):1048-1053.
    李娜,杨太保.黑河分水后中游地区LUCC监测[J].中国沙漠,2008,28(2):223-226.
    李伟民,黄文辉.森林对径流影响关系的研究进展[J].广东林业科技,2007,23(2):81-85.
    李香云,罗岩,王立新.近50a人类活动对西北干旱区水文过程干扰研究――以塔里木河流域为例[J].郑州大学学报(工学版),2003,24(4):93-97.
    李有林.水箱模型的基本原理及其应用[J].甘肃水利水电技术,2000,36(4):229-232.
    梁继运.张掖盆地植被变化规律及其蒸发量的遥感研究[D].北京:中国地质大学,2008.
    刘少玉,卢耀如,程旭学等.黑河中、下游盆地地下水系统与水资源开发的资源环境效应[J]. 2002,18(4):90-96.
    刘少玉,张光辉,张翠云.黑河流域水资源系统演变和人类活动影响[J]. 2008,38(5):806-812.
    刘树华,黄子琛,刘立超.土壤-植被-大气连续体中蒸散过程的数值模拟[J].地理学报,1996,51(2):118-126.
    刘兴春,何素萍,郭建荣等.甘肃省民乐县地下水资源及其开发利用规划报告[R].兰州:甘肃地勘局第二水文地质工程地质队,1997.
    刘兴春,尹政,何素萍等.甘肃省山丹县区域水文地质调查报告[R].兰州:甘肃地勘局第二水文地质工程地质队,1998.
    刘兴年.黑河流域综合治理与可持续发展[J].当代生态农业,2002,(Z2):60-66.
    卢小慧,靳孟贵,刘延锋.利用EARTH模型计算河北栾城地下水垂向补给量[J].地质科技情报,2007,26(3):99-103.
    马金珠,张惠昌,易立新等.腾格里沙漠包气带水、汽、热运动的耦合模型及水热状况模拟[J].中国沙漠,1998,18(4):340-345.
    聂振龙,陈宗宇,程旭学等.黑河干流浅层地下水与地表水相互转化的水化学特征[J].吉林大学学报(地球科学版),2005,35(1):48-53.
    牛最荣,刘进琪,赵文智等.河西内陆河流域土地利用对地表水资源影响研究[J].水文,2009,29(5):73-78.
    潘启民,常炳炎,王玲等.黑河流域水资源评价利用及分配方案研究[R].兰州:黄河水利委员会黑河流域管理局,1999.
    潘启民,田水利.黑河流域水资源[M].郑州:黄河水利出版社,2001.
    钱云平,Andrew L. H.,张春岚等.应用222Rn研究黑河流域地表水与地下水转换关系[J].人民黄河,2005,27(12):58-59.
    任建华.黑河流域水资源开发对生态环境的影响[J].水土保持通报,2005,25(4):94-96.
    汤成友,缪韧,舒栋才.水箱模型在三峡入库洪水预报模型研制中的应用[J].水利水电科技进展,2006,26(4):40-42.
    田存梅,周克仪.黑河下游断流现状级成因初步分析[J].甘肃水利水电技术,2002,38(3):197-198.
    万力,曹文炳,胡伏生等.生态水文地质学[M].北京:地质出版社,2005.
    王大纯,张人权,史毅虹等.水文地质学基础[M].北京:地质出版社,1995.
    王根绪,程国栋.近50a来黑河流域水文及生态环境的变化[J].中国沙漠,1998,18(3):233-238.
    王根绪,程国栋,沈永平.干旱区受水资源胁迫的下游绿洲动态变化趋势分析[J].应用生态学报,2002,13(5):564-568.
    王根绪,王建,仵彦卿.近10年来黑河流域生态环境变化特征分析[J].地理科学,2002,22(5):527-534.
    王海军,张勃,靳晓华等.基于GIS的祁连山区气温和降水的时空变化分析[J].中国沙漠,2009,29(6):1196-1202.
    王建,沈永平,鲁安新.气候变化对中国西北地区山区融雪径流的影响[J].冰川冻土,2001,23(1):28-33.
    王金叶,康尔泗,金博文.黑河上游林区冻土的水文功能[J].西北林学院学报,2001,16(增):30-34.
    王金叶,王彦辉,王顺利等.祁连山林草复合流域降水规律的研究[J].林业科学研究,2006,19(4):416-422.
    王金忠,张清武,王宏峰.水箱模型在清河水库洪水预报中的应用[J].东北水利水电,2001,19(8):22-23.
    王启朝,胡广录,陈海牛.张掖市黑河近期综合治理工程效益初步分析[J].中国沙漠,2008,28(3):498-503.
    王琼.黑河干流中游平原区地下水资源衰减机制及其对策研究[D].西安:西北大学,2007.
    魏余广,白福,张太岭.黑河流域水资源及现阶段合理开发利用[J].冰川冻土,2006,28(4):485-491.
    魏智,金会军,蓝永超等.基于Kriging插值的黑河分水后中游地下水资源变化[J].干旱区地理,2009,32(2):196-202.
    魏智,金会军,蓝永超等.黑河分水后下游地下水位和可开采储量的变化[J].干旱区研究,2008,25(3):336-341.
    武强,孔庆友,张自忠[J].地表河网-地下水流系统耦合模拟Ⅰ:模型[J].水利学报,2005,36(5):588-592.
    武强,孔庆友,张自忠[J].地表河网-地下水流系统耦合模拟Ⅱ:应用实例[J].水利学报,2005,36(6):1-6.
    武选民.西北黑河额济纳盆地地下水利用与生态环境保护研究[D].武汉:中国地质大学,2000.
    武选民,史生胜,黎志恒等.西北黑河下游额济纳盆地地下水系统研究(上),2002,(1):16-20.
    吴晓军,苏建新.西北内陆河流域生态环境保护研究[M].甘肃:甘肃人民美术出版社,2007.
    仵彦卿,慕富强,贺益贤等.河西走廊黑河鼎新至哨马营段河水与地下水转化途径分析[J],冰川冻土,2000,22(1)73-77.
    仵彦卿,张应华,温小虎等.西北黑河下游盆地河水与地下水转化的新发现[J].自然科学进展,2004,14(2):1428-1433.
    席海洋,冯起,司建华.实施分水方案后对黑河下游地下水影响的分析[J].干旱区地理,2007,30(4):487-494.
    肖生春,肖洪浪.近百年来人类活动对黑河流域水环境的影响[J].干旱区资源与环境,2004,18(3):57-61.
    熊立华,郭生练.分布式流域水文模型[M].北京:中国水利水电出版社,2004.
    许慧萍.考虑季节性冻土的黄河源区流域水文TANK模型[D].北京:中国地质大学,2009.
    徐广杰.现状条件下黑河干流调水的思路[J].甘肃水利水电技术,2001,37(4):252-253.
    姚德良,沈卫明,李家春.塔里木盆地陆气水热交换数值模拟[J].水利学报,1994(5):31-37.
    杨明金,张勃,王海青等.黑河流域1950年~2004年出山径流变化规律分析[J].资源科学,2009,31(3):413-419.
    杨向辉,王健,姚党生.黑河流域水资源现状及其开发利用[J].水利水电科技进展,2003,23(3):25-27.
    俞宏,吕士文,关志成.寒区水箱模型非线性改进[J].东北水利水电,2002,20(9):28-29.
    袁作新.流域水文模型[M].北京:水利电力出版社,1990.
    张翠云,王昭.黑河流域人类活动强度的定量评价[J].地球科学进展,2004,19(Z)4:386-389.
    张光辉,刘少玉,谢悦波.西北内陆黑河流域水循环与地下水形成演化模式[M].北京:地质出版社,2005.
    张光辉,刘少玉,张翠云等.黑河流域地下水循环演化规律研究[J].中国地质,2004,289-293.
    张徽,安永会,韩双宝等.张掖盆地水文地质特征与稳定同位素研究[J],地下水,2009,31(141):123-125.
    张杰,李栋梁.祁连山及黑河流域降雨量的分布特征分析[J].高原气象,2004,23(1):81-88.
    张丽,董增川,徐建新.黑河流域下游天然植被生态及蓄水研究[J]. 2002,21(4):16-20.
    张明明.黑河干流中游平原区水资源系统分析及其优化调配研究[D].西安:西北大学,2007.
    张强,俞亚勋,张杰.祁连山与河西内陆河流域绿洲的大气水循环特征研究[J].冰川冻土,2008,30(6):907-913.
    张小由.额济纳绿洲生态耗水与水量平衡研究[D].兰州:中国科学院寒区旱区环境与工程研究所,2006.
    张应华,仵彦卿,丁建强等.运用氧稳定同位素研究黑河中游盆地地下水与河水转化[J].冰川冻土,2005,27(1):106-110.
    张应华,仵彦卿,乔茂云.黑河下游河床渗漏实验研究[J].干旱区研究,2003,20(4):257-260.
    赵清.断面平衡法分析黑河中游地表水与地下水转换关系[J].甘肃水利水电技术,2006,42(1):53-54.
    郑丹,李卫红,陈亚鹏等.干旱区地下水与天然植被关系研究综述[J].资源科学,2005,27(4):160-165.
    郑利民,姜丙州,郭卫新.对西北内陆河地区可持续发展问题的思考[J].人民黄河,2006,28(2):1-3.
    钟华平,刘恒,王义等.黑河流域下游额济纳绿洲与水资源的关系[J].水科学进展,2002,13(2):223-228.
    周剑.黑河流域水循环过程模拟研究[D].兰州:中国科学院寒区旱区环境与工程研究所,2008.
    周兴智,赵剑东,王志广等.甘肃省黑河干流中游地区地下水资源及其合理开发利用勘查研究[R].兰州:甘肃省地质调查院,1990.49-52.
    周鲲鹏,马金珠,魏国孝等.酒泉-金塔盆地水化学特征及其演化规律[J].兰州大学学报(自然科学版),2009,45(1):31-36.
    朱庆平,任建华,王建中等.中国内陆河流生态调水[A].第三届世界水论坛中国代表团论文集[C],2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700